Printer Friendly

Variations in Nutrients Composition of Most Commonly Consumed Cassava (Manihot esculenta) Mixed Dishes in South-Eastern Nigeria.

1. Introduction

The need for good quality food composition data on commonly consumed dishes cannot be overemphasized. They are needed for a variety of purposes. For the nutritional epidemiologist, food composition data are used to estimate nutrient intakes of individuals or population groups in order to establish diet-disease relationships [1]. They are used for establishment of dietary goals [2], while the dietitian employs them for dietary counselling [1]. Inaccurate data will lead to overestimation or underestimation of dietary intakes.

Foods can be consumed as single foods or as mixed dishes/multi-ingredient foods and as such any comprehensive food composition database or table should contain the nutrient composition of foods as consumed by the population it serves. The nutrient composition of foods varies as a result of several factors. For single foods, nutrient variability has been attributed to inherent (age, maturity, genus, species, variety, and cultivar), environmental (soil, climate, pesticides, etc.), and processing (cooking methods, preservation methods, etc.) factors. However, for mixed dishes or multi-ingredient foods, the causes are much more complex [3].

Studies have shown that most commonly consumed traditional mixed dishes in Nigeria differ in several ways depending on the socioeconomic status of the family food provider, the prevailing food taboos, food prices, cultural and religious practices, level of nutritional knowledge, and food availability and seasonality [4, 5]. Variations in Nigerian local dishes are also due to the different ingredients (with different composition) used in preparing them, for example, type and quantity of animal protein, type of cooking oil, type of thickening agent, use of vegetables, and use of potash and seasoning/flavouring agents [6]. These mixed dishes vary from simple (few ingredients) to very complex (many ingredients) ones. Holden [7] noted that a particular product can have 1-30 different ingredients. According to Vasilopoulou et al. [8], composite dishes show the greatest variations and, therefore, represent the least reliable data in food composition database.

Variation can be defined as deviation from a central position or value. Measures of nutrient variability are useful not only to database compilers, food analysts, and food manufacturers but also to dieticians, nutritionists, and researchers who use food composition database to plan and evaluate the diets of patients and clients with modified diets [9]. In this situation, dietitians seek for mean values of nutrients in foods. The presence of a measure of nutrient variability such as standard deviation (SD) or coefficient of variation (CV) can be very useful to nutrition professionals to assess the reliability of mean values and provide practical dietary advice and guidance [3]. Measurement of nutrient variability is of particular importance if it occurs in foods that are relied upon as major sources of nutrients for a specific population. Therefore, determining the nutrient variability in commonly consumed Nigerian dishes is a right step towards the development of a comprehensive, country-specific nutrient database that can be used to obtain good estimate of the dietary intake of individuals and/or population groups.

2. Materials and Methods

2.1. Area of the Study. The study was carried out in the Southeast geopolitical zone of Nigeria. The zone comprises Anambra, Enugu, Abia, Imo, and Ebonyi states. It lies between the North-central and South-South zones of Nigeria. The Southeast zone is the home of the Ibos with a total land area of about 158,000 square miles (about 41,000 sq km). The Ibo population is estimated to be about 18 million [10].

Apart from trading, which is an old occupation among the Ibos, the traditional Ibo economy depends largely on root-crop farming where yam, cassava, and taro are the chief root crops. Hence, a typical Ibo meal includes a starch and a soup/stew prepared with vegetables to which pieces of fish, beef, goat, or other animal food sources are added.

Presently, an increasing number of Ibos engage in wage labour. Growing cities, expanding roads, construction of new industries, and oil exploration are creating many job opportunities.

2.2. Study Design. A cross-sectional survey was adopted for food/recipe documentation, while quasi-experimental design was adopted for recipe harmonization/standardization and food analysis as well as dietary evaluation.

2.3. Study Population. The population for this study consisted of all the communities in South-east geopolitical zone of Nigeria.

2.4. Study Sample. Stratified sampling technique that involved two stages of purposive sampling and one stage of randomization was used. South-east zone was grouped into three clusters differing considerably in terms of food production and consumption pattern. The three clusters formed three strata based on similarities as follows: (1) Anambra/Enugu, (2) Abia/Imo, and (3) Ebonyi. In the first stage, four Local Government Areas (LGAs) were purposefully selected from each of the first two strata (Anambra/Enugu and Abia/Imo) and two were selected from the last stratum (Ebonyi). In the second stage, two communities were also purposively selected from each of the chosen LGAs (one urban and rural community). This implies that the documentation exercise was carried out in ten LGAs and in twenty communities in the study area. In the third stage, women were randomly selected from their clusters in each of the community's major market for the 24-hour dietary recall. One in every three women in each cluster was selected until the required number was obtained.

2.5. Data Collection

2.5.1. 24-Hour Dietary Recall. Food intake pattern at household level was determined with the use of 24-hour dietary recall. The 24-hour dietary recall was conducted on 50 randomly selected women representing 50 households in the community making a total of 1000 women/households. The information so gathered was used to produce food consumption statistics (list of foods/dish and frequency of consumption by families). From the food consumption statistics, the most frequently consumed foods/dishes were identified. The data presented in this study are based on the most commonly consumed food/dishes in each of the selected communities.

2.5.2. Focus Group Discussion. The focus group discussion was used for documenting the recipes of the commonly consumed dishes and also to validate the information gathered from the consumption survey. The focus group discussion was conducted in all the selected communities. It comprised small groups of about 6-8 adult women selected with the help of community based facilitators. Each session lasted for 45-60 minutes. The commonly consumed dishes, as obtained from the food consumption statistics and a form containing all the food groups, served as the focus group discussion guide. Recipes of the commonly consumed dishes, their variations, and traditional methods of preparations were the major points supplied by the focus group.

2.5.3. Recipe Standardization. The recipes collected were standardized using a modified National Food Service Management Institution (NFSMI) [11] method. According to NFSMI, a recipe standardization process can be summarized in three phases: recipe verification, product evaluation, and quantity adjustment. In this study, the two major stages of recipe verification phase (recipe review and recipe preparation) were particularly of interest. Recipe harmonization stage, though not part of recipe verification phase, was included in the study due to its relevance.

(a) Recipe Review. This was done by working on only one recipe at a time to find out if the recipe contained the following information: (a) recipe title, (b) recipe category, (c) ingredients, (d) weight/volume for each ingredient, (e) preparation instructions (directions), (f) cooking temperature and time, if appropriate, (g) serving size, (h) recipe yield, and (i) equipment and utensils to be used.

(b) Recipe Harmonization. Collected recipes of a particular cassava dish were critically examined. Recipes that were significantly different from others in terms of ingredients, quantity, quality, type, and number served as variations. Weights of each ingredient in similar recipes (recipe of a particular dish containing similar ingredients in terms of number, quantity, quality, type, and amount) were collated and harmonized. This involved determining the mean values of each ingredient in each set of similar recipes:

mean = summation of ingredient weight (g)/number of times it (ingredients) occured. (1)

(c) Recipe Preparation. The standardized recipes of the most commonly consumed dishes were prepared using the traditional method obtained from FGD.

