Printer Friendly

Using a printer in chip attachment and encapsulation: part two of a look at how traditional SMT processes address semiconductor packaging.

In our November column, we began this two-part discussion on the use of SMT processes to address semiconductor packaging. In this conclusion, we cover chip attachment and encapsulation.


Attaching the chip. Bumping at chip level enables the die to be attached to the substrate either by direct chip attach/flip-chip on board or, as in this case, flip-chip in package. These processes all require the chip to be mechanically and electrically bonded to the substrate.

The chip is interconnected by solder bumps on the die collapsing in a controlled manner to form a soldered joint between the solder pads on the chip and substrate. Before the placement of the chips, a very low activity flux is applied on the substrate to provide tackiness and prevent chip movement. This application of flux can be achieved by either flooding the entire area (Figure 1) or printing the individual pads (Figure 2). The choice is based on individual preference. The assembly is then reflowed until the solder bumps form an intermetallic joint between chip and substrate.



The addition of an underfill material compensates for any coefficient of thermal expansion mismatch between silicon die and substrate, and can be applied afterward using a capillary formulation. An alternative method is to apply a no-flow material at the wafer level.

Encapsulation. Once the chip has been placed within the package, the printer can be used to encapsulate the package. As a low-cost, high-volume alternative to injecting molding and dispensing processes, a stencil-applied overmold technique combines the application of unique liquid encapsulant compounds with printing technologies. When applied using enclosed print head technology, the single component, silica-filled liquid encapsulant provides a smooth surface and void-free molded package appearance.


In this process, encapsulant material is applied through either a 3-D stencil or metal mask, depending upon the specific application. This aids productivity and design flexibility, and reduces capital tooling and maintenance costs compared to injection molding.

The enclosed transfer head is fitted with an overmold-filled cassette, pressure is applied and the overmold is forced through the transfer head to fill the stencil apertures.

Coated blades create a tight gasket seal between stencil and substrate, ensuring repeatability and a good surface finish. The material is then cured and the encapsulation material is solidified (Figure 3).


Finally, while cost and productivity now enable the daily use of screen printers in packaging applications, the equipment is expected to meet future demands brought on by higher I/O counts and finer interconnect pitches, plus the shift to Pb-free.

Clive Ashmore is global applied process engineering manager at DEK ( His column appears semimonthly.
COPYRIGHT 2006 UP Media Group, Inc.
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2006, Gale Group. All rights reserved. Gale Group is a Thomson Corporation Company.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Screen Printing
Author:Ashmore, Clive
Publication:Circuits Assembly
Date:Jan 1, 2006
Previous Article:Ghosts past, present and future: why disasters (natural and otherwise) can promise future opportunities.
Next Article:Installing flash LEDs on flex: flex can save up to 70% in space or weight, but beware of improper bending.

Related Articles
How mass-imaging is chaning dispensing: printing thousands of dots in a single stroke.
Beyond assembly: alternative applications for high accuracy screen printing.
PBGA package warpage and impact on traditional MSL classification for Pb-free assembly: the authors call for new classification criteria in light of...
Using traditional SMT processes for semiconductor packaging: a two-part look at bumping and encapsulation of flip-chip BGAs.
From SPC to DPMO: DPMO is the superior means for determining equipment performance.
Die attach goes mainstream: for IC deposition, printer platforms are supplanting dispensers on die bonders.
Decorating, printing, finishing systems.
Machine versatility: aspects to evaluate when considering customization.
Heraeus' hidden gem.
Is SPI the yield improvement tool we've waited for? How SPI cut defects by 80% at an automotive electronics plant, plus a primer on how it works.

Terms of use | Copyright © 2017 Farlex, Inc. | Feedback | For webmasters