Printer Friendly

Xenomonitoring of Mosquitoes (Diptera: Culicidae) for the Presence of Filarioid Helminths in Eastern Austria.

1. Introduction

In Europe, filarioid helminths of veterinary and/or medical relevance have mainly been documented in Mediterranean regions, but increasingly these pathogens are being reported in temperate climate zones in Central and Northern Europe as well [1-3].

The most important filarioid helminths in Europe are Dirofilaria immitis and D. repens, causing canine pulmonary (D. immitis), subcutaneous (D. repens), and ocular (mainly D. repens) dirofilariosis [4]. Both, D. immitis and D. repens, are zoonotic parasites [4]. The first Central European discoveries of D. immitis were confirmed in Switzerland, in 1995 and 1998 [5, 6]. Since then, both parasites, D. immitis and D. repens, have been described in humans (accidental hosts), dogs (definite hosts), and mosquitoes (vectors) in many Central European countries. Both filarioid species have now been shown to be present in all countries neighbouring Austria except for Liechtenstein, namely, Switzerland, Italy, Slovenia, Hungary, Slovakia, the Czech Republic (D. repens only), and Germany [1, 3, 4, 7-11]. D. repens was documented in most Central European countries prior to D. immitis.

Mosquito-borne filarioid helminths of the genus Setaria mainly parasitize in the abdominal cavities of artiodactyls, hyracoids, and equines. Mosquitoes of the genus Aedes are thought to be the main vectors of these parasites (e.g., Ae. vexans for S. labiatopapillosa) [12,13]. Setaria tundra is a parasite of roe deer documented in several European countries such as Austria, Switzerland, Germany, France, Italy, Hungary, Poland, Spain, and Denmark (summarized in Enemark et al. [14]). In Northern Europe, S. tundra can also be found in domestic reindeer, wild forest reindeer, and moose [15]. This species is associated with climate changes and causes severe outbreaks of periodontitis in semidomestic reindeer in Finland [16].

The aim of this study was to xenomonitor Eastern Austrian mosquitoes for the presence of DNA of filarioid helminths--with the main focus on Dirofilaria repens and D. immitis but also on Setaria tundra and other mosquito-borne filarioid helminths.

2. Materials and Methods

The present study combines the analysis for filarioid helminth DNA in mosquitoes sampled in two independent mosquito monitoring programs using two different storage conditions (dry and -80[degrees]C) conducted between 2013 and 2015.

2.1. Mosquito Sampling Method 1. In 2013 and 2014, adult female mosquitoes were trapped at three locations in Vienna using new standard miniature light traps (John W. Hook Company, Gainesville, Florida) baited with C[O.sub.2]. Collection was carried out on a daily basis for 24 hours from March to October. Mosquitoes were killed using the insecticide dichlorvos as soon as they entered the trap. Once a week, the traps were emptied, and Culicidae were dried and stored at room temperature until further processing [17].

2.2. Mosquito Sampling Method 2. Mosquitoes were monitored across three provinces of Eastern Austria (Burgenland, Lower Austria, and Vienna) at 35 permanent and 23 nonpermanent trapping sites. At permanent sampling sites, mosquitoes were monitored on a regular basis every second week for a 24-hour time period from April to October 20142015 using Biogents Sentinel Traps (Regensburg, Germany) equipped with carbon dioxide as attractant. Nonpermanent sampling sites were investigated at least once and up to six times during the summer months using Biogents Sentinel Traps (Regensburg, Germany) or exhausters. All mosquitoes were stored at -80[degrees]C until further processing [18].

Mosquitoes were identified morphologically using the identification key of Becker et al. [19] and pooled by species, collection site, and date, with a maximum number of 50 individuals per pool. To each pool, 400 [micro]l of DNA/RNA lysis buffer (Zymo Research Corp., USA) and two ceramic beads (Precellys Ceramic Beads, Peqlab Biotechnologie GmbH) were added, and the samples were homogenized in a TissueLyser II (Qiagen, Germany). Approximately 350 [micro]l of the homogenized pulp was loaded onto a QIAshredder (Qiagen, Germany). The filled QIAshredders were centrifuged for two minutes at 13,000 rpm to filter the samples (solid components remained on the column). In the next step, DNA was extracted using a ZR-Duet[TM] DNA/RNA MiniPrep kit (Zymo Research Corp., USA) according to the manufacturer's instructions.