(cl) Recipe Name: "Abacha" (Tapioca Salad). See Table 1.

Method of Preparation. Fry onion in heated palm oil for a minute and add the seasonings (for variations 1 and 3) or prepare an emulsion with palm oil, potash, and seasons (for variation 2). Add the soaked, washed, and drained cassava chips and mix properly. Serve hot garnished with prawn (for variation 1) or cold garnished with fermented oil bean seed (Pentaclethra macrophylla) and garden egg leaves or ukazi leaves (Gnetum africanum) (for variation 3). For variations 4 and 5, add soaked, washed, and drained cassava chips, onion, palm oil, and seasonings to the cowpea (boiled till tender), boil for four minutes, stir properly, and serve hot garnished with prawn.

(c2) Recipe Name: "Ofe Egusi" Melon Seed (Citrullus vulgaris) Soup. See Table 2.

Method of Preparation. Boil beef till tender seasoning with salt. For variations 2,4, and 6, melt the ground "ogbono" seed (Irvingia gabonensis) in the heated palm oil, add water (for variation 1) or meat and stock (for variations 4 and 6), and bring to boil. For variations 1, 3, and 5, mix "ukpo" (Mucuna urens) with palm oil, add to boiling soup water (for variation 1) or boiled meat and stock (for variations 3 and 5), and bring to boil again. Add stock fish head (all the variations) and stock fish (for variation 7) and boil for three minutes. Add melon seeds (gradually to avoid lumping) and bitter leaves (all the variations), "okpei" (Prosopis africana) (variations 1 and 2), onion (variations 3-7), smoked fish (variations 1 and 2), pumpkin leaves, crayfish, and seasonings (all the variations). Stir until the mixture becomes homogenous and simmer for five minutes. Serve hot with cassava "fufu" or garri.

(c3) "Ofe Ora" (Pterocarpus soyauxii) Soup. See Table 3.

Method of Preparation. Boil, peel, and pound cocoyam into paste. Add salt to the beef and boil till it is done. Boil washed stockfish head for three minutes, add "ukpo" (Mucuna urens) mixed with palm oil (for variation 1) or add the stock fish head and the mixed "ukpo" (Mucuna urens) to meat and stock (for variations 3 and 5), and boil for five minutes. Add cocoyam paste in balls (for variations 2, 4, and 6) to meat and stock (for variations 4 and 6) or boiling soup water (for variation 2) and boil for five minutes. Add dry fish and boil for another five minutes (for variations 5 and 6). Add smoked fish (for variation 2), "ukazi" leaves (Gnetum africanum) (for variation 5), "uziza" leaves (Piper guineense), and "ogiri" (Ricinus communis) (for variation 6) and palm oil, crayfish "ora" leaves (Pterocarpus soyauxii), and seasonings (for all variations). Stir until the mixture becomes homogenous and simmer for three minutes. Serve hot with cassava "fufu" or garri.

(c4) Recipe Name: "Ofe Akwukwo" (Vegetable Soup). See Table 4.

Method of Preparation. Season rawbeef (for variation 3) and ice fish (for variation 4) and boil the beef till it is done. Tie the pumpkin leaves firmly with cord, boil in a potash and water solution for eight minutes, and drain and cut into tiny pieces (for variations 1 and 2). Bring the soup water to boil, add stock fish bone (for variation 1), stock fish head (for variations 2 and 4), boiled meat and stock (for variation 3) or boiled ice fish and stock (for variation 4), and boil for five minutes. Add the precooked pumpkin leaves (for variations 1-2) or sliced raw pumpkin leaves and okra fruits (for variation 3). Add smoked fish and dry fish (for variation 2), garden egg leaves, African spinach, and melon seeds (for variation 4), crayfish (for variations 3 and 4), onion (for variations 1, 2, and 4), palm oil, "okpei" (Prosopis africana), and seasonings (for all variations). Simmer for five minutes. Stir to mix well and serve hot with cassava "fufu" or garri.

The prepared dishes were cooled, properly packaged, and taken to the laboratory for chemical analysis. Preparations were done in the Department of Home Science, Nutrition and Dietetics, University of Nigeria, Nsukka.

2.6. Sample Preparation. The prepared dishes were homogenised with the use of electric blender. Five grams of each sample was used to determine the actual moisture at 100[degrees]C, while the rest were dried at 60[degrees]C in an air oven drier, milled, packaged in an air-tight container, and taken stored in the freezer until being ready for chemical analysis.

2.7. Chemical Analysis. Protein, moisture (actual and residual), fat, ash, soluble and insoluble dietary fibre, minerals (calcium, magnesium, iron, zinc, sodium, potassium, copper, and phosphorus), and vitamins (A, [B.sub.1], [B.sub.2], and [B.sub.3]) were determined according to the method of AO AC [12]. Moisture was determined using the air oven method. Crude protein and fat were determined by Kjeldahl procedure and Soxhlet solvent extraction method, respectively. Dietary fibre (soluble and insoluble) was determined by enzyme gravimetric method of Prosky et al. [13]. Ash was determined by incineration of samples in a muffle furnace at 550[degrees]C for six hours. Available carbohydrate was calculated by difference 100 - (moisture + protein + fat + ash + dietary fibre). Mineral elements were determined using the Atomic Absorption Spectrophotometer (Perkin-Elmer model 3110, USA). Phosphorus was determined using the vanadomolybdate method. Vitamins were determined using high-performance liquid chromatography (HPLC). All samples were analysed in triplicate. The proximate, mineral, and vitamin values in Tables 5-7 are, therefore, means of three analyses.

2.8. Determination of the Nutrient Content of the Recipes as Consumed. Water conversion factor was calculated using the following formula:

WCF = T100 - actual moisture/100 - residual moisture. (2)

Values obtained through chemical analysis were multiplied with the WCF to obtain nutrient content of the recipes as consumed.

2.9. Statistical Analysis. The data collected were analysed using frequencies, percentages, and means.

3. Results

Focus group discussion (FGD) reports in both urban and rural communities of South-eastern Nigeria revealed that cassava-based dishes were the most commonly consumed. This was confirmed by the 24-hour dietary recall. About 92% of the study population had consumed cassava-based dish 24 hours prior to the time of interview, while about 66% had consumed rice- and yam-based dishes (Figure 1). Other less consumed foods included beans, wheat, breadfruit, plantain, corn, and semovita.

Cassava was generally consumed as "fufu"/garri (see Table 9) with soups. FGD reports from some communities in Enugu and Ebonyi states included tapioca/African salad as another commonly consumed form of cassava. Eleven types of soups were reported from FGD to be the most commonly consumed in different urban communities of South-eastern Nigeria. In rural communities, ten types of soups were obtained from FGD report as the most commonly consumed. Among all these, melon (Citrullus vulgaris) or "egusi" and "ora" (Pterocarpus soyauxii) and vegetable soups were the most commonly consumed in both urban and rural communities.

