Printer Friendly

Viscosity and thermodynamic properties of alkali metal bromides in the presence of acetonitrile, 3-hydroxypropionitrile and acetonitrile + 3-hydroxypropionitrile mixture at various temperatures.

Byline: Shama, Fahim Uddin, Tehseen Ahmed and Talat Zamir

Abstract: Excess molar volume V E , energy of activation 6E , Gibbs energy change 6G and entropy change6S have been investigated for this study density and viscosity measurements of Acetonitrile (AN), 3-hydroxypropionitrile(3-HPN) and 50% mixture of AN + 3-HPN and alkali metal bromides (Li,Na,K,Rb and Cs)Br in AN, 3-HPN and50%AN+3-HPN over the concentration range (0.01 - 0.05 mol.dm-3) at temperature range (298 to 323 K) were used. On the basis of Jones-Dole Equation the viscosity B-coefficient and the thermodynamic, activation parameters for viscousflow of solutions have been evaluated. The B-coefficient values of LiBr, NaBr , KBr, RbBr and CsBr are positive and decreases by increasing the temperature. The B-coefficient values are positive in protic and aprotic solvents. The positive values reveal that electrolytes behave as structure maker.

Keywords: Jones-Dole coefficient A and B, Excess molar volume, Energy of activation, Gibbs energy change andEntropy change.

INTRODUCTION

Several researchers determined the volumetric and viscometric behavior of electrolyte solutions in protic and aprotic solvents in order to investigate ion-solvent interactions [1-7]. The thermodynamic properties of binary mixtures of AN and 3-HPN have been extensively studied with the aim of investigating the interactions in solution phase with electrolytes LiBr, NaBr, KBr, RbBr and CsBr [8-11].

The alkali metal bromides were not completely soluble in AN except for LiBr. It was difficult to measure their viscosities and densities in AN. Mixtures of AN +3- HPN have great affinity to dissolve the alkali metal electrolytes because 3-HPN is a protic solvent and has great solubility property towards electrolytes [12].The aim of this work is to report the experimental data of densities and viscosities of alkali metal bromides in AN, 3-HPN and in a 50% AN +3-HPN mixture at different temperatures to determine the activation and thermodynamic parameters like energy of activation 6Ev , Gibbs energy change 6G and entropychange 6S .

Results are discussed in terms ofintermolecular interactions [13]. The excess molar volume is also reported for the binary solvent system.EXPERIMENTAL Materials and MethodsAN 99.9% pure E. Merck and 3-HPN 98% pure Acros Organics New Jercey USA and were used without further purification. The densities and viscosities of AN, 3-HPN and 50% mixture of AN+3- HPN were measured at various temperatures as shown in Table 1.Alkali metal bromides such as LiBr (Riedel -de Haen99%) NaBr (Scharlau 99.5%), KBr (Merck 99.5%), RbBr and CsBr(Acros Organics New Jercey) were used without further purification. Salts were stored in oven over well dried and desiccated to prevent the moisture.

Viscosities of solutions were measured using an Ostwald Viscometer type techniconominial with 0.1 (Cs/S) at different temperatures ranges from (298 to323 K +- 0.1) with increase of 5K. The temperature was maintained constant throughout the course of experiment with the help of a thermostatic water bath type (circulator model YCM-01, Volt 230 AC, Hz 50, Amp 5). Densities were determined by relative density bottle with capacity of 10 ml by volume.

A stopwatch(advance 85-quartz) having least count of 0.5 seconds was used for determination of time of flow of solutionsExperimental work was accomplished to measure the viscosities and densities of AN, 3-HPN and 50%

Table 1: Densities and Viscosities of AN, 3-HPN and 50% Mixture of AN+3-HPN at Various Temperatures

###-3

###Density d (g.cm )

###Temperature K

###AN###3- HPN###AN+3-HPN

###298###0.77634###1.03961###0.93482

###303###0.77323###1.02763###0.93203

###308###0.77136###1.02482###0.93006

###313###0.76907###1.02152###0.92912

###318###0.76824###1.01961###0.92794

###323###0.76502###1.01664###0.92685

###Viscosity (cp)

###298###0.333###3.572###0.9560

###303###0.324###3.529###0.9534

###308###0.316###3.493###0.9505

###313###0.305###3.448###0.9492

###318###0.296###3.410###0.9475

###323###0.288###3.386###0.9458

Mixture of AN + 3-HPN and alkali metal bromides in these solvents. Viscosities of alkali metal bromides in AN, 3-HPN and 50 % of AN+3-HPN were measured at all mentioned temperatures.

A known volume of alkali metal bromide solutions were introduced in to the viscometer by placing it in the thermostatic water bath having a constant circulation of water. Viscosities and densities were measured as a function of electrolytes concentrations and temperatures. Replicate experiments were performed for each solution. The experimental reproducibility of the viscosity measurements of each solution was +-0.2%.

RESULTS AND DISSCUSSION

The densities and viscosities of AN, 3-HPN and50% mixture of AN +3-HPN are showing slightly changes with temperature differences 5 K.The viscosity was calculated from relationship.

where d,y, t, dw ,yw , tw refer to the density, viscosity and time flow of solutions and water respectively. The viscosity of investigated solutions depends on the solute concentration and increases in a linear mannerwith concentrations [14].

The densities of alkali metal bromides solutions inAN, 3-HPN and 50% mixture of AN+3-HPNchangesslightly with the increase in temperature. The densities and viscosities of bromide electrolyte solutions in AN,3-HPN and 50% mixture of AN+3-HPN were measured at different temperatures and reported in Tables 2, 3 and 4 respectively. The results show that viscosity increases with increasing concentration of electrolytes and decreases with the increasing temperature.

The decrease in viscosity with increasing temperature is due to thermal vibration, which weakens the intermolecular forces of electrolyte solutions. The observed increase in viscosity with increasing salt concentration is due to the increase the intermolecular forces which cause to resist in flow process.

It is also observed that viscosities of solutions increased with the increase of electrolyte concentration which is a common feature in most non-aqueous solvents and also in the mixture of non-aqueous solvents [15].

The data of the viscosities of solutions obtained were used to study the solute-solute and solute-solvent interactions using the Jones-Dole equation [16].where ysp is the specific viscosity and A and B are equation coefficients that represent ion-ion and ion- solvent interactions of solution viscosity, respectively. The values of ion-ion and ion-solvent interactions areevaluated by intercept and slope of linear plot of

Table 2: Densities and Viscosities of LiBr in AN at Various Temperatures

###-3

###Concentration of LiBr (mol.dm )

###Temperature

###0.01###0.02###0.03###0.04###0.05

###K

###-3

###Density d (g.cm )

###298###0.77742+-0.0008###0.77801+-0.0009###0.77923+-0.0007###0.78091+-0.0009###0.78124+-0.0006

###303###0.77601+-0.0009###0.77760+-0.0009###0.77832+-0.0008###0.77903+-0.0007###0.77961+-0.0009

###308###0.77131+-0.0009###0.77422+-0.0008###0.77660+-0.0009###0.77751+-0.0009###0.77822+-0.0008

###313###0.76911+-0.0009###0.77101+-0.0009###0.77313+-0.0007###0.77582+-0.0008###0.77653+-0.0007