DNA extracted from female mosquito pools was examined for the presence of genomic material of filarioid helminths using primers and PCR conditions published elsewhere [20]. The primers used target a 724 bp fragment of the mitochondrial cytochrome oxidase subunit I gene and are specific for various filarioid helminths (e.g., Dirofilaria, Wuchereria, Brugia, Onchocerca, Setaria, and Acanthocheilonema). PCR products were separated by electrophoresis in 2% agarose gels stained with Midori Green Advance DNA stain (Nippon Genetics Europe, Germany). Finally, purified PCR products were sequenced by a commercial company (LGC Genomics GmbH, Germany). Sequences thus obtained were compared for similarity to sequences available in GenBank[R] database (

3. Results and Discussion

45,848 mosquitoes representing 25 mosquito species were analysed for the presence of filarioid DNA in this xenomonitoring survey (Table 1), resulting in the identification of DNA from D. repens, S. tundra, and two unknown filarioid helminths in 20 of the mosquito pools (Table 2; Figure 1).

DNA of D. repens was only found in 2015 in a single Anopheles plumbeus mosquito in Marchegg (Lower Austria) close to the Slovakian border. Although several mosquito species of different genera are proven as potential vectors of D. repens [21], DNA of this parasite has so far only been detected in other Anopheles species (An. algeriensis and An. maculipennis complex) in Austria [2].

To date, all D. repens positive mosquitoes have been collected in close proximity to the Slovakian (this study) and the Hungarian borders [2]. In both Slovakia and Hungary, D. repens is known to be endemic with a prevalence above 10% in dogs in the Bratislava area, close to the Austrian border [22, 23]. Previous metadata analysis has shown that most reported but also potential autochthonous findings in dogs were in Eastern Austria [10]. Furthermore, Duscher et al. [24] described the examination of D. repens positive dogs in the same districts where positive mosquitoes were documented (Ganserndorf and Neusiedl am See). This indicates that D. repens might be endemic with low prevalence in this area. Simon et al. [4] postulated that two preconditions are required for a successful establishment of D. repens and D. immitis in a novel area: (i) the presence of competent mosquito vectors, which is the case in Austria, and (ii) a certain number of positive dogs shedding microfilaria. The second precondition seems to limit the distribution of D. repens (but also D. immitis) because there are almost no stray dogs, and kennel holding is not common in Austria.

Dirofilaria immitis was not identified in the present large-scale survey, confirming previous results that this parasite has not yet established itself in Eastern Austria [10]. This pathogen has however been confirmed in dogs [22,23,25] and in mosquitoes [26, 27] in Slovakia and Hungary in the vicinity of our study area.

The most commonly found filarioid helminth within the present study area in Eastern Austria was S. tundra, with most occurrences of S. tundra DNA in mosquitoes of the genus Aedes, especially Ae. vexans. Similarly, prevalences of up to 12.3% have been reported in roe deer in Central Europe (e.g., northern Bavaria [28]). This parasite has also been recorded in Ae. vexans in studies in Germany and Hungary [1,27,29,30], suggesting that S. tundra is a common parasite of roe deer in Eastern Austria.

The discovery of DNA of unknown filarioid helminths in ornithophilic Culex mosquitoes (Cx. modestus and Cx. pipiens complex) is not surprising because several avian filarioid helminths (with low pathogenicity for bird hosts) are present in Central Europe [29].

4. Conclusions

This xenomonitoring survey confirms the presence of DNA of certain filarioid helminths in mosquitoes in Eastern Austria and indicates possible vector competence of select mosquito species. However, comparison of the two sampling techniques and storage schemes used here suggests that storage of dried mosquitoes at room temperature increases the number of false negative pools because of a decrease of DNA quality, a circumstance that has also been noticed during analyses of mosquito DNA itself [31]. Moreover, different techniques for mosquito sampling (certain mosquito species are attracted by certain traps) and the use of different PCR protocols also influence the outcome of xenomonitoring studies [32]. Nevertheless, xenomonitoring is an effective tool to examine if certain pathogens are present in an area (e.g., [27]). It can be concluded that D. repens, S. tundra, and unknown filarioid helminths (most probably avian parasites) are present in Eastern Austria. Further studies are needed to monitor in more detail the situation of D. repens and D. immitis in Austria and neighbouring countries.

Conflicts of Interest

The authors declare that they have no conflicts of interest.