Tapioca salad ("abacha") had varied energy and nutrients composition (Table 5). "Abacha" prepared without vegetable (variation 1) had the highest energy (1099 KJ/263 Kcal) and least moisture (54%) content, while "abacha" and beans prepared with more "abacha" (variation 5) had the least energy (636 KJ/152 Kcal) and highest moisture (66%) values. Protein values ranged from 2.2 g in "abacha" prepared with vegetable to 13.5 g in "abacha" and cowpea prepared with more cowpea (variation 4). Carbohydrate value was within the range of 17.4 to 28.3 g, being highest in "abacha" prepared with vegetable (variation 2) and lowest in "abacha" and cowpea prepared with more cowpea (variation 4). A wide variation existed in the fat content of the "abacha" dishes (1.5 to 14.2 g) but the ash and dietary fibre values were comparable (0.9 to 1.4 and 1.5 to 1.7 g, resp.). Phosphorus composition ranged from 10 mg in "abacha" prepared without vegetable (variation 1) to 118 mg in "abacha" prepared with vegetable and oil bean seed (variation 3). Potassium also ranged from 97 mg in "abacha" prepared with vegetable to 164 mg in "abacha" and beans prepared with more beans (variation 4). Magnesium was within 14 mg and 23 mg. Iron, zinc, calcium, and sodium values were low. The vitamin compositions of the "abacha" dishes also varied. Coefficient of variation (CV%) was <10% for moisture and dietary fibre and ranged from 18% to 71% for other nutrients; fat had the highest CV% of 71% followed by zinc (68%), protein (54%), phosphorus (52%), and niacin (46%).

The different variations of melon (Citrullus vulgaris) soup ("egusi" soup) varied in energy and nutrients composition (Table 6). Soup variations with moisture content >80% had lower energy (74 Kcal/307 KJ to 90 Kcal/376 KJ) and nutrient values. Melon soup prepared without thickener (variation 7) had the highest energy and compared favourably with melon soup (variation 3) thickened with "ukpo" (Mucuna urens) in fat content (4.7% and 4.8%, resp.), while other variations had fat content ranging from 1.9 to 2.9%. Both variation 3 thickened with "ukpo" (Mucuna urens) and variation 7 without any thickener also had the highest protein contents (8.3% and 8.4%, resp.). CV% was lowest for moisture (8.5%) and highest for thiamine (58%) and zinc (53%) values, while others range from 29 to 45%.

Table 7 shows the energy and nutrient content of six variations of "ora" (Pterocarpus soyauxii) soup. CV% was least for moisture (4.5%) and thiamin (4%) and highest for phosphorus and potassium (45%) followed by protein and calcium (38%) and magnesium (35%). CV% for other nutrients ranged from 25 to 29%. The protein and all the mineral and vitamin contents of variation 1 of "ora" soup cooked without beef were lower than those of variation 3 cooked with beef. Variations 2, 4, and 6 were all thickened with cocoyam paste; however, the protein contents varied. The protein contents of variations 4 (4.2%) and 6 (4.3%) cooked with beef were more than that of variation 1 (1.8) cooked without meat. A similar pattern of variation was observed for these three variations in energy and all the other nutrients. Variation 2 also had more moisture (89%) compared to variations 4 (82%) and 6 (80%). Of all the "ora" soups thickened with "ukpo" (Mucuna urens) (variations 1, 3, and 5), variation 5, with additional protein source and less moisture content, had a higher concentration of all nutrients. Soups thickened with "ukpo" (Mucuna urens) had better mineral and vitamin contents compared to those thickened with cocoyam paste. The variations were wider among macroelements. The variation in protein content appeared to be related to the protein sources rather than the thickeners in this case.

The nutrient composition of the four varieties of vegetable soups differed widely (see Table 8). CV% ranged from 17% for moisture to 57% for carbohydrate. Again, vegetable soups with lower moisture (58-60%) content (variations 1 and 2) had higher nutrient content than variations 3 and 4 with higher moisture (>80%) content.

4. Discussion

The high frequency of cassava-based dishes in this study is not surprising. A similar report of the frequency of consumption of cassava among children (92%) and women (95%) in Akwa Ibom State in the South-South zone of Nigeria was given by De Moura et al. [14]. According to FAO and IFAD [15], cassava food products are the most important staples for rural and urban households in Southern Nigeria. This is because cassava as a food crop fits well into the farming system of the small-holder farmers in Southern Nigeria and is available all the year round, thus providing household food security. Compared to grains, cassava is more tolerant to low soil fertility and more resistant to drought, pest, and diseases [16]. It is also worthy of note that rice-based dishes were as popular as yam-based dishes. Although yam is one of the most prized and cherished root crops in South-eastern Nigeria, it appears that its consumption is dwindling. The popularity of rice according to Deslisle [17] has been attributed to urbanization and ease of preparation.

Bitter cassava, which is predominantly the variety cultivated and consumed in South-eastern Nigeria, is rarely eaten alone. When used as snack food (e.g., soaked garri or tapioca salad, "abacha"), it is eaten with coconut, fish, milk, groundnuts, or pork meat. Tapioca ("abacha") salad is sometimes eaten as a snack or a full meal. As observed from this study, the most popular cassava-based dishes are those eaten with a variety of soups (e.g., garri or "fufu"). Although cassava by itself is known to have a low protein/energy ratio, its contribution to nutrient intake cannot be viewed in isolation. Soups and other ingredients are the major nutrient contributors to cassava-based dishes; thus, their contribution will depend on the type of soup and other food materials accompanying the cassava products.

Nigerian soups vary in complexity. They are made with multiple ingredients of varying proportion and types as well as varied methods of preparation. The observed variations in the commonly consumed soups in this study confirm the observation made by Ene-Obong et al. [6], where sources of variation were observed to be in the use, type, and quantity of animal protein and use of vegetables and thickeners. Others included seasonings and ingredient number as well as quantity.

The observed high variability in the nutrient composition of these soups suggests the need to include these different variations in a country-specific food composition table in order to avoid overestimation or underestimation of energy and nutrient intakes. According to Williamson [18], variation in nutrient composition limits the usefulness of FCDBs for both scientific and regulatory purposes. Thus, documenting and including the same dishes cooked with varying proportions and types of ingredients will help to reduce the errors in the estimation of nutrient intakes of population groups.

Based on the data presented, it was observed that moisture content, protein source, and quantity/type of ingredients and thickeners used appeared to cause the greatest variations in the energy and nutrient contents of the dishes. Generally, soups with less moisture had higher energy and nutrient contents compared to those with higher moisture content. This result is expected, since the nutrient composition of a food is inversely related to its water content. This shows that the common practice in poor households of adding water to soups and stews "so that it will be enough" according to a focus group discussant dilutes the nutrient concentration of the soup or stew and so should be discouraged. Cassava is a very poor source of most micronutrients of public health importance [19]. Overdilution of the accompanying soup could, therefore, have serious implication on the nutrient intake of household member in South-east Nigeria, particularly the vulnerable groups. Sanghvi and Murray [20] observed that infants and young children are frequently fed with these meals. According to Okeke et al. [21], such foods are not suitable for feeding young children with small stomach capacity. Another implication of this finding is that there will always be need to correct for the moisture content of these soups even when the ingredients used in preparation are similar in order to avoid overestimation of intakes.