###318###0.76292+-0.0008###0.76482+-0.0008###0.76721+-0.0009###0.76943+-0.0007###0.77294+-0.0006

###323###0.75424+-0.0006###0.75651+-0.0009###0.75802+-0.0008###0.76423+-0.0007###0.76504+-0.00006

###Viscosity (cp)

###298###0.34182+-0.0008###0.34703+-0.0007###0.35169+-0.0001###0.35509+-0.0001###0.35977+-0.0003

###303###0.33477+-0.0003###0.34074+-0.0006###0.34606+-0.0004###0.34994+-0.0006###0.35486+-0.0004

###308###0.32805+-0.0005###0.33521+-0.0009###0.34691+-0.0009###0.34507+-0.0003###0.34869+-0.0001

###313###0.31901+-0.0009###0.32295+-0.0005###0.33085+-0.0005###0.33187+-0.0003###0.34307+-0.0003

###318###0.31075+-0.0005###0.31633+-0.0007###0.32005+-0.0005###0.32367+-0.0003###0.33721+-0.0009

###323###0.30646+-0.0004###0.31155+-0.0005###0.31594+-0.0006###0.31848+-0.0002###0.33698+-0.0002

Table 3: Densities and Viscosities of Alkali Metal Bromide Salts in 3-HPN at Various Temperatures

###-3

###Concentration (mol.dm )

###Temperature

###0.01###0.02###0.03###0.04###0.05

###K

###-3

###LiBr Density d (g.cm )

###298###1.04002+-0.00008###1.04131+-0.00009###1.04253+-0.00007###1.04342+-0.00008###1.04403+-0.00007

###303###1.03963+-0.00007###1.04082+-0.00008###1.04144+-0.00006###1.04293+-0.00007###1.04355+-0.00005

###308###1.03914+-0.00006###1.04024+-0.00006###1.04101+-0.00009###1.04181+-0.00009###1.04272+-0.00008

###313###1.03851+-0.00009###1.03970+-0.00009###1.04060+-0.00009###1.04125+-0.00005###1.04193+-0.00007

###318###1.03803+-0.00007###1.03922+-0.00008###1.04012+-0.00008###1.04075+-0.00005###1.04131+-0.00009

###323###1.03742+-0.00008###1.03854+-0.00006###1.03945+-0.00005###1.04032+-0.00008###1.04091+-0.00009

###LiBr Viscosity (cp)

###298###3.62959+-0.00001###3.67164+-0.00006###3.701121+-0.00009###3.71754+-0.00006###3.74522+-0.00008

###303###3.60822+-0.00008###3.65001+-0.00009###3.68524+-0.00007###3.71593+-0.00007###3.74495+-0.00005

###308###3.58752+-0.00008###3.64095+-0.00005###3.67752+-0.00008###3.71312+-0.00008###3.74333+-0.00007

###313###3.56229+-0.00001###3.63102+-0.00008###3.65443+-0.00007###3.71121+-0.00009###3.74254+-0.00006

###318###3.55066+-0.00004###3.61083+-0.00007###3.65121+-0.00009###3.70535+-0.00005###3.74132+-0.00008

###323###3.54955+-0.00005###3.56868+-0.00002###3.60011+-0.00009###3.69409+-0.00001###3.7405+-0.00005

###-3

###NaBr Density d (g.cm )

###298###1.04082+-0.00008###1.04162+-0.00008###1.04233+-0.00007###1.04302+-0.00008###1.04371+-0.00009

###303###1.04031+-0.00009###1.04121+-0.00009###1.04191+-0.00009###1.04261+-0.00009###1.04334+-0.00006

###308###1.04004+-0.00006###1.04072+-0.00008###1.04133+-0.00007###1.04212+-0.00008###1.04292+-0.00008

###313###1.03963+-0.00007###1.04023+-0.00007###1.04082+-0.00008###1.04173+-0.00007###1.04274+-0.00006

###318###1.03922+-0.00008###1.03972+-0.00008###1.04024+-0.00006###1.04144+-0.00006###1.04201+-0.00009

###323###1.03881+-0.00009###1.03931+-0.00009###1.03991+-0.00009###1.04062+-0.00008###1.04152+-0.00008

(Table 3). Continued.

###-3

###Concentration (mol.dm )

###Temperature

###0.01###0.02###0.03###0.04###0.05

###K

###NaBr Viscosity (cp)

###298###3.62944+-0.00006###3.67152+-0.00008###3.69522+-0.00008###3.71842+-0.00008###3.74514+-0.00006

###303###3.60689+-0.00001###3.65461+-0.00009###3.68491+-0.00009###3.71791+-0.00009###3.74482+-0.00008

###308###3.58741+-0.00009###3.64084+-0.00006###3.66432+-0.00008###3.70901+-0.00001###3.74321+-0.00009

###313###3.56018+-0.00002###3.63794+-0.00006###3.65332+-0.00008###3.71019+-0.00001###3.74242+-0.00008

###318###3.54152+-0.00008###3.61001+-0.00009###3.64313+-0.00007###3.70078+-0.00002###3.74121+-0.00009

###323###3.53964+-0.00006###3.54001+-0.0001###3.56236+-0.00004###3.62193+-0.00007###3.74096+-0.00004

###-3

###KBr Density d (g.cm )

###298###1.04133+-0.00007###1.04202+-0.00008###1.04292+-0.00008###1.04381+-0.00009###1.04512+-0.00008

###303###1.04094+-0.00006###1.04162+-0.00008###1.04241+-0.00009###1.04331+-0.00009###1.04473+-0.00007

###308###1.04032+-0.00008###1.04101+-0.00009###1.04192+-0.00008###1.04272+-0.00008###1.04421+-0.00009

###313###1.03981+-0.00009###1.04052+-0.00008###1.04144+-0.00006###1.04224+-0.00006###1.04364+-0.00006

###318###1.03951+-0.00009###1.04003+-0.00007###1.04091+-0.00009###1.04183+-0.00007###1.04312+-0.00008

###323###1.03912+-0.00008###1.03941+-0.00009###1.04052+-0.00008###1.04131+-0.00009###1.04271+-0.00009

###KBr Viscosity (cp)

###298###3.63356+-0.00004###3.66281+-0.00009###3.69548+-0.00002###3.71969+-0.00001###3.74541+-0.00009

###303###3.61018+-0.00002###3.65019+-0.00001###3.68521+-0.00009###3.71811+-0.00009###3.74512+-0.00008

###308###3.58987+-0.00006###3.64101+-0.00009###3.67096+-0.00004###3.71731+-0.00009###3.74376+-0.00004

###313###3.56373+-0.00007###3.63121+-0.00009###3.65359+-0.00001###3.71639+-0.00001###3.74269+-0.00001

###318###3.54499+-0.00001###3.61099+-0.00001###3.64338+-0.00002###3.71049+-0.00001###3.74151+-0.00009

###323###3.54999+-0.00001###3.54766+-0.00004###358213+-0.00007###3.63508+-0.00002###3.7414+-0.00006

###-3

###RbBr Density d (g.cm )

###298###1.04012+-0.00008###1.04291+-0.00009###1.04441+-0.00009###1.04591+-0.00009###1.04622+-0.00008