The authors thank all citizen scientists who helped in mosquito sampling within this study. Parts of this research were funded by the ERA-Net BiodivERsA, with the national funders FWF I-1437, ANR-13-EBID-0007-01, and DFG BiodivERsA KL 2087/6-1 as part of the 2012-13 BiodivERsA call for research proposals.


[1] M. Kronefeld, H. Kampen, R. Sassnau, and D. Werner, "Molecular detection of Dirofilaria immitis, Dirofilaria repens and Setaria tundra in mosquitoes from Germany," Parasites & Vectors, vol. 7, p. 30, 2014.

[2] K. Silbermayr, B. Eigner, A. Joachim et al., "Autochthonous Dirofilaria repens in Austria," Parasites & Vectors, vol. 7, p. 226, 2014.

[3] J. Mateju, M. Chanova, D. Modry et al., "Dirofilaria repens: emergence of autochthonous human infections in the Czech Republic (case reports)," BMC Infectious Diseases, vol. 16, p. 171, 2016.

[4] F. Siman, M. Siles-Lucas, R. Morchan et al., "Human and animal dirofilariasis: the emergence of a zoonotic mosaic," Clinical Microbiology Reviews, vol. 25, no. 3, pp. 507-544, 2012.

[5] P. Deplazes, F. Guscetti, E. Wunderlin, H. Bucklar, J. Skaggs, and K. Wolff, "Endoparasite infection in stray and abandoned dogs in southern Switzerland," Schweizer Archiv fur Tierheilkunde, vol. 137, no. 5, pp. 172-179, 1995, in German.

[6] H. Bucklar, U. Scheu, R. Mossi, and P. Deplazes, "Is dirofilariasis in dogs spreading in south Switzerland?," Schweizer Archiv fur Tierheilkunde, vol. 140, no. 6, pp. 255-260, 1998, in German.

[7] C. Genchi, L. H. Kramer, and F. Rivasi, "Dirofilarial infections in Europe," Vector-Borne and Zoonotic Diseases, vol. 11, no. 10, pp. 1307-1317, 2011.

[8] E. Bockova, I. Rudolf, A. Kocisova et al., "Dirofilaria repens microfilariae in Aedes vexans mosquitoes in Slovakia," Parasitology Research, vol. 112, no. 10, pp. 3465-3470, 2013.

[9] C. Czajka, N. Becker, H. Jost et al., "Stable transmission of Dirofilaria repens nematodes, northern Germany," Emerging Infectious Diseases, vol. 20, no. 2, pp. 328-331, 2014.

[10] H. P. Fuehrer, H. Auer, M. Leschnik, K. Silbermayr, G. Duscher, and A. Joachim, "Dirofilaria in humans, dogs, and vectors in Austria (1978-2014)-from imported pathogens to the endemicity of Dirofilaria repens," PLoS Neglected Tropical Diseases, vol. 10, no. 5, article e0004547, 2016.

[11] M. Miterpakova, D. Antolova, F. Ondriska, and V. Gal, "Human Dirofilaria repens infections diagnosed in Slovakia in the last 10 years (2007-2017)," Wiener Klinische Wochenschrift, vol. 127, no. 17-18, pp. 634-641, 2017.

[12] S. Laaksonen, M. Solismaa, R. Kortet, J. Kuusela, and A. Oksanen, "Vectors and transmission dynamics for Setaria tundra (Filarioidea; Onchocercidae), a parasite of reindeer in Finland," Parasites & Vectors, vol. 2, p. 3, 2009.

[13] A. M. Ionica, C. Zittra, V. Wimmer et al., "Mosquitoes in the Danube Delta: searching for vectors of filarioid helminths and avian malaria," Parasites & Vectors, vol. 10, no. 1, p. 324, 2017.

[14] H. L. Enemark, A. Oksanen, M. Chrial, J. le Fevre Harslund, I. D. Woolsey, and M. N. Al-Sabi, "Detection and molecular characterization of the mosquito-borne filarial nematode Setaria tundra in Danish roe deer (Capreolus capreolus)," International Journal for Parasitology: Parasites and Wildlife, vol. 6, no. 1, pp. 16-21, 2017.

[15] S. Laaksonen, M. Solismaa, T. Orro et al., "Setaria tundra microfilariae in reindeer and other cervids in Finland," Parasitology Research, vol. 104, no. 2, pp. 257-265, 2009.