The use of animal protein source in Nigerian soup preparation deserves special mention as a result of varying practices. Some prepare soups with little or no animal protein, while others prepare soups with an assortment of animal proteins. Apart from some religious groups like the Seventh Day Adventist, most households in South-eastern Nigeria use ground crayfish in cooking. This is a major animal protein source in the South-eastern cuisine. The ways in which the proteins are served also differ, since members of the household do not always have equal portions to consume during meals. This makes it extremely difficult to estimate what a standard portion is for any age group. Therefore, only the liquid part of the soups was analysed, while the big lumps of meat/fish were excluded. This was done to take care of individuals who may consume a cassava-based meal without any visible serving of meat/fish. The implication of this (analysing only the liquid part of the soups) is that the nutrient content of whatever quantity of meat/fish consumed by an individual will have to be calculated separately and added to whatever the soups contribute. Despite the fact that meat/fish was not included in the analyses, it was observed, however, that the number of animal protein sources present in a recipe still determined the nutrient composition of the prepared dish. Soups cooked with smoked fish had less protein than other variations prepared with beef, dry fish, and/or stock fish. The meat/stock fish/nitrogenous extractives as well as small pieces of fishes that mixed up with the soup at the preparation stage could be responsible for the higher protein values in soups prepared with more animal protein sources. Soups prepared with meat, dry fish, and stock fish also had higher mineral values, particularly calcium, iron, potassium, magnesium, and phosphorus, since they are excellent sources of these nutrients. The implication of this finding is that women and children in some traditional societies who are denied meat and fish because of food taboos [22] are not completely left out so long as the meat or fish was among the ingredient used in preparing the meal even though the quantity may still not be adequate.

The similarity in the protein and fat content of melon ("egusi") soup thickened with "ukpo" (Mucuna urens) and the one cooked with melon seed alone could be attributed to the fact that both "ukpo" (Mucuna urens) and melon are from the same food group (oil seeds and nuts) and the fact that both variations of melon soup were cooked with substantial amounts of animal proteins. However, the mineral profile of melon soup thickened with "ukpo" (Mucuna urens) was higher. "Ogbono" (Irvingia gabonensis) also shares the same food group with "ukpo" (Mucuna urens) and melon seed. However, the protein content of the soups thickened with "ogbono" (Irvingia gabonensis) was lower. None of them contained meat.

There was not much difference in the energy content between soup thickened with "ukpo" (Mucuna urens) and those thickened with "ogbono" (Irvingia gabonensis). Soups thickened with "ukpo" (Mucuna urens) in most cases contained less carbohydrate than those thickened with cocoyam paste. Cocoyam as a tuber contains more carbohydrate than seeds and nuts. Furthermore, large quantity of cocoyam was used per pot of soup. "Ukpo" (Mucuna urens), because of its high dietary fibre content [23], has a greater water absorbing capacity and is more viscous than cocoyam paste. It is, therefore, added in smaller quantities. The cocoyam thickened soups were, therefore, more energy-dense than the variations thickened with "ukpo" (Mucuna urens). Type of soup thickener should, therefore, be an important consideration when planning low-/high-energy diet.

A slight change in the ingredient composition of a recipe automatically reflects in its nutrient composition as seen in nutrient values of different recipe variations. The quantity of ingredient used reflected in the nutrient content of different variation of a particular recipe. This explained why the nutrient content of "abacha" prepared with more cowpea had more protein than the variation with less or without cowpea. "Abacha" prepared with more cowpea contributes 27.5 and 30% of the protein required daily by adult males and females, respectively, while another variation of the same dish ("abacha" and vegetable) contributes only 4.5 and 4.9% of the protein required by the same population groups. This is understandable, since legumes (cowpea) are better protein sources than fresh vegetables and tubers. Increasing the number of ingredients in a recipe should, therefore, be encouraged over the use of basic ones. This will also encourage dietary diversity in cassava-consuming communities, since it has been shown that increased reliance on cassava leads to less dietary diversity, an association that identifies cassava consumers as a vulnerable population that may require interventions to improve nutrition [16].

5. Conclusion

Cassava dishes in form of "abacha" (tapioca salad) and "fufu"/"garri" with soups were the most commonly consumed in South-eastern Nigeria and their recipes showed great variability. Factors causing the variability included the moisture content of the dish and the type and number of ingredients and the thickening agents used. These variations in commonly consumed dishes cannot be neglected. They should be reflected in the country-specific food composition database so that nutrient intake assessment or provision of dietary guidance using such food composition database as a reference material could be more effective. 10.1155/2017/6390592

Conflicts of Interest

The authors declare that they have no conflicts of interest.


[1] S. F. Schakel, M. Buzzard, and S. E. Gebhardt, "Procedures for estimating the nutrient values for food composition database," Journal of Food Composition & Analysis, vol. 10, pp. 102-114, 1997.

[2] B. Burlingame, "Evidence for diet and chronic diseases relationships requires food composition data," Journal of Food Composition & Analysis, vol. 16, article 109, 2003.

[3] J. A. T. Pennington, Variability of minerals in foods, https://www

[4] E. B. Oguntona, "Standardization of recipes in Nigeria," in Proceedings of the 2nd National Workshop on Standardization, University of Ibadan, Ibadan, Nigeria, 1995.

[5] E. C. Okeke and C. Eze, "Nutrient composition and nutritive cost of Igbo traditional vendor foods and recipes commonly eaten in Nsukka," Journal of Agriculture Food Environment and Extension, vol. 5, no. 1, pp. 36-44, 2006.

[6] H. N. Ene-Obong, R. A. Sanusi, E. A. Udenta et al., "Data collection and assessment of commonly consumed foods and recipes in six geo-political zones in Nigeria: important for the development of national food composition database and dietary assessment," Food Chemistry, vol. 140, no. 3, pp. 539-549, 2013.

[7] J. Holden, "Sources of variation in nutrient composition data," Holden.pdf.

[8] E. Vasilopoulou, K. Georga, E. Grill et al., "Compatibility of computed and chemically determined macronutrients and energy content of traditional Greek recipes," Journal of Food Composition and Analysis, vol. 16, pp. 707-719, 2003.

[9] J. A. T. Pennington and R. H. Albert, "Nutrientvariability," http:// .pdf.

[10] Worldmark encyclopedia of cultures and daily life, 2009,

[11] National Food Service Management Institute, "Measuring success with Standardized Recipes," 2010, resoucesoverview.aspx?ID=88.

[12] AOAC, Official Methods of Analysis, Association of Offcial Analytical Chemistry, Washington, DC, USA, 2005.

[13] L. Prosky, I. Furda, J. W. Devries, T. F. Schweizer, and B. F. Harland, "Determination of total dietary fibre in foods and food products: collaborative study," Association of Official Analytical Chemists, vol. 68, no. 4, pp. 677-679, 1985.

[14] F. F. De Moura, M. Moursi, A. Lubowa et al., "Cassava intake and vitamin A status among women and preschool children in Akwa-Ibom, Nigeria," PLoS ONE, vol. 10, no. 6, Article ID e0129436, 2015.