###303###1.03972+-0.00008###1.04253+-0.00007###1.04402+-0.00008###1.04542+-0.00008###1.04591+-0.00009

###308###1.03921+-0.00009###1.04214+-0.00006###1.04371+-0.00009###1.04514+-0.00006###1.04534+-0.00006

###313###1.03873+-0.00007###1.04173+-0.00007###1.04313+-0.00007###1.04473+-0.00007###1.04492+-0.00008

###318###1.03811+-0.00009###1.04121+-0.00009###1.04261+-0.00009###1.04421+-0.00009###1.04441+-0.00009

###323###1.03773+-0.00007###1.04092+-0.00008###1.04212+-0.00008###1.04322+-0.00008###1.04402+-0.00008

###RbBr Viscosity (cp)

###298###3.62902+-0.00008###3.67022+-0.00008###3.69411+-0.00009###3.71606+-0.00004###3.73802+-0.00008

###303###3.60599+-0.00001###3.65326+-0.00004###3.68251+-0.00009###3.71528+-0.00002###3.73569+-0.00001

###308###3.58624+-0.00006###3.63898+-0.00002###3.66228+-0.00002###3.71363+-0.00007###3.73325+-0.00005

###313###3.55999+-0.00001###3.62699+-0.00001###3.65214+-0.00006###3.71025+-0.00005###3.73112+-0.00008

###318###3.53999+-0.00001###3.59685+-0.00005###3.64236+-0.00004###3.69056+-0.00004###3.72999+-0.00001

###323###3.53459+-0.00001###3.56406+-0.00004###3.57614+-0.00006###3.65009+-0.00001###3.72632+-0.00008

###-3

###CsBr Density d (g.cm )

###298###1.04242+-0.00008###1.04302+-0.00008###1.04483+-0.00007###1.04641+-0.00009###1.04762+-0.00008

###303###1.04192+-0.00008###1.04265+-0.00005###1.04445+-0.00005###1.04571+-0.00009###1.04712+-0.00008

###308###1.04121+-0.00009###1.04201+-0.00009###1.04383+-0.00007###1.04522+-0.00008###1.04664+-0.00006

###313###1.04073+-0.00007###1.04153+-0.00007###1.04334+-0.00006###1.04484+-0.00006###1.04622+-0.00008

###318###1.04032+-0.0008###1.04114+-0.00006###1.04271+-0.00009###1.04433+-0.00007###1.04574+-0.00006

###323###1.03974+-0.00006###1.04072+-0.00008###1.04222+-0.00008###1.04385+-0.00005###1.04533+-0.00007

(Table 3). Continued.

###-3

###Concentration (mol.dm )

###Temperature

###0.01###0.02###0.03###0.04###0.05

###K

###CsBr Viscosity (cp)

###298###3.62821+-0.00009###3.66956+-0.00004###3.69321+-0.00009###3.71523+-0.00007###3.72812+-0.00008

###303###3.60456+-0.00004###3.65221+-0.00009###3.68142+-0.00008###3.71412+-0.00008###3.72419+-0.00001

###308###3.58536+-0.00004###3.63759+-0.00001###3.66134+-0.00006###3.71235+-0.00005###3.72399+-0.00001

###313###3.55839+-0.00001###3.62538+-0.00002###3.65114+-0.00006###3.70896+-0.00004###3.72006+-0.00004

###318###3.53846+-0.00004###3.59536+-0.00004###3.64111+-0.00009###3.68892+-0.00008###3.71989+-0.00001

###323###3.53343+-0.00007###3.56169+-0.00001###3.57054+-0.00006###3.66323+-0.00007###3.71625+-0.00005

Table 4: Densities and Viscosities of Alkali Metal Bromide Salts in 50% Mixture of AN +3-HPN at Various Temperatures

###-3

###Concentration(mol.dm )

###Temperature

###0.01###0.02###0.03###0.04###0.05

###K

###-3

###LiBr Density d (g.cm )

###298###0.94561+-0.00009###0.94602+-0.00008###0.94632+-0.00008###0.94683+-0.00007###0.94712+-0.00008

###303###0.94402+-0.00008###0.94431+-0.00009###0.94471+-0.00009###0.94502+-0.00008###0.94521+-0.00009

###308###0.94293+-0.00007###0.94323+-0.00007###0.94363+-0.00007###0.94394+-0.00006###0.94414+-0.00006

###313###0.93961+-0.00009###0.93994+-0.00006###0.94014+-0.00006###0.94041+-0.00009###0.94072+-0.00008

###318###0.93552+-0.00008###0.93572+-0.00008###0.93602+-0.00008###0.93633+-0.00007###0.93673+-0.00007

###323###0.93214+-0.00006###0.93241+-0.00009###0.93271+-0.00009###0.93292+-0.00008###0.93311+-0.00009

###LiBr Viscosity (cp)

###0.98798+-0.00002

###298###0.96376+-0.00004###0.97029+-0.00001###0.97622+-0.00008###0.98216+-0.00003

###0.98798+-0.00002

###303###0.96209+-0.00001###0.96861+-0.00007###0.97464+-0.00006###0.98099+-0.00001###0.98722+-0.00008

###308###0.96026+-0.00004###0.96696+-0.00004###0.97329+-0.00007###0.98033+-0.00007###0.98609+-0.00001

###313###0.95919+-0.00001###0.96674+-0.00006###0.97422+-0.00008###0.97931+-0.00009###0.98541+-0.00009

###318###0.95817+-0.00007###0.96602+-0.00008###0.97361+-0.00009###0.97922+-0.00008###0.98471+-0.00009

###323###0.95802+-0.00008###0.96303+-0.00007###0.96739+-0.00001###0.97419+-0.00001###0.98012+-0.00008

###-3

###NaBr Density d (g.cm )

###298###0.94592+-0.00008###0.94621+-0.00009###0.94672+-0.00008###0.94712+-0.00008###0.94731+-0.00009

###303###0.94421+-0.00009###0.94464+-0.00006###0.94493+-0.00007###0.94534+-0.00006###0.94552+-0.00008

###308###0.94312+-0.00008###0.94363+-0.00007###0.94391+-0.00009###0.94423+-0.00007###0.94444+-0.00006

###313###0.93991+-0.00009###0.94011+-0.00009###0.94024+-0.00006###0.94065+-0.00005###0.94093+-0.00007

###318###0.93584+-0.00006###0.93591+-0.00009###0.93633+-0.00007###0.93651+-0.00009###0.93692+-0.00008

###323###0.93242+-0.00008###0.93274+-0.00006###0.93302+-0.00008###0.93332+-0.00008###0.93354+-0.00006

###NaBr Viscosity (cp)

###298###0.96330+-0.0001###0.97017+-0.00003###0.97611+-0.00009###0.98204+-0.00006###0.98756+-0.00004

###303###0.96151+-0.00009###0.96786+-0.00004###0.97451+-0.00009###0.98071+-0.00009###0.98611+-0.00009

###308###0.96019+-0.00001###0.96593+-0.00007###0.97317+-0.00003###0.98021+-0.00009###0.98599+-0.00001

###313###0.95889+-0.00001###0.96641+-0.00009###0.97409+-0.00001###0.97918+-0.00002###0.98529+-0.00001

###318###0.95801+-0.00009###0.96511+-0.00009###0.97348+-0.00002###0.97909+-0.00001###0.98458+-0.00002

###323###0.95781+-0.00009###0.96369+-0.00001###0.96832+-0.00008###0.97475+-0.00005###0.98001+-0.00009

(Table 4). Continued.