[16] S. Laaksonen, J. Kuusela, S. Nikander, M. Nylund, and A. Oksanen, "Outbreak of parasitic peritonitis in reindeer in Finland," Veterinary Record, vol. 160, no. 24, pp. 835-841, 2007.

[17] K. Lebl, C. Zittra, K. Silbermayr et al., "Mosquitoes (Diptera: Culicidae) and their relevance as disease vectors in the city of Vienna, Austria," Parasitology Research, vol. 114, no. 2, pp. 707-713, 2015.

[18] C. Zittra, S. Vitecek, A. G. Obwaller et al., "Landscape structure affects distribution of potential disease vectors (Diptera: Culicidae)," Parasites & Vectors, vol. 10, no. 1, p. 205, 2017.

[19] N. Becker, D. Petric, M. Zgomba et al., Mosquitoes and Their Control, Springer, Heidelberg, Germany, 2nd edition, 2010.

[20] A. Hodzic, A. Alic, H. P. Fuehrer, J. Harl, W. Wille-Piazzai, and G. G. Duscher, "A molecular survey of vector-borne pathogens in red foxes (Vulpes vulpes) from Bosnia and Herzegovina," Parasites & Vectors, vol. 8, p. 88, 2015.

[21] C. Silaghi, R. Beck, G. Capelli, F. Montarsi, and A. Mathis, "Development of Dirofilaria immitis and Dirofilaria repens in Aedes japonicus and Aedes geniculatus," Parasites & Vectors, vol. 10, no. 1, p. 94, 2017.

[22] M. Miterpakova, A. Igladyova, V. Cabanova, E. Stloukal, and D. Miklisovaa, "Canine dirofilariosis endemic in Central Europe--10 years of epidemiological study in Slovakia," Parasitology Research, vol. 115, no. 6, pp. 2389-2395, 2016.

[23] A. Trajer, A. Rengei, K. Farkas-Ivanyi, and A. Bede-Fazekas, "Impacts of urbanisation level and distance from potential natural mosquito breeding habitats on the abundance of canine dirofilariosis," Acta Veterinaria Hungarica, vol. 64, no. 3, pp. 340-359, 2016.

[24] G. Duscher, A. Feiler, W. Wille-Piazzai et al., "Detection of Dirofilaria in Austrian dogs," Berliner und Munchener tierarztliche Wochenschrift, vol. 122, no. 5-6, pp. 199-203, 2009, in German.

[25] A. Bacsadi, A. Papp, L. Szeredi et al., "Retrospective study on the distribution of Dirofilaria immitis in dogs in Hungary," Veterinary Parasitology, vol. 220, pp. 83-86, 2016.

[26] E. Bockova, A. Igladyova, and A. Kocisova, "Potential mosquito (Diptera:Culicidae) vector of Dirofilaria repens and Dirofilaria immitis in urban areas of Eastern Slovakia," Parasitology Research, vol. 114, no. 12, pp. 4487-4492, 2015.

[27] C. Zittra, Z. Kocziha, S. Pinnyei et al., "Screening blood-fed mosquitoes for the diagnosis of filarioid helminths and avian malaria," Parasites & Vectors, vol. 8, p. 16, 2015.

[28] K. Buttner, "Untersuchungen zur Parasitierung des Rehwildes bei steigendem Jagddruck," Zeitschrift fur Jagdwissenschaft, vol. 24, no. 3, pp. 139-155, 1978.

[29] C. Czajka, N. Becker, S. Poppert, H. Jost, J. Schmidt-Chanasit, and A. Kriiger, "Molecular detection of Setaria tundra (Nematoda: Filarioidea) and an unidentified filarial species in mosquitoes in Germany," Parasites & Vectors, vol. 5, p. 14, 2012.

[30] G. Kemenesi, K. Kurucz, A. Kepner et al., "Circulation of Dirofilaria repens, Setaria tundra, and Onchocercidae species in Hungary during the period 2011-2013," Veterinary Parasitology, vol. 214, no. 1-2, pp. 108-113, 2015.

[31] A. Werblow, E. Flechl, S. Klimpel et al., "Direct PCR of indigenous and invasive mosquito species: a time- and cost-effective technique of mosquito barcoding," Medical and Veterinary Entomology, vol. 30, no. 1, pp. 8-13, 2016.