[15] FAO and IFAD, A Review of Cassava in Africa with Country Case Studies on Nigeria, Ghana, The United Republic Tanzania, Uganda and Benin, IFAD International Fund for Agricultural Development, 2005.

[16] K. Stephenson, R. Amthor, S. Mallowa et al., "Consuming cassava as a staple food places children 2-5 years old at risk for inadequate protein intake, an observational study in Kenya and Nigeria," Nutrition Journal, vol. 9, article 9, 2010.

[17] H. Deslisle, Pattern of Urban Food Consumption in Developing Countries: Perspective from the 1980'S, Department de Nutrition, Universite de Montreal in Consultation with the Food Policy and Nutrition Division, Food and Agriculture Organization of the United Nations, Rome, Italy, 1990,

[18] C. Williamson, "The different uses of food composition databases," Synthesis report 2, European Food Information Resource Network (EuroFIR), 2005.

[19] A. Gegios, R. Amthor, B. Maziya-Dixon et al., "Children consuming cassava as a staple food are at risk of inadequate zinc, iron, and vitamin A intake," Plant Food in Humuman Nutrition, vol. 65, pp. 64-70, 2010.

[20] WHO, Infant and Young Child Feeding: Model Chapter for Textbooks for Medical Students and Allied Health Professionals, 2009,

[21] E. C. Okeke, H. N. Ene-Obong, A. O. Uzuegbunam, A. O. Ozioko, S. I. Umeh, and H. Kuhnlein, "Nutrient composition of traditional foods and their contribution to energy and nutrient intakes of children and women in rural households in Igbo culture Area," Pakistan Journal of Nutrition, vol. 8, no. 4, pp. 304-312, 2009.

[22] C. Gadegbeku, R. Wayo, G. Ackah-Badu, E. Nukpe, and A. Okai, "Food taboos among residents at Ashongman-Accra, Ghana," Food Science and Quality Management, vol. 15, 2013.

[23] H. N. Ene-Obong and E. Carnovale, "Nigerian soup condiments: traditional processing and potentials as dietary fibre sources," Food Chemistry, vol. 43, pp. 29-34, 1992.

G. I. Davidson, (1) H. N. Ene-Obong, (2) and C. E. Chinma (3)

(1) Department of Home Science, Nutrition and Dietetics, University of Nigeria, Nsukka, Enugu State, Nigeria

(2) Department of Biochemistry (Nutrition and Dietetics Unit), University of Calabar, Calabar, Cross River State, Nigeria

(3) Department of Food Science and Technology, Federal University of Technology, Minna, Niger State, Nigeria

Correspondence should be addressed to G. I. Davidson;

Received 18 February 2017; Revised 6 April 2017; Accepted 19 April 2017; Published 28 May 2017

Academic Editor: Jorge Barros-Velazquez


Ingredient                       Quantity (g) in different variations

                                  1             2              3
                               Without        With            With
                              vegetable     vegetable    vegetable and
                                                          African oil
                                                           bean seed

Dry cassava chips            135 (323) *   100 (260) *    103 (245) *
Cowpea                           --            --             --
"Ukazi" leaves (sliced)          --            10             --
Garden egg leaves (sliced)       --            --             30
Dry prawn                        10            --             --

Red palm oil (RPO)               25            25             25
                                 20            --             20
Fermented African oil            --            --             25
  bean seed (sliced)
Fresh pepper (ground)            --            --             --
Dry pepper (ground)               2             1              2
Bouillon cube (Knorr)             2             2              2
Iodized salt (uncle palm)         4             3              5
Edible potash (ground)           --             1             --
Nutmeg (ground)                   1            --             --
Water                            --            --             --
Yield                            340           283            306

Ingredient                   Quantity (g) in different variations

                                  4             5
                              With more     With less
                               cowpea        cowpea

Dry cassava chips            58 (149) *    375 (962) *
Cowpea                           126           167
"Ukazi" leaves (sliced)          --            --
Garden egg leaves (sliced)       --            --
Dry prawn                        12            20
Red palm oil (RPO)               25            26
                                 20            35
Fermented African oil            --            --
  bean seed (sliced)
Fresh pepper (ground)             5            --
Dry pepper (ground)              --             5
Bouillon cube (Knorr)             2             8
Iodized salt (uncle palm)         5            17
Edible potash (ground)           --            --
Nutmeg (ground)                  --            --
Water                           1500          1600
Yield                            560          1560

* Weight of cassava chips after soaking in water; "ukazi" leaves:
Gnetum africanum; fermented African oil bean seed: Pentaclethra

Table 2

                            Quantity (g) in the different variations

                                   1                 2
Ingredients                   With smoked       With smoked
                            fish thickened    fish thickened
                              with "ukpo"      with "ogbono"

Melon seed (ground)               120               120
"Ogbono" (ground)                 --                15
"Ukpo" (ground)                   10                --
Bitter leaves                     100               100
  (washed & sliced)
Pumpkin leaves (sliced)           50                20
Smoked fish                       135               135
Raw beef                          --                --
Boiled beef                       --                --
Beef stock                        --                --
Stock fish head                   --                --
Stockfish (flesh)                 --                --
Palm oil                          50                50
Crayfish (ground)                  7                 7
"Okpei" (ground)                  10                 6
Onion                             --                --
Fresh pepper (ground)             10                10
Bouillon cube (Knorr)              4                 6
Iodized salt (uncle palm)         10                10
Water                            1300              1150
Yield                            1322              2258

                            Quantity (g) in the different variations

                                   3                 4
Ingredients                 With stock fish   With stock fish
                            head thickened    head thickened
                              with "ukpo"       with "ukpo"
                             (thick soup)      (light soup)

Melon seed (ground)               150               150
"Ogbono" (ground)                 --                --
"Ukpo" (ground)                   15                10
Bitter leaves                     80                80
  (washed & sliced)
Pumpkin leaves (sliced)           20                20
Smoked fish                       --                --
Raw beef                          175               175
Boiled beef                       97                97
Beef stock                        44                79
Stock fish head                   85                85
Stockfish (flesh)                 --                --
Palm oil                          50                50
Crayfish (ground)                  8                 8
"Okpei" (ground)                  --                --
Onion                             30                30
Fresh pepper (ground)             12                12
Bouillon cube (Knorr)              4                 6
Iodized salt (uncle palm)         17                13
Water                            1000              1600
Yield                            1355              1679

                            Quantity (g) in the different variations

                                   5                 6
Ingredients                  With beef and     With beef and
                              stock fish      stock fish head
                            thickened with    thickened with
                            "ogbono" (thick   "ogbono" (light
                                 soup)             soup)

Melon seed (ground)               150               150
"Ogbono" (ground)                 15                15
"Ukpo" (ground)                   --                --
Bitter leaves                     80                80
  (washed & sliced)
Pumpkin leaves (sliced)           20                20
Smoked fish                       --                --
Raw beef                          175               175
Boiled beef                       99                97
Beef stock                        119               80
Stock fish head                   85                85
Stockfish (flesh)                 --                --
Palm oil                          55                55
Crayfish (ground)                 15                15
"Okpei" (ground)                  --                --
Onion                             30                30
Fresh pepper (ground)             12                12
Bouillon cube (Knorr)              4                 4
Iodized salt (uncle palm)         17                17
Water                            1200              1500
Yield                            1454              1560