###-3

###Concentration(mol.dm )

###Temperature

###K###0.01###0.02###0.03###0.04###0.05###

###-3

###KBr Density d (g.cm )

###298###0.94611+-0.00009###0.94642+-0.00008###0.94692+-0.00008###0.94733+-0.00007###0.94751+-0.00009

###303###0.94432+-0.00008###0.94481+-0.00009###0.94511+-0.00009###0.94552+-0.00008###0.94563+-0.00007

###308###0.94334+-0.00006###0.94394+-0.00006###0.94424+-0.00006###0.94444+-0.00006###0.94474+-0.00006

###313###0.94003+-0.00007###0.94033+-0.00007###0.94052+-0.00008###0.94071+-0.00009###0.94112+-0.00008

###318###0.93601+-0.00009###0.93625+-0.00005###0.93643+-0.00007###0.93672+-0.00008###0.93704+-0.00006

###323###0.93232+-0.00008###0.93301+-0.00009###0.93322+-0.00008###0.93334+-0.00006###0.93351+-0.00009

###KBr Viscosity (cp)

###298###0.96216+-0.00004###0.96682+-0.00008###0.97134+-0.00006###0.97756+-0.00004###0.98124+-0.00006

###303###0.96046+-0.00004###0.96625+-0.00005###0.97102+-0.00008###0.97638+-0.00002###0.98073+-0.00007

###308###0.95806+-0.00004###0.96453+-0.00007###0.97025+-0.00005###0.97507+-0.00003###0.97869+-0.00001

###313###0.95755+-0.00005###0.96362+-0.00008###0.96856+-0.00004###0.97499+-0.00001###0.97854+-0.00006

###318###0.95658+-0.00002###0.96256+-0.00004###0.96812+-0.00008###0.97398+-0.00002###0.97841+-0.00009

###323###0.95552+-0.00008###0.96005+-0.00005###0.96405+-0.00005###0.96955+-0.00005###0.97311+-0.00009

###-3

###RbBr Density d (g.cm )

###298###0.94012+-0.00008###0.94105+-0.00005###0.94302+-0.00008###0.94412+-0.00008###0.94531+-0.00009

###303###0.93971+-0.00009###0.94063+-0.00007###0.94264+-0.00006###0.94364+-0.00006###0.94502+-0.00008

###308###0.93914+-0.00006###0.94001+-0.00009###0.94205+-0.00005###0.94313+-0.00007###0.94434+-0.00006

###313###0.93873+-0.00007###0.93944+-0.00006###0.94151+-0.00009###0.94265+-0.00005###0.94382+-0.00008

###318###0.93815+-0.00005###0.93883+-0.00007###0.94093+-0.00007###0.94201+-0.00009###0.94321+-0.00009

###323###0.93761+-0.00009###0.93815+-0.00005###0.94024+-0.00006###0.94151+-0.00009###0.94274+-0.00006

###RbBr Viscosity (cp)

###298###0.96321+-0.00009###0.96791+-0.00009###0.97315+-0.00005###0.97891+-0.00009###0.98345+-0.00005

###303###0.96121+-0.00009###0.96731+-0.00009###0.97211+-0.00009###0.97725+-0.00005###0.98266+-0.00004

###308###0.95926+-0.00004###0.96563+-0.00007###0.97165+-0.00005###0.97615+-0.00005###0.98149+-0.00001

###313###0.95841+-0.00009###0.96492+-0.00008###0.96995+-0.00005###0.97584+-0.00006###0.98099+-0.00001

###318###0.95736+-0.00004###0.96382+-0.00008###0.96936+-0.00004###0.97482+-0.00008###0.98066+-0.00004

###323###0.95692+-0.00008###0.96122+-0.00008###0.96611+-0.00009###0.97132+-0.00008###0.97552+-0.00008

###-3

###CsBr Density d(g.cm )

###298###0.93492+-0.00008###0.93601+-0.00009###0.93771+-0.00009###0.93861+-0.00009###0.94002+-00.0008

###303###0.93411+-0.00009###0.93555+-0.00005###0.93714+-0.00006###0.93814+-0.00006###0.93941+-0.00009

###308###0.93374+-0.00006###0.93512+-0.00008###0.93662+-0.00008###0.93752+-0.00008###0.93895+-0.00005

###313###0.93333+-0.00007###0.93444+-0.00006###0.93613+-0.00007###0.93721+-0.00009###0.93843+-0.00007

###318###0.93281+-0.00009###0.93391+-0.00009###0.93565+-0.00005###0.93665+-0.00005###0.93804+-0.00006

###323###0.93222+-0.00008###0.93331+-0.00009###0.93501+-0.00009###0.93613+-0.00007###0.93761+-0.00009

###CsBr Viscosity (cp)

###298###0.96102+-0.00008###0.96528+-0.00002###0.97001+-0.00009###0.97413+-0.00007###0.97838+-0.00002

###303###0.95929+-0.00001###0.96426+-0.00004###0.96885+-0.00005###0.97341+-0.00009###0.97758+-0.00002

###308###0.95701+-0.00009###0.96352+-0.00008###0.96742+-0.00008###0.97215+-0.00005###0.97629+-0.00001

###313###0.95643+-0.00007###0.96253+-0.00007###0.96733+-0.00007###0.97186+-0.00004###0.97607+-0.00003

###318###0.95558+-0.00002###0.96147+-0.00003###0.96703+-0.00007###0.97121+-0.00009###0.97597+-0.00003

###323###0.95497+-0.00003###0.95859+-0.00001###0.96249+-0.00001###0.96679+-0.00001###0.97055+-0.00005

Viscosity and Thermodynamic Properties of Alkali Metal Bromides

versus C . The represented linear plots of LiBr in AN,3-HPN and 50% mixture of AN+3-HPN at 298K and303K are shown in Figures 1, 2 and 3. Ion-ion and ion-solvent interactions characterizing the behavior of electrolytes A and B are the constants at a giving temperatures and characteristic of solutions.

The A-coefficient is related to the effect of ion size on the viscosity. The values of A-coefficient for all alkali metal bromides in AN, 3-HPN and 50% mixture of AN+3-HPN are tabulated in Tables 5, 6 and 7 respectively. The values of A-coefficient are small and positive there by indicating weak ion-ion columbic interactions. The values of A-coefficient are found to increase with the rise of temperature. This may be due to the interpenetration effect (cation-cation) and (cation-anion) which brings ions together [17].

Table 5: Jones Dole A-Coefficients of LiBr in AN at Various Temperatures

###Various Temperatures

###Temperatures

###3

###A- Coefficient (dm .mol )

###-1

###(K)###LiBr

###298###0.1930

###303###0.2612

###308###0.3386

###313###0.3626

###318###0.4002

###323###0.5382

B-coefficient of viscous flow is depends on ion- solvent interactions and on the relative size of soluteand solvent molecule. B-coefficient providesinformation concerning the solvation and their behavior on structure of the solvent in the near environment of the solute molecules. B-coefficient reflects the size and shape effect of a solute, structure effect caused by ion- solvent coefficient. Since some activation parameters of viscous flow can be obtained from B-coefficient values [18, 19].