[32] A. Masny, R. Salamatin, W. Rozej-Bielicka, and E. Golab, "Is molecular xenomonitoring of mosquitoes for Dirofilaria repens suitable for dirofilariosis surveillance in endemic regions?," Parasitology Research, vol. 115, no. 2, pp. 511-525, 2016.

Sarah Susanne Ubleis, (1) Claudia Cuk, (1) Michaela Nawratil, (1) Julia Butter, (1) Ellen Schoener, (1) Adelheid G. Obwaller, (2) Thomas Zechmeister, (3) Georg G. Duscher, (1) Franz Rubel, (4) Karin Lebl, (4) Carina Zittra, (1) and Hans-Peter Fuehrer (1)

(1) Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria

(2) Division of Science, Research and Development, Federal Ministry of Defence and Sports, Vienna, Austria

(3) Biological Station Lake Neusiedl, Burgenland, Austria

(4) Institute for Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria

Correspondence should be addressed to Hans-Peter Fuehrer;

Received 24 November 2017; Accepted 14 February 2018; Published 15 March 2018

Academic Editor: Jose A. Oteo

Caption: Figure 1: Geographic distribution of mosquito pools positive for filarioid helminths in Eastern Austria.
Table 1: Number of mosquitoes and species collected in Eastern Austria
included within this study.

Mosquito species                       2013 HC   2014 HC      2014

Aedes cinereus/geminus                    6         6         299
Aedes vexans                            1718      1847        4417
Anopheles algeriensis                     4        --          --
Anopheles claviger                       --        --          --
Anopheles hyrcanus                       145       63          --
Anopheles maculipennis complex           14         2          13
Anopheles plumbeus                        9        26         150
Coquillettidia richiardii               2169      4333        1287
Culex martinii                           --        --          66
Culex modestus                           31         8          --
Culex pipiens complex/Cx. torrentium    2707      2090        2118
Culex territans                          --         8          --
Culiseta annulata                         4         7          --
Ochlerotatus cantans                     --        --          1
Ochlerotatus caspius                     --        51          17
Ochlerotatus cataphyla                   --        --          7
Ochlerotatus communis                    --        --          22
Ochlerotatus flavescens                  --        --          1
Ochlerotatus geniculatus                  4        41          20
Ochlerotatus intrudens                   --        --          24
Ochlerotatus japonicus japonicus         --        --          --
Ochlerotatus leucomelas                  --        --          --
Ochlerotatus rusticus                    --        --          4
Ochlerotatus sticticus                   559       202        1113
Uranotaenia unguiculata                  --        --          --
Aedes/Ochlerotatus sp.                   (a)       (a)        735
Anopheles sp.                            (a)       (a)         22
Culex sp.                                (a)       (a)        131
Total                                   7370      8684       10447

Mosquito species                          2015      Total

Aedes cinereus/geminus                     33        344
Aedes vexans                              1179      9161
Anopheles algeriensis                      3          7
Anopheles claviger                         13        13
Anopheles hyrcanus                        241        449
Anopheles maculipennis complex             41        70
Anopheles plumbeus                        196        381
Coquillettidia richiardii                 8034      15823
Culex martinii                            996       1062
Culex modestus                             61        100
Culex pipiens complex/Cx. torrentium      7124      14039
Culex territans                            --         8
Culiseta annulata                          33        44
Ochlerotatus cantans                       1          2
Ochlerotatus caspius                       4         72
Ochlerotatus cataphyla                     5         12
Ochlerotatus communis                      --        22
Ochlerotatus flavescens                    --         1
Ochlerotatus geniculatus                   6         71
Ochlerotatus intrudens                     --        24
Ochlerotatus japonicus japonicus           6          6
Ochlerotatus leucomelas                    1          1
Ochlerotatus rusticus                      --         4
Ochlerotatus sticticus                    499       2373
Uranotaenia unguiculata                    10        10
Aedes/Ochlerotatus sp.                    217        952
Anopheles sp.                             387        409
Culex sp.                                 257        388
Total                                    19347      45848

HC, Hook Company Traps; Biodiversa, combination of various traps
including BG-Sentinel Traps, HC, and aspirators; (a) mosquitoes
specified to genus level were not included.

Table 2: Filarioid helminths in mosquitoes in Eastern Austria: Vienna,
Lower Austria (LA), and Burgenland (B).