                            Quantity (g) in the different variations

Ingredients                  With beef and
                            stock fish and
                             no thickener

Melon seed (ground)               150
"Ogbono" (ground)                 --
"Ukpo" (ground)                   --
Bitter leaves                     50
  (washed & sliced)
Pumpkin leaves (sliced)           25
Smoked fish                       --
Raw beef                          175
Boiled beef                       101
Beef stock                        175
Stock fish head                   100
Stockfish (flesh)                 45
Palm oil                          30
Crayfish (ground)                  9
"Okpei" (ground)                  --
Onion                             30
Fresh pepper (ground)             12
Bouillon cube (Knorr)              4
Iodized salt (uncle palm)         10
Water                            1000
Yield                            1073

"Ukpo": Mucuna mens; "ogbono": Irvingia gabonensis;
"okpei": Prosopis africana.


Ingredient                Quantity in different variations of the soup

                                 1                 2
                          With stock fish     With smoked
                          head thickened    fish thickened
                            with "ukpo"      with cocoyam

Ora leaves (shredded)           40                60
"Ukpo"                          15                --
Cocoyam paste                   --                150
"Ukazi" leaves (sliced)         --                --
Smoked fish                     --                100
Beef (raw)                      --                --
Boiled beef                     --                --
Beef stock                      --                --
Stock fish head                 45                --
Dry fish                        --                --
Palm oil                        20                30
"Uziza" leaves (sliced)         --                --
"Ogiri"                         --                --
Crayfish (ground)                4                 5
Fresh pepper (ground)            5                 5
Bouillon cube (Knorr)            2                 4
Salt                             3                 5
Water                           900               900
Yield                           597               851

Ingredient                Quantity in different variations of the soup

                                 3                 4
                            With beef &      With beef and
                          stock fish head   stock fish head
                          thickened with    thickened with
                              "ukpo"         cocoyam paste

Ora leaves (shredded)           90                90
"Ukpo"                          10                --
Cocoyam paste                   150               --
"Ukazi" leaves (sliced)         --                --
Smoked fish                     --                --
Beef (raw)                      95                95

Boiled beef                     54                47
Beef stock                      46                73
Stock fish head                 60                60
Dry fish                        --                --
Palm oil                        50                50
"Uziza" leaves (sliced)         --                --
"Ogiri"                         --                --
Crayfish (ground)               15                --
Fresh pepper (ground)           15                 6
Bouillon cube (Knorr)            4                 4
Salt                            10                15
Water                           900              1000
Yield                           750               969

Ingredient                Quantity in different variations of the soup

                                 5                 6
                          With beef, dry    With beef, dry
                           fish, & stock     fish, & stock
                             fish head         fish head
                          thickened with    thickened with
                              "ukpo"         cocoyam paste

Ora leaves (shredded)           60                60
"Ukpo"                          20                --
Cocoyam paste                   --                200
"Ukazi" leaves (sliced)         30                --
Smoked fish                     --                --
Beef (raw)                      150               150
Boiled beef                     98                98
Beef stock                      76                76
Stock fish head                 93                93
Dry fish                        88                88
Palm oil                        100               100
"Uziza" leaves (sliced)         --                30
"Ogiri"                         --                30
Crayfish (ground)               12                12
Fresh pepper (ground)           10                10
Bouillon cube (Knorr)            4                 4
Salt                            15                15
Water                          1500              1200
Yield                          1655              1586

"Ora" leaves: Pterocarpus soyauxii; "ukpo": Mucuna mens; "ukazi"
leaves: Gnetum africanum; "uziza" leaves: Piperguineense; "ogiri":
Ricinus communis.


Ingredient                   Quantity (g) of different variations

                                    1                 2
                             Pumpkin leaves    Pumpkin leaves,
                             and stock fish      stock fish
                                  bone         head, dry fish,
                                                & smoked fish

Pumpkin leaves                     172               210
Stock fish bone                    50                --
Stock fish head                    --                32
Smoked fish                        --                80
Dry fish                           --                26
Raw beef                           --                --
Boiled beef                        --                --
Beef stock                         --                --
Spinach (sliced)                   --                --
Garden egg leaves (sliced)         --                --
Melon seed (ground)                --                --
Okra fruit (sliced)                --                --
Ice fish (raw)                     --                --
Boiled ice fish                    --                --
Fish stock                         --                --
Palm oil                           30                75
"Okpei" (ground)                   30                75
Crayfish (ground)                  --                --
Onion (sliced)                      9                15
Bouillon cube (Knorr)               4                 4
Dry pepper (ground)                --                --
Fresh pepper (ground)               4                 6
Edible potash                       6                 3
Iodized salt (uncle palm)           4                 6
Water                              400               400
Yield                              744               675

Ingredient                   Quantity (g) of different variations

                                    3                 4
                             Pumpkin leaves      Spinach and
                                and okra         garden egg

Pumpkin leaves                     133               --
Stock fish bone                    --                --
Stock fish head                    --                --
Smoked fish                        --                --
Dry fish                           --                --
Raw beef                           50                --
Boiled beef                        29                --
Beef stock                         76                --
Spinach (sliced)                   --                200
Garden egg leaves (sliced)         --                70
Melon seed (ground)                --                26
Okra fruit (sliced)                70                --
Ice fish (raw)                     --                112
Boiled ice fish                    --                95
Fish stock                         --                30
Palm oil                           37                30
"Okpei" (ground)                   37                30
Crayfish (ground)                   5                 5
Onion (sliced)                     --                40
Bouillon cube (Knorr)               2                 4
Dry pepper (ground)                 2                --
Fresh pepper (ground)              --                 4
Edible potash                      --                --
Iodized salt (uncle palm)          10                 7
Water                              300               560
Yield                              490               675

"Okpei": Prosopis africana.

TABLE 5: Energy and nutrients composition of variations of "abacha"
(tapioca/African salad).