The B-coefficient of all alkali metal bromides in AN, 3-HPN and 50% mixture of AN+3-HPN are tabulated in Tables 8, 9 and 10. The value of the B- coefficient is found to be positive and decreases with increasing temperature because electrolytes behave as structure maker in solvents. In ionic solutions of electrolyte interactions arise between ions and solvents, which are effected on the tendency of reactivity of ions. The viscosities of alkali metal bromides in 50% mixture of AN+3-HPN are less than in3-HPN because the addition of AN causes the breaking of the hydrogen bond between 3-HPN molecules thus leading to a less structured solvent and to a rapid decrease in the viscosity of solvent as well as in bromide salt solutions.

This would lead one to expect a decrease in structure breaking ability of ions when the AN had been added [12]. The power of reactivity of an electrolyte which causes the alteration in the solvent structure depends on the ionic strength, charge, size and shape of the electrolyte.

Table 6: Jones Dole A-Coefficients of Alkali Metal Bromides in 3-HPN at Various Temperatures

###3###-1 1/2

###Temperatures###A- Coefficient (dm .mol )

###(K)###LiBr###NaBr###KBr###RbBr###CsBr

###298###0.1320###0.1281###0.1318###0.1328###0.1389

###303###0.1857###0.4026###0.1924###0.1903###0.1952

###308###0.2373###0.2368###0.2430###0.2369###0.2414

###313###0.3034###0.3047###0.3064###0.3004###0.3036

###318###0.4034###0.3523###0.3623###0.3450###0.3478

###323###0.4258###0.3778###0.3856###0.3925###0.3867

Table 7: Jones Dole A-Coefficients of Alkali Metal Bromides in 50% AN+3-HPN at Various Temperatures

###3###-1 1/2

###Temperatures###A- Coefficient (dm .mol )

###(K)###LiBr###NaBr###KBr###RbBr###CsBr

###298###0.0268###0.0212###0.0173###0.0283###0.0095

###303###0.0360###0.0284###0.0309###0.0394###0.0206

###308###0.0480###0.0425###0.0397###0.0511###0.0321

###313###0.0554###0.0499###0.0463###0.0555###0.4014

###318###0.0641###0.0579###0.0539###0.0624###0.0477

###323###0.0954###0.0953###0.0768###0.0291###0.0755

Viscosity and Thermodynamic Properties of Alkali Metal Bromides

###-3

Table 8: Jones Dole B-Coefficients of LiBr in AN at###concentration shown in Figure 4 in AN of 0.01 mol.dm

###Various Temperatures###LiBr while Figures 5 and 6 in 3-HPN and50% AN +3-

###-3

###HPN mixture of 0.01 mol.dm NaBr respectively.

###3###-1

###Temperatures (K)###B- Coefficient (dm .mol )

###E

###298###0.7306###= A exp v###(3)

###RT

###303###0.7290

###308###0.7222###Ev

###log = log A +###(4)

###313###0.6568###2.303RT

###318###0.6467

###Ev = 2.303(Slope)( R)###(5)

###323###0.4510

The B-coefficient of bromide salts in pure AN, 3- HPN and in mixture are positive and decrease with increasing temperature. The decrease in positive values with increasing temperature reveals that electrolytes behave as structure maker in protic and aprotic solvents, it indicates that viscosity decreases due to the solvent structure. Distortion of solvent structure is small which leads to the positive values of B-coefficient structure making in nature [20].

The energy of activation 6Ev , was evaluated from the Arrhenius relation [21, 22] and the representativeconcentration shown in Figure 4 in AN of 0.01 mol.dm-3LiBr while Figures 5 and 6 in 3-HPN and50% AN +3- HPN mixture of 0.01 mol.dm-3 NaBr respectively.where y is viscosity R is the universal gas constant. The results for the energy of activation 6Ev of bromidesalts in AN, 3-HPN and AN +3-HPN are tabulated in Tables 11, 12 and 13 respectively.

The energy of activation 6Ev can be related to the work needed to form a hole in the liquid. The holes are necessary for a liquid to flow. The results show that 6Ev value increased with the increase in concentration of salts in AN, 3-HPN and 50% AN+3- HPN. This shows that the value of 6Ev increases with an increase in concentration of electrolytes cause to hindrance in the mobility of molecules and the increase in the size of solute particles so the energy of activation increases.

This is again based on hole theory that holes are plots of log y versus 1T as a function of electrolytes necessary for solvents to flow [23, 24]. The larger sized solute particles produce less vacant sites and lead to

Table 9: Jones Dole B-Coefficients of Alkali Metal Bromides in 3-HPN at Various Temperatures

###3###-1

###Temperatures###B- Coefficient (dm .mol )

###(K)###LiBr###NaBr###KBr###RbBr###CsBr

###298###0.4200###0.4037###0.3774###0.3542###0.2960

###303###0.3969###0.4026###0.368###0.3489###0.2909

###308###0.3869###0.356###0.3559###0.3356###0.2842

###313###0.3571###0.3544###0.3521###0.3331###0.2832

###318###0.1296###0.3514###0.3243###0.3201###0.2730

###323###0.0286###0.0052###0.0431###0.0142###0.0345

Table 10: Jones Dole B-Coefficients of Alkali Metal Bromides in 50% AN+3-HPN at Various Temperatures

###3###-1

###Temperatures###B- Coefficient (dm .mol )

###(K)###LiBr###NaBr###KBr###RbBr###CsBr

###298###0.5504###0.5731###0.4553###0.4461###0.4269

###303###0.5436###0.5662###0.4414###0.4339###0.4192

###308###0.5341###0.5552###0.4384###0.4278###0.4088

###313###0.5255###0.5487###0.4241###0.4210###0.4014

###318###0.5157###0.5402###0.4173###0.4148###0.3934

###323###0.2700###0.2819###0.2282###0.2049###0.1730

Figure 4: log vs 1/T of LiBr in AN( is viscosity T is temperature).

Table 11: Energy of Activation 6EV of LiBr in AN

###-3###-2###-1

###Concentration (mol.dm )###EV 10 (KJ.mol )

###0.01###36.466

###0.02###36.556

###0.03###37.270

###0.04###37.314

###0.05###22.768

The energy change of activation 6G for viscousflow is given by [22]where V may be regarded as the volume of one mole of solvent particles, h is Planck's constant,N A is Avogadro's number and R is general gas constant.where n1 , n2 are number of moles of solvent and soluterespectively while v represent the number of species are present in solution in dissociation form.where d is density of solvent, M1 , M 2 are molecular masses of solvent and solute respectively for solvent mixture 50% AN+3-HPN averaged molecular mass M av was used to calculate the molar volume of AN+3- HPN mixture.where x1 , x2 are The mol fraction of AN and 3-HPN respectively M1 , M 2 show molecular mass of AN and 3- HPN.