Filarioid species        Mosquito species          Collection site

Dirofilaria repens      Anopheles plumbeus          Marchegg (LA)
Setaria tundra        Aedes cinereus/geminus       Lobau (Vienna)
Setaria tundra             Aedes vexans             Marchegg (LA)
Setaria tundra               Aedes sp.             Lobau (Vienna)
Setaria tundra             Aedes vexans            Lobau (Vienna)
Setaria tundra       Coquillettidia richiardii     Lobau (Vienna)
Setaria tundra             Aedes vexans                Vienna
Setaria tundra             Aedes vexans             Marchegg (LA)
Setaria tundra        Aedes cinereus/geminus       Eckartsau (LA)
Setaria tundra               Aedes sp.           Klosterneuburg (LA)
Setaria tundra         Culex pipiens complex      Bruckneudorf (B)
Setaria tundra               Aedes sp.             Gotzendorf (LA)
Setaria tundra             Aedes vexans            Gotzendorf (LA)
Setaria tundra             Aedes vexans           Gootzendorf (LA)
Setaria tundra             Aedes vexans            Jennersdorf (B)
Setaria tundra               Aedes sp.            Bruckneudorf (B)
Setaria tundra             Aedes vexans           Bruckneudorf (B)
Setaria tundra         Culex pipiens complex           Vienna
Filarioidea               Culex modestus               Vienna
Filarioidea            Culex pipiens complex           Vienna

Filarioid species     Sampling     Collection date   Pool   GenBank
                       method                        size    entry

Dirofilaria repens   BG-Sentinel     August 2015      1     MF695085
Setaria tundra         HC (a)         July 2013       1     MF695086
Setaria tundra       BG-Sentinel      July 2014       25    MF695087
Setaria tundra         HC (a)        August2014       9     MF695088
Setaria tundra         HC (a)        August2014       42    MF695089
Setaria tundra         HC (a)        August2014       50    MF695090
Setaria tundra        Aspirator      August 2014      1     MF695091
Setaria tundra       BG-Sentinel     August2014       3      nd (c)
Setaria tundra       BG-Sentinel      June 2015       1     MF695096
Setaria tundra       BG-Sentinel      June 2015       25     nd (c)
Setaria tundra       BG-Sentinel      July 2015       50     nd (c)
Setaria tundra       BG-Sentinel      July 2015       6     MF695092
Setaria tundra       BG-Sentinel      July 2015       50    MF695093
Setaria tundra       BG-Sentinel      July 2015       50     nd (c)
Setaria tundra       BG-Sentinel      July 2015       1     MF695094
Setaria tundra       BG-Sentinel      July 2015       4      nd (c)
Setaria tundra       BG-Sentinel      July 2015       26    MF695095
Setaria tundra       BG-Sentinel     August 2015      50     nd (c)
Filarioidea            HC (a)         June 2014       1      nd (c)
Filarioidea            HC (a)      September 2014     1      nd (c)

Filarioid species     Maximum
                     % identity
                     to GenBank
                     entries (b)

Dirofilaria repens      100%
Setaria tundra          100%
Setaria tundra          >99%
Setaria tundra          >99%
Setaria tundra          100%
Setaria tundra          >99%
Setaria tundra          100%
Setaria tundra          100%
Setaria tundra          >99%
Setaria tundra          100%
Setaria tundra          100%
Setaria tundra           99%
Setaria tundra          100%
Setaria tundra          100%
Setaria tundra          100%
Setaria tundra          100%
Setaria tundra          100%
Setaria tundra          100%
Filarioidea              93%
Filarioidea              95%

(a) Hook Company C[O.sub.2] baited mosquito traps; (b) analysis of
maximum identity to GenBank Entries was performed on August 4, 2017;
(c) sequences were not uploaded to GenBank (e.g., short sequences or
poor sequence quality).
COPYRIGHT 2018 Hindawi Limited
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2018 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Research Article
Author:Ubleis, Sarah Susanne; Cuk, Claudia; Nawratil, Michaela; Butter, Julia; Schoener, Ellen; Obwaller, A
Publication:Canadian Journal of Infectious Diseases and Medical Microbiology
Date:Jan 1, 2018
Previous Article:Do the Th17 Cells Play a Role in the Pathogenesis of Leptospirosis?
Next Article:Accuracy of Enzyme-Linked Immunosorbent Assays (ELISAs) in Detecting Antibodies against Mycobacterium leprae in Leprosy Patients: A Systematic Review...

Terms of use | Privacy policy | Copyright © 2021 Farlex, Inc. | Feedback | For webmasters |