Recipe name    Energy KJ    Moisture   Protein    CHO     Fat
                 (Real)       (g)        (g)      (g)     (g)

"Abacha" (1)   1099 (263)     53.8      3.68     26.37   14.15
"Abacha" (2)   781 (187)      61.8      2.21     28.34   5.47
"Abacha" (3)   849 (203)     56.86      9.40     26.77   5.13
"Abacha" (4)   728 (174)      62.8      13.50    17.42   3.86
"Abacha" (5)   636 (152)      65.6      10.45    20.18   1.54
CV%              19.16        7.07      54.13    19.68   71.10

Recipe name     Ash     Dietary     Fe      Zn      Ca       Ph
                (g)    fibre (g)   (mg)    (mg)    (mg)     (mg)

"Abacha" (1)   0.87      1.67      0.26    0.07    7.82    10.17
"Abacha" (2)   0.97      1.61      0.53    0.06    15.80   60.39
"Abacha" (3)   1.27      1.49      0.57    0.16    9.27    117.96
"Abacha" (4)   1.44      1.51      0.50    0.41    8.72    80.85
"Abacha" (5)   1.23      1.53      0.34    0.27    11.35   60.84

CV%            17.94     7.88      26.84   67.77   26.94   52.87

Recipe name      K       Na      Mg       Vit.        Vit.
                (mg)    (mg)    (mg)    [B.sub.1]   [B.sub.2]
                                          (mg)        (mg)

"Abacha" (1)   126.67   3.86    14.04     0.03        0.10
"Abacha" (2)   96.73    3.71    14.77     0.32        0.14
"Abacha" (3)   107.45   2.41    22.48     0.32        0.15
"Abacha" (4)   164.36   3.50    22.96     0.31        0.14
"Abacha" (5)   112.54   4.00    13.99     0.26        0.09
CV%            19.31    16.19   23.54     45.68       19.28

Recipe name      Vit.       Cu

"Abacha" (1)     1.24      0.08

"Abacha" (2)     1.14      0.50
"Abacha" (3)     1.24      0.61
"Abacha" (4)     1.17      0.56
"Abacha" (5)     0.28      0.10
CV%              36.44     62.21

(1) "abacha" without vegetable; (2) "abacha" with vegetables; (3)
"abacha" with vegetables and oil bean seed; (4) "abacha" and cowpea
with more cowpea; (5) "abacha" and cowpea with more "abacha." CV%:
coefficient of variation.

TABLE 6: Energy and nutrients composition of variations of "egusi"
(Citrullus vulgaris) soup.

Recipe name         Energy     Moisture   Protein    CHO     Fat
                   KJ (Kcal)     (g)        (g)      (g)     (g)

"Egusi" soup (1)    351(84)       83       3.43     10.32   2.43
"Egusi" soup (2)   376 (90)      81.8      3.64     10.85   2.74
"Egusi" soup (3)   488 (117)     65.8      8.29     19.13   4.81
"Egusi" soup (4)   307 (74)      84.8      3.29     9.19    1.92
"Egusi" soup (5)   418 (100)     79.6      4.84     11.5    2.92
"Egusi" soup (6)   356 (85)      82.6      4.01     9.92    2.48
"Egusi" soup (7)   612 (146)     70.6      8.41     14.59   4.74
cv%                  32.17       8.53      40.79    28.72   33.95

Recipe name         Ash    Dietary    Fe      Zn      Cu       Ca
                    (g)     fibre    (mg)    (mg)    (mg)     (mg)

"Egusi" soup (1)   0.52     0.65     0.97    0.06    0.10    31.33
"Egusi" soup (2)   0.64     0.66     1.06    0.07    0.11    94.34
"Egusi" soup (3)   1.18     1.28     2.01    0.14    0.23    175.74
"Egusi" soup (4)   0.47     0.54     0.81    0.03    0.09    77.76
"Egusi" soup (5)   0.68     0.75     1.18    0.04    0.13    105.73
"Egusi" soup (6)   0.60     0.65     1.00    0.04    0.11    88.16
"Egusi" soup (7)   0.97     1.19     1.74    0.06    0.19    145.21
cv%                33.07    37.98    32.94   53.49   33.81   42.24

Recipe name          Ph       K       Na       Mg       Vit.
                    (mg)     (mg)    (mg)     (mg)    [B.sub.1]

"Egusi" soup (1)   113.07   148.14   12.41   103.02     0.02
"Egusi" soup (2)   122.83   146.04   13.43   113.06     0.03
"Egusi" soup (3)   232.92   273.11   25.64   223.64     0.07
"Egusi" soup (4)   87.57    109.55   10.15   89.45      0.02
"Egusi" soup (5)   131.55   156.08   14.67   133.70     0.05
"Egusi" soup (6)   108.12   123.27   12.39   111.88     0.04
"Egusi" soup (7)   180.67   204.56   21.81   168.45     0.08
cv%                33.33    30.77    33.43   32.09      45.44

Recipe name          Vit.        Vit.
                   [B.sub.1]   [B.sub.1]
                     (mg)         (mg)

"Egusi" soup (1)     0.30         0.04
"Egusi" soup (2)     0.34         0.05
"Egusi" soup (3)     0.63         0.23
"Egusi" soup (4)     0.25         0.09
"Egusi" soup (5)     0.39         0.12
"Egusi" soup (6)     0.32         0.09
"Egusi" soup (7)     0.59         0.20
cv%                  33.83       58.91

(1) "egusi" with smoked/ice fish thickened with "ukpo" (Mucuna urens);
(2) "egusi" with smoked/ice fish thickened with "ogbono" (Irvingia
gabonensis); (3) "egusi" with stock fish head thickened with "ukpo"
(Mucuna urens) (thick consistency); (4) "egusi" with stock fish head
thickened with "ukpo" (Mucuna urens) (light consistency); (5) "egusi"
with meat and stock fish head thickened with "ogbono"
(Irvingiagabonensis) (thick consistency); (6) "egusi" with meat and
stock fish head thickened with "ogbono" (Irvingia gabonensis) (light
consistency); (7) only "egusi" with stock fish head, meat, and dry/
stock fish with no thickener. CV%: coefficient of variation.

TABLE 7: Energy and nutrients composition of variations of "ora"
(Pterocarpus soyauxii) soup.

Recipe name       Energy     Moisture   Protein    CHO     Fat
                 KJ (Real)     (g)        (g)      (g)     (g)

"Ora" soup (1)   206 (49)       89       1.57     7.99    0.70
"Ora" soup (2)    202(48)      89.4      1.80     7.34    0.79
"Ora" soup (3)   223 (53)      88.4      2.28     7.56    0.99
"Ora" soup (4)   339 (81)      82.2      4.08     11.16   1.38
"Ora" soup (5)    359(86)      81.2      4.18     11.86   1.52
"Ora" soup (6)   380 (91)       80       4.26     13.04   1.45
CV%                29.13       4.66      38.44    25.27   28.58

Recipe name       Ash    Dietary    Fe      Zn      Cu      Ca
                  (g)      (g)     (mg)    (mg)    (mg)    (mg)

"Ora" soup (1)   0.42     0.47     0.59    0.06    0.05    34.43
"Ora" soup (2)   0.40     0.47     0.55    0.05    0.04    28.35
"Ora" soup (3)   0.45     0.51     0.55    0.06    0.04    42.78
"Ora" soup (4)   0.71     0.79     0.91    0.08    0.07    66.99
"Ora" soup (5)   0.75     0.91     1.00    0.10    0.08    80.28
"Ora" soup (6)   0.74      0.9     1.02    0.10    0.08    78.92
CV%              27.13    25.39    27.06   26.94   28.07   37.92

Recipe name       Ph        K      Na      Mg       Vit.
                  (mg)    (mg)    (mg)    (mg)    [B.sub.1]

"Ora" soup (1)   32.48    13.18   9.16    28.20     0.03
"Ora" soup (2)   29.34    10.81   8.57    27.28     0.02
"Ora" soup (3)   58.34    20.76   9.21    35.84     0.03
"Ora" soup (4)   89.12    32.69   14.98   53.59     0.04
"Ora" soup (5)   105.74   39.01   16.28   64.77     0.05
"Ora" soup (6)   102.20   38.68   16.58   64.40     0.05
CV%              45.01    44.59   28.28   34.83     26.62