The values of energy change of activation 6G aretabulated in Table 14 of LiBr in AN, 15 and 16 for alkali metal bromides in 3-HPN and 50% AN+3-HPN respectively. The results show that the value of Gibbs energy change of activation 6G increases with the increase in concentration of salts and temperature. The positive values of Gibbs energy change of activationincrease with the increase in concentration of electrolytes and also with the rise of temperature indicate the association of electrolytes molecules with AN, 3-HPN and 50% AN+ 3- HPN mixture.

The Gibbs energy change of activation controls the rate of flow in fluid which is governed by the ability of molecules to.

Table 12: Energy of Activation EV of Alkali Metal Bromides in 3-HPN

###-2###-1

###Concentration###EV 10 (KJ.mol )

###-3

###(mol.dm )###LiBr###NaBr###KBr###RbBr###CsBr

###0.01###7.664###8.614###8.193###8.922###8.960

###0.02###7.686###9.973###8.826###8.959###9.088

###0.03###7.844###9.989###8.841###8.988###9.292

###0.04###1.845###6.496###5.451###4.891###4.146

###0.05###0.430###0.398###0.391###0.952###0.936

Table 13: Energy of Activation EV of Alkali Metal Bromides in 50% AN+ 3-HPN Mixture

###-2###-1

###Concentration###EV 10 (KJ.mol )

###-3

###(mol.dm )###LiBr###NaBr###KBr###RbBr###CsBr

###0.01###1.988###1.879###2.167###2.292###2.015

###0.02###2.092###1.907###2.167###2.107###2.024

###0.03###2.112###1.919###2.195###2.117###2.029

###0.04###2.141###1.965###2.207###2.127###2.037

###0.05###2.1967###1.982###2.218###2.133###2.055

Table 14: Energy Change of Activation G of LiBr in AN at Various Temperatures

###-3###-1

###G 10 (KJ.mol )

###Temperature

###0.01###0.02###0.03###0.04###0.05

###K

###-3

###Concentration(mol.dm ) of LiBr

###298###60.802###60.837###60.867###60.885###60.917

###303###61.775###61.802###61.843###61.880###61.902

###308###62.758###62.790###62.832###62.866###62.891

###313###63.710###63.736###63.792###63.791###63.875

###318###64.681###64.721###64.744###64.766###64.862

###323###65.690###65.727###65.759###65.759###65.908

Table 15: Energy Change of Activation G of Alkali Metal Bromides in 3-HPN at Various Temperatures

###-3###-1

###G 10 (KJ.mol )

###-3

###Temperature###Concentration(mol.dm )

###K###0.01###0.02###0.03###0.04###0.05

###LiBr

###298###67.294###67.318###67.330###67.342###67.357

###303###68.409###68.434###68.455###68.473###68.488

###308###69.524###69.558###69.572###69.605###69.619

###313###70.636###70.682###70.694###70.736###70.751

###318###71.757###71.805###71.823###71.866###71.882

###323###72.886###72.896###72.916###72.982###73.012

###NaBr

###298###67.292###67.318###67.332###67.344###67.358

###303###68.407###68.437###68.455###68.475###68.490

###308###69.523###69.558###69.572###69.606###69.621

###313###70.632###70.686###70.695###70.736###70.751

###318###71.748###71.796###71.818###71.856###71.882

###323###72.876###72.874###72.888###72.930###73.013

###KBr

###298###67.289###67.312###67.331###67.345###67.358

###303###68.402###68.434###68.455###68.475###68.489

###308###69.518###69.558###69.576###69.606###69.620

###313###70.628###70.682###70.695###70.736###70.751

###318###71.744###71.797###71.818###71.867###71.881

###323###72.877###72.880###72.902###72.939###73.012

###RbBr

###298###67.295###67.317###67.330###67.342###67.356

###303###68.409###68.436###68.453###68.472###68.486

###308###69.525###69.556###69.569###69.602###69.616

###313###70.636###70.678###70.693###70.730###70.745

###318###71.751###71.786###71.816###71.848###71.876

###323###72.876###72.891###72.898###72.950###73.004

(Table 15). Continued.

###-3###-1

###G 10 (KJ.mol )

###Temperature###-3

###Concentration(mol.dm )

###K

###0.01###0.02###0.03###0.04###0.05

###CsBr

###298###67.290###67.319###67.332###67.345###67.352

###303###68.404###68.437###68.455###68.476###68.481

###308###69.521###69.558###69.572###69.606###69.612

###313###70.631###70.679###70.695###70.734###70.740

###318###71.746###71.788###71.819###71.851###71.871

###323###72.871###72.892###72.897###72.963###73.000

Table 16: Energy Change of Activation G of Alkali Metal Bromides in 50% AN+3- HPN Mixture at Various Temperatures

###-3###-1

###G 10 (KJ.mol )

###-3

###Temperature###Concentration(mol.dm )

###K###0.01###0.02###0.03###0.04###0.05

###LiBr

###298###63.657###63.673###63.687###63.701###63.715

###303###64.752###64.741###64.756###64.772###64.787

###308###65.791###65.808###65.824###65.842###65.856

###313###66.865###66.885###66.905###66.918###66.933

###318###67.942###67.964###67.983###66.998###68.011

###323###69.020###69.033###69.045###69.063###69.079

###NaBr

###298###63.655###63.672###63.686###63.700###63.713

###303###64.723###64.739###64.755###64.770###64.783

###308###65.791###65.804###65.823###65.840###65.855

###313###66.864###66.884###66.904###66.916###66.932

###318###67.941###67.960###67.982###67.997###68.010

###323###69.019###69.034###69.046###69.063###69.077

###KBr

###298###63.652###63.694###63.673###63.688###63.970

###303###64.720###64.768###64.746###64.758###64.769

###308###65.784###65.838###65.814###65.826###65.835

###313###66.860###66.907###66.888###66.905###66.914

###318###67.937###67.976###67.967###67.982###67.994

###323###69.013###69.041###69.034###69.049###69.058

###RbBr

###298###63.670###63.680###63.688###63.700###63.708

###303###64.734###64.748###64.755###64.766###64.776

###308###65.799###65.814###65.824###65.833###65.844

###313###66.866###66.882###66.889###66.902###66.912

###318###67.933###67.949###67.958###67.970###67.982

###323###69.001###69.012###69.020###69.030###69.038

(Table 16). Continued.

###-3###-1

###G 10 (KJ.mol )

###Temperature###-3

###Concentration(mol.dm )

###K

###0.01###0.02###0.03###0.04###0.05

###CsBr

###298###63.678###63.686###63.694###63.702###63.709

###303###64.744###64.754###64.761###64.770###64.778

###308###65.808###65.821###65.828###65.838###65.845

###313###66.876###66.889###66.897###66.906###66.914

###318###67.943###67.956###67.966###67.975###67.984

###323###69.011###69.018###69.024###69.033###69.039

Move in to the prepared hole and the readiness with which the liquid produces the hole [17]. The results showed that the values of 6G increase with increase in temperature due to increase in salt-solvent interaction.The change in entropy of activation 6S is given by 27].

The energy of 6Ev does not differ appreciably from activation enthalpy (AHThe results of entropy change of activation 6S of LiBr in AN and LiBr, NaBr, KBr, RbBr and CsBr in 3- HPN and 50% AN+3-HPN at different temperatures are summarized in Tables 17, 18 and 19 respectively. The entropy of solution at all temperatures is found negativeand increases with increasing the concentration of electrolytes and also with increase in temperature with some variations indicate more order in the system. The negative values of entropy change of activation AS shows that the species are formed at activated state are more ordered than the initial state [26].

The excess molar volume Vmby the following equation. has been calculated where x1 , M1 , d1 are mole fraction, molecular mass anddensity respectively of AN x2 , M 2 , d2 are corresponding properties of 3-HPN and d is the density of solution.

The values of Vm are reported in Table 20. The Vmvalues are found to be negative at different temperatures. The negative values increases as the temperature increases. The negative values shows existence of specific interactions between the mixing components [27]. The negative Vm represent that the factor responsible for concentration of volume on.

Table 17: Entropy Change of Activation S of LiBr in AN at Various Temperatures

###-2###1###-1

###S 10 (J.K .mol )

###Temperature

###0.01###0.02###0.03###0.04###0.05

###(K)

###LiBr

###298###-1.918###-1.919###-1.917###-1.918###-1.968

###303###-1.918###-1.919###-1.918###-1.919###-1.968

###308###-1.919###-1.920###-1.911###-1.920###-1.968

###313###-1.919###-1.920###-1.919###-1.919###-1.968

###318###-1.919###-1.920###-1.919###-1.919###-1.968

###323###-1.921###-1.922###-1.920###-1.920###-1.970

Table 18: Entropy Change of Activation S of Alkali Metal Bromides in 3-HPN at Various Temperatures

###-2###1###-1

###S 10 (J.K .mol )

###Temperature

###0.01###0.02###0.03###0.04###0.05

###(K)

###LiBr

###298###-2.229###-2.226###-2.226###-2.238###-2.259

###303###-2.229###-2.226###-2.226###-2.238###-2.259

###308###-2.229###-2.226###-2.226###-2.239###-2.259

###313###-2.229###-2.226###-2.227###-2.239###-2.259

###318###-2.229###-2.226###-2.227###-2.239###-2.259

###323###-2.230###-2.225###-2.226###-2.238###-2.259

###NaBr

###298###-2.229###-2.226###-2.226###-2.238###-2.259

###303###-2.229###-2.226###-2.226###-2.238###-2.259

###308###-2.229###-2.226###-2.226###-2.239###-2.259

###313###-2.229###-2.226###-2.227###-2.239###-2.259

###318###-2.229###-2.226###-2.227###-2.239###-2.259

###323###-2.230###-2.225###-2.226###-2.238###-2.259

###KBr

###298###-2.229###-2.226###-2.226###-2.238###-2.259

###303###-2.229###-2.226###-2.226###-2.238###-2.259

###308###-2.229###-2.226###-2.226###-2.239###-2.259

###313###-2.229###-2.226###-2.227###-2.239###-2.259

###318###-2.229###-2.226###-2.227###-2.239###-2.259

###323###-2.230###-2.225###-2.226###-2.238###-2.259

###RbBr

###298###-2.228###-2.229###-2.229###-2.243###-2.257

###303###-2.228###-2.229###-2.230###-2.24###-2.257

###308###-2.228###-2.229###-2.230###-2.244###-2.257

###313###-2.228###-2.229###-2.230###-2.244###-2.257

###318###-2.228###-2.229###-2.230###-2.243###-2.257

###323###-2.229###-2.229###-2.229###-2.243###-2.257

###CsBr

###298###-2.228###-2.228###-2.228###-2.246###-2.257

###303###-2.228###-2.229###-2.228###-2.246###-2.257

###308###-2.228###-2.229###-2.229###-2.246###-2.257

###313###-2.228###-2.229###-2.229###-2.247###-2.257

###318###-2.228###-2.229###-2.229###-2.246###-2.257

###323###-2.228###-2.228###-2.228###-2.246###-2.257

Table 19: Entropy Change of Activation S of Alkali Metal Bromides in 50% AN+ 3-HPN Mixture at Various Temperatures

###-2###1###-1

###S 10 (J.K .mol )

###Temperature

###0.01###0.02###0.03###0.04###0.05

###(K)

###LiBr

###298###-2.129###-2.130###-2.130###-2.310###-2.131

###303###-2.130###-2.130###-2.130###-2.131###-2.131

###308###-2.130###-2.123###-2.130###-2.131###-2.131

###313###-2.123###-2.130###-2.131###-2.031###-2.131

###318###-2.130###-2.131###-2.131###-2.132###-2.132

###323###-2.131###-2.131###-2.131###-2.132###-2.132

###NaBr

###298###-2.130###-2.130###-2.131###-2131###-2.131

###303###-2.130###-2.130###-2.131###-2.131###-2.132

###308###-2.130###-2.130###-2.131###-2.131###-2.132

###313###-2.130###-2.131###-2.131###-2.132###-2.132

###318###-2.131###-2.131###-2.132###-2.132###-2.132

###323###-2.131###-2.131###-2.132###-2.132###-2.132

###KBr

###298###-2.129###-2.130###-2.129###-2.130###-2.130

###303###-2.129###-2.130###-2.130###-2.1230###-2.130

###308###-2.129###-2.130###-2.130###-2.130###-2.130

###313###-2.129###-2.131###-2.130###-2.130###-2.131

###318###-2.130###-2.131###-2.130###-2.131###-2.131

###323###-2.123###-2.131###-2.130###-2.131###-2.131

###RbBr

###298###-2.130###-2.130###-2.130###-2.131###-2.131

###303###-2.130###-2.130###-2.131###-2.131###-2.131

###308###-2.130###-2.130###-2.131###-2.131###-2.131

###313###-2.130###-2.130###-2.131###-2.131###-2.131

###318###-2.130###-2.131###-2.131###-2.131###-2.131

###323###-2.130###-2.130###-2.131###-2.131###-2.131

###CsBr

###298###-2.232###-2.233###-2.233###-2.254###-2.259

###303###-2.232###-2.233###-2.233###-2.254###-2.259

###308###-2.232###-2.233###-2.234###-2.254###-2.259

###313###-2.232###-2.234###-2.234###-2.254###-2.259

###318###-2.232###-2.234###-2.234###-2.254###-2.259

###323###-2.233###-2.233###-2.233###-2.254###-2.259

Temperaturesmixing of the components. The negative Vm indicatesthe presence of strong molecular interactions between the components of mixture. The optimum condition is directly related to the difference in molecular size andintermolecular interactions between unlike moleculescreating associated complexes as well as beingeffected by the breaking the interactions between same molecules [28, 29].

Table 20: Excess Molar Volume Vm of 50% AN+3-HPNMixture at Various Temperatures

###Mixture at Various Temperatures

###Temperatures###E###3###-1

###Vm (cm .mol )

###298###-2.877

###303###-3.137

###308###-3.169

###313###-3.295

###318###-3.308

###323###-3.460

CONCLUSION

Activation and thermodynamic parameters such as6Ev , 6G and 6S were evaluated by using the density and viscosity data of electrolytes (i.e. alkali metal bromides).