Recipe name        Vit.        Vit.
                 [B.sub.2]   [B.sub.3]
                   (mg)        (mg)

"Ora" soup (1)     0.21        0.07
"Ora" soup (2)     0.19        0.07
"Ora" soup (3)     0.21        0.08
"Ora" soup (4)     0.35        0.08
"Ora" soup (5)     0.36        0.08
"Ora" soup (6)     0.36        0.08
CV%                27.88       4.04

(1) "ora" with crayfish and stock fish head/bone thickened with "ukpo"
(Mucuna urens); (2) "ora" with crayfish and smoked fish thickened with
cocoyam paste; (3) "ora" with crayfish, meat, and stock fish head
thickened with "ukpo" (Mucuna urens); (4) "ora" with crayfish, meat,
and stock fish head thickened with cocoyam paste; (5) "ora" with
crayfish, stock fish head, dry fish, and meat thickened with "ukpo"
(Mucuna urens); (6) "ora" with crayfish, dry fish, stock fish head,
and meat thickened with cocoyam paste. CV%: coefficient of variation.

TABLE 8: Energy and nutrients composition of variations of vegetable

Recipe name           Energy     Moisture   Protein    CHO     Fat
                     KJ (Kcal)     (g)        (g)      (g)     (g)

Vegetable soup (1)   663 (159)     58.8      3.99     30.7    2.22
Vegetable soup (2)   645 (154)     60.4      7.41     25.7    2.40
Vegetable soup (3)    227(54)      85.8      2.81      8.8    0.88
Vegetable soup (4)   316 (75)      82.6      2.86     10.5    2.45
CV%                    39.90      17.20      43.91    57.41   32.50

Recipe name           Ash    Dietary    Fe      Zn      Cu       Ca
                      (g)     fibre    (mg)    (mg)    (mg)     (mg)

Vegetable soup (1)   2.18     2.13     2.38    0.20    0.16    171.42
Vegetable soup (2)   2.24     2.29     2.48    0.24    0.18    194.21
Vegetable soup (3)   0.89     0.82     0.94    0.09    0.06    79.57
Vegetable soup (4)   0.84     0.79     0.96    0.13    0.04    107.07
CV%                  43.79    48.44    43.87   36.26   53.48   33.67

Recipe name            P        K        Na       Mg       Vit.
                      (mg)     (mg)     (mg)     (mg)    [B.sub.1]

Vegetable soup (1)   276.27   201.59   139.36   183.21     0.08
Vegetable soup (2)   245.33   231.96   163.88   207.08     0.10
Vegetable soup (3)   102.73   88.01    63.08    78.07      0.05
Vegetable soup (4)   75.90    100.53   69.32    90.69      0.04
CV%                  48.67    40.09    40.07    40.21      37.81

Recipe name            Vit.        Vit.
                     [B.sub.2]   [B.sub.3]

Vegetable soup (1)     0.57        0.13
Vegetable soup (2)     0.75        0.14
Vegetable soup (3)     0.28        0.05
Vegetable soup (4)     0.33        0.06
CV%                    39.58       42.23

(1) vegetable soup with pumpkin leaves and stock fish bone; (2)
vegetable soup with pumpkin leaves, stock fish head, dry fish, and
meat/ice fish/smoked fish; (3) vegetable soup with pumpkin leaves and
okra with crayfish and meat/fish; (4) vegetable soup with spinach and
garden egg leaves with melon seed, crayfish, and ice fish. CV%:
coefficient of variation.


Food/ingredient              Common name/           Botanical name

Cassava "fufu"           Fermented and boiled     Manihot esculentus
                         cassava pounded into
                            a stiff paste

Garri                       Fermented and         Manihot esculentus
                           roasted cassava
                         formed into a stiff
                               paste by
                         reconstituting with
                              hot water

"Abacha"                       Tapioca            Manihot esculentus
                          grated, and dried
                            cassava chips
                         softened by soaking
                          in cold water and
                           mixed with other
                          traditional salad

Yam                               --                Dioscorea spp.

Rice                              --                 Oryza sativa

Wheat                             --                Triticum spp.

Cowpea                          Beans             Vigna unguiculata

Breadfruit                        --              Treculia africana

Plantain                          --

Corn                              --                   Zea mays

Semovita                   A type of durum          Triticum durum
                         wheat flour product
                          made into a stiff
                         paste by stirring in
                         hot water under low

"Ukazi" leaves               Wild spinach          Gnetum africanum

Garden egg leaves                 --              Solanum melongena

Prawn                             --               Penaeus monodon

Onion                             --                 Allium cepa

Fermented oil bean                --                 Pentaclethra
seed                                                 macrophylla

Pepper                            --                Capsicum spp.

Edible potash             Trona/an alkaline               --
                         salt known as sodium

Nutmeg                            --              Monodora myristica

Melon seed                        --              Citrullus vulgaris

"Ogbono"                       Dika nut          Irvingia gabonensis

"Ukpo"                   Soup thickener made         Mucuna urens
                         from the seeds of a
                           leguminous plant

Bitter leaves                     --             Vernonia amygdalina

Pumpkin leaves                    --            Telfairia occidentalis

Smoked fish                    Mackerel            Scomber scombrus

Beef                              --                  Bos taurus

Stock fish                       Cod                 Gadus morhua

Ice fish                       Mackerel            Scomber scombrus

Palm oil                          --              Elaeis guineensis

"Okpei"                   Fermented mesquite      Prosopis africana

"Ogiri"                  Fermented castor oil      Ricinus communis

Ora leaves                        --             Pterocarpus soyauxii

Cocoyam paste                    Taro              Xanthosoma spp.

Dry fish                       Cat fish           Cambarus bartonii

Spinach                           --               Amaranthus spp.

Okra                              --             Hibiscus esculentus

FIGURE 1: Consumption frequencies (in percentage) of foods in
urban and rural communities of South-eastern Nigeria obtained
from 24-hour dietary recall.


Cassava      92
Rice         65.7
Yam          65.5
Beans        27.2
Wheat        23.2
Breadfruit   9.1
Plantain     4.7
Corn         2.9
Semovita     0.8

Note: Table made from bar graph.
COPYRIGHT 2017 Hindawi Limited
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2017 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Research Article
Author:Davidson, G.I.; Ene-Obong, H.N.; Chinma, C.E.
Publication:Journal of Food Quality
Article Type:Report
Geographic Code:6NIGR
Date:Jan 1, 2017
Previous Article:Electrical Impedance Spectroscopy for Quality Assessment of Meat and Fish: A Review on Basic Principles, Measurement Methods, and Recent Advances.
Next Article:Comparative Analysis of Nutritional Value of Oreochromis niloticus (Linnaeus), Nile Tilapia, Meat from Three Different Ecosystems.

Terms of use | Privacy policy | Copyright © 2020 Farlex, Inc. | Feedback | For webmasters