The effect of temperature and concentration of electrolytes were observed on the basis of ion-solvent interactions. The positive decreasing order in B- coefficient with increasing the temperature suggests that alkali metal bromides behave as structure maker insolvents. The 6Ev increases with increase in concentration of electrolytes cause to hindrance in the mobility of molecules. 6G values of electrolytes in AN and 50% AN +3-HPN mixture linearly increases of electrolytes with increase in temperature and concentration. This increase is due to the association of electrolytes molecules with solvent mixture. Negative values of 6S show more order in viscous flow system.

While negative Vm values indicate strong molecularinteraction between components of mixture.

REFERENCES

[1] Sacco A, Petrella G, Monica MD, Castagnolo M. J Chem SocFaraday Trans 1 1977; 73: 1936.

[2] Sacco A, Giglio AD, Atti AD, Lawrence KG. Separation of Viscosity B Coefficients into Ionic Contributions. Z Phys Chem [N.F] 1983; 136: 145-52. http://dx.doi.org/10.1524/zpch.1983.136.136.145

[3] Ibuki K, Nakahara M. Temperature and solvent effects on viscosity B coefficients: monovalent ions in acetonitrile at 15,

25, and 35 degC. J Phys Chem 1990; 94: 8370-73. http://dx.doi.org/10.1021/j100384a070

[4] Nandi D, Hazra DK. J Chem Soc Faraday Trans 1 1989; 85:4227.

[5] Gill DS, Chauhan MS. Preferential Solvation of Ions in MixedSolvents. Z Phys Chem [N.F] 1984; 140: 149.

[6] Gill DS, Shrama AN. J Chem Soc Faraday Trans 1 1982; 78:475.

[7] Lawrence KG, Bicknell RTM, Sacco A, Atti AD. J Chem SocFaraday Trans 1 1985; 81: 1133.

[8] Reichardt C. Solvents and Solvent effects in OrganicChemistry, VCH: Weinheim, Germany Chaps 5 and 7 1998.

[9] Gurney RW. Ionic Process in Solutions, Mc. Graw Hill, NewYork 1954.

[10] Gurung BB, Roy MN. JTR Chem 2005; 11(2), 7.

[11] Reid CR, Poling BE. The Properties of gases and liquids., McGraw Hill New York Chap. 1, 1998.

[12] Zamir T, Quickenden TI. Viscosity B Coefficients for Alkali- Metal Bromides in 3-Hydroxypropionitrile-Acetonitrile Mixtures at 25degC. J Solut Chem 2001; 30(10): 937-47. http://dx.doi.org/10.1023/A:1012727832013

[13] Parsa JB, Haghro MF. Excess molar volume and viscosity deviation for binary mixtures of polyethylene glycol dimethyl ether 250 with 1,2-alkanediols (C3-C6) at T = (293.15 to323.15) K. J Chem Thermodynamics 2008; 40: 782-88.http://dx.doi.org/10.1016/j.jct.2008.01.022

[14] Rudan-Tasic D, Klofutar C, Horvat J. Viscosity of aqueous solutions of some alkali cyclohexylsulfamates at 25.0 degC. Food Chem 2004; 86: 161-67. http://dx.doi.org/10.1016/j.foodchem.2003.11.001

[15] Zamir T, Khan A, Durrani S, Uddin F. Study of ion-solvent interactions and activation energy of LiBr in DMSO, H2O and DMSO-H2O mixtures at various temperatures. Ionics 2007;13: 245-55.http://dx.doi.org/10.1007/s11581-007-0109-8

[16] Jones G, Dole M. The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J Am Chem Soc 1929; 51: 2950-64. http://dx.doi.org/10.1021/ja01385a012

[17] Jabeen S, Akber S, Uddin F. Pak J Sci Ind Res 2000; 43(1):1.

[18] Feakins D, Freemanttle DJ, Lawrence KG. J Chem SocFaraday Trans 1 1974; 70: 795.

[19] Bai TC, Huang CG, Yao WW, Zhu CW. Viscosity B- coefficients and activation free energy of viscous flow for hexanedioic acid in aqueous polyvinylpyrrolidone solution. J Fluid Phase Equilibria 2005; 232: 171-81. http://dx.doi.org/10.1016/j.fluid.2005.04.002

[20] Khan AR, Uddin F, Saeed R. Pak J Sci Ind Res 2003; 46(3):151.

[21] Gyani BP, Murari M. J Indian Chem Soc 1983; 60: 162.

[22] Berry RRS, Rice SA, Ross T. Physical Chemistry. John Willy and Sons Inc., N.Y., 1980; p. 1093.

[23] Jones G, Colvin JH. The Viscosity of Solutions of Electrolytes as a Function of the Concentration. VII. Silver Nitrate, Potassium Sulfate and Potassium Chromate. J Am Chem Soc 1940; 62: 338-40.http://dx.doi.org/10.1021/ja01859a030

[24] Uddin F, Farooqui AN. Pak J Sci Ind Res 1984; 27: 271.

[25] Kapadi UR, Hundiwale DG, Patil NB, Lande MK. Viscosities, excess molar volume of binary mixtures of ethanolamine with water at 303.15, 308.15, 313.15 and 318.15 K. Fluid Phase Equilibria 2002; 201: 335-41.http://dx.doi.org/10.1016/S0378-3812(02)00095-X

[26] Khan MS, Rehman A, Khan NM. Pak J Ind Res 1999; 42(30):117.

[27] Wankhede D, Wankhede N, Lande M, Arbad B. Densities and viscosities of propylene carbonate with aromatic hydrocarbons (benzene, 1,4-dimethylbenzene and ethylbenzene) at 288.15, 298.15 and 308.15 K. Phys Chem Liquids 2008; 46(3): 319-27. http://dx.doi.org/10.1080/00319100701230413

[28] Nikam PS, Kharat SJ. Density and Viscosity Studies of Binary Mixtures of N,N-Dimethylformamide with Toluene and Methyl Benzoate at (298.15, 303.15, 308.15, and 313.15) K. J Chem Eng Data 2005; 50: 455-59. http://dx.doi.org/10.1021/je040012q

[29] Gurung BB, Roy MN. Study of densities, viscosity deviations, and isentropic compressibilities of ternary liquid mixtures of water and ethane-1,2-diol with some monoalcohols at various temperatures. Phys Chem Liquid 2007; 45(3): 331-43. http://dx.doi.org/10.1080/00319100600574143

1Department of Chemistry University of Karachi, Pakistan

2Department of Chemistry University of Balochistan, Quetta, Pakistan

Address correspondence to this author at the Department of ChemistryUniversity of Karachi, Pakistan; Tel: 0092-322-2133625; Fax: 0092-21-9261330; E-mail: fahim_uddin01@yahoo.com http://dx.doi.org/10.6000/1927-5129.2013.09.20(c) 2013 Shama et al.; Licensee Lifescience Global.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.
COPYRIGHT 2013 Asianet-Pakistan
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2013 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Shama; Uddin, Fahim; Ahmed, Tehseen; Zamir, Talat
Publication:Journal of Basic & Applied Sciences
Article Type:Report
Date:Dec 31, 2013
Words:8790
Previous Article:Identification of organic compounds in solid aerosols related to Faisalabad environment using XRD technique.
Next Article:Comparative study of temperature and rainfall fluctuation in Hunza-Nagar District.
Topics:

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters