Printer Friendly

Uroobovella phoenicicola sp. n., a new Uropodina mite (Acari: Mesostigmata) associated with the African palm weevil (Rhynchophorusphoenicis Fabricius, 1801) from Cameroon.


Uropodina mites are well-known members of the soil fauna. they reach maximum diversity in the tropics (Lindquist et al. 2009), but currently only 10 % of the species are known from these regions. Cameroon, with 39 listed species (Wisniewski 1993), is one of the better studied countries in the west Afrotropical subregion, but this number is very low compared with the well studied European countries.

The association of mesostigmatid mites with other invertebrates is a well-known phenomenon in acarology (Lindquist et al. 2009). Several groups of mesostigmatid mites have been found on the body of insects, especially on beetles. these mites do not parasitise their beetle hosts but use them as a means of transport only, otherwise known as phoresy (Szymkowiak et al. 2007). A good number of Uropodina mites constitute a characteristic group of phoretic mites, with their second nymphs (deutonymphs) often attached to their host by the anal pedicel. Nymphs of other phoretic groups attach to the host with their chelicerae (Macrochelidae) or leg claws (Parasitidae) (Szymkowiak et al. 2007). During the past hundred years, several new Uropodina species have been described from deutonymphal instars found on the body of beetles (Wisniewski & Hirschmann 1993). Unfortunately, the described immature stages have fewer characters than the adults; hence exact identification of species based only on nymphs is more difficult or sometimes impossible.


Specimens were cleared in lactic acid and drawings were made with the aid of a drawing tube. All specimens are stored in alcohol and on slides. the material has been deposited in the Soil Zoology Collections of the Hungarian Natural History Museum, Budapest (HNHM) and in the Natural History Museum, Geneva (NHMG). Abbreviations: h--hypostomal setae, St--sternal setae, V--ventral setae. All measurements and scale bars are given in micrometres ([micro]m).


Genus Uroobovella Berlese, 1903

Uroobovella phoenicicola sp. n.

Figs 1-17

Etymology: The name of the new species refers to the name of the host species on which the specimens were found.



Length of idiosoma 460-490 [micro]m, width 370-400 (n=4). Body shape oval, colour reddish brown.

Dorsal idiosoma (Fig. 1): Dorsal and marginal shields fused anteriorly. All dorsal setae smooth and needle-like, but differ in size; most setae long (ca 30-40 [micro]m), but several central setae short (ca 14 -15 [micro]m). Marginal shield smooth and bearing long (ca 30-35 [micro]m) and needle-like setae (Fig. 2). Dorsal shield smooth, muscle scars present on caudal part of central area.

Ventral idiosoma (Fig. 3): Sternal shield smooth, all sternal setae needle-like, St1-St7 short (ca 11-12 [micro]m), St8 long (ca 22 [micro]m). St1-St3 situated near anterior margin of genital shield, St4 at level of posterior margin of coxae II, St5 at level of anterior margin of coxae III, St6 at level of central area of coxae III, St7 at level of anterior margin of coxae IV, St8 placed near basal edges of genital shield (Fig. 4). Ventral shield smooth, several oval pits situated at level of anal opening. Ventral setae smooth and needle-like, V1, V3 and setae around anal opening short (ca 13-17 [micro]m), other setae on ventral idiosoma long, postanal (ca 41 [micro]m) and two posterior setae (ca 50-55 [micro]m) longer than other ventral setae (ca 35-40 [micro]m). Two pairs of lyriform fissures present near pedofossae of leg IV. Stigmata situated between coxae II and III. Peritremes hook-shaped, poststigmatid part short (Fig. 5). Genital shield of female scutiform, placed between coxae II and IV, without sculptural pattern and anterior process (Fig. 4). Pedofossae deep, their surface smooth, with separate furrows for tarsi IV, metapodal lines absent. Base of tritosternum narrow, its laciniae marginally serrate and apically divided into four branches (Fig. 6).

Gnathosoma (Fig. 7): Corniculi horn-like, internal malae smooth and as long as corniculi. Labrum marginally pilose. Hypostomal setae: h1 long (ca 61 [micro]m), smooth and setiform; h2 short (ca 39 [micro]m), robust and marginally serrate; h3 long (ca 57 [micro]m) and basally serrate; h4 short (ca 20 [micro]m), robust and marginally serrate. Epistome basally serrate and apically pilose (Fig. 8). Chelicerae with internal sclerotised nodes, fixed digit with apical sensory organ and longer than movable digit, both digits bearing a single tooth (Fig. 9).

Legs (Figs 10-13): All legs bear claws on tip of tarsi and have needle-like setae.


Length of idiosoma 460-470 [micro]m, width 340-360 (n=4). Shape of idiosoma, ornamentation and chaetotaxy of dorsal parts as in female. Sternal setae short (ca 12-13 [micro]m) and needle-like, St1-St4 situated around margins of genital opening, St5 at level of anterior margin of coxae III, St6 posteriorly to St4 and at level of central area of coxae III, St7 at level of central area of coxae III, St8 at level of anterior margin of coxae IV, St9 at level of central area of coxae IV. Sternal shield smooth and bearing one pair of lyriform fissures near base of St1. Genital shield oval and located between coxae II (Fig. 14). Ventral setae and ornamentation similar to those of female. Gnathosoma (Fig. 15): Corniculi horn-like, internal malae smooth and as long as corniculi. Hypostomal setae: h1 long (ca 74 [micro]m), smooth and setiform; h2 (ca 50 [micro]m) robust and marginally serrate; h3 (ca 46 [micro]m) and h4 (ca 43 [micro]m) marginally serrate. Other parts and processes similar to those of female.


Length of idiosoma 370-380 [micro]m, width 270-280 [micro]m (n=2). Dorsal idiosoma (Fig. 16): All dorsal setae smooth and needle-like, but differing in size: most setae long (ca 17- 20 [micro]m), but several setae in central area short (ca 9-10 [micro]m). Dorsal shield without sculptural pattern, several muscle scars present on caudal part of central area.

Ventral idiosoma (Fig. 17): Sternal setae short (ca 5-6 [micro]m) and needle-like, St1 situated near anterior margin of sternal shield, St2 at level of anterior margin of coxae II, St3 at level of posterior margin of coxae II, St4 in central area of sternal shield, St5 at level of anterior margin of coxae III, St6 at level of posterior margin of coxae III, St7 at level of central area of coxae IV, St8 near posterior margin of sternal shield. Sternal shield smooth, without sculptural pattern. Ventrianal shield smooth, with two pairs of setae (ca 5-8 [micro]m). Peritremes long and S-shaped.

Larva and protonymph. Unknown.

Holotype: [female] REPUBLIC OF CAMEROON: South West Region, Manyu Division, Ashum Village, from cocoons formed by Rhynchophorusphoenicis weevils, 25.iv.2011, J. Tanyi Tambe (HNHM, in alcohol).

Paratypes: All with same data as holotype: 1[female] 1[male] 1 nymph (NHMG, in alcohol); 2[female] 3[male] 1 nymph (HNHM, in alcohol); 1[female] (HNHM, on slide).

Note: The adults are from one Rh. phoenicis cocoon, and nymphs are from the body of the weevil.

Remarks: The new species is placed in the Uroobovella minima-group (Hirschmann 1989) on the basis of the shape of the idiosoma and peritremes, number of sternal setae, and the presence of claws on the tip of leg I. Up until now, 23 species have been described in this group, one of which is known only from the deutonymph stage (U. inhaerens (Vitzthum, 1921)). The sternal shield of this species is ornamented by oval pits, but it is smooth in the new species. Only male specimens of U. vietnamvarians Hirschmann, 1981 are known. The genital shield of this species is situated between coxae III and IV, whereas that of the male of the new species is between coxae II. The characteristic differences between the new species and females of the Uroobovella minima-group are given in Table 1.

Biology: Adult mites were obtained from cocoons formed by Rhynchophorus phoe-nicis Fabricius, 1801 weevils, while deutonymphs were collected from the body of this weevil. The deutonymphs are either attached to the body of the weevils or move freely under their elytra. Not much is known about the biology of the mite, but since the adults were collected in cocoons, we assume that the species is a predator and feeds on the eggs and/or other life stages of the weevils. It is also possible that the mites prey on nematodes, maggots, juvenile slugs, fungi and/or organic matter that clusters on and around the cocoons, and use the weevils as a means of transportation only.


The African palm weevil is a large, reddish brown to black weevil that is distributed throughout tropical Africa and is a true pest of members of Arecaceae (= Palmae) (Gries et al. 1994) and Poaceae (= Gramineae). In Cameroon, where the study was carried out, the larvae are commonly known as 'tumbu' or 'tumbu for palm tree' in pidgin English, but have different appellations according to the 270 spoken dialects. These larvae are eaten as a delicacy when seasonally available. They have a high fatty acid content, and are a source of proteins and carbohydrates (Ekpo & Onigbinde 2005) as well as essential amino acids. Moreover, medicinal value has been ascribed to the larvae (Nzikou et al. 2010; Zaid 1999). The pest status of the African palm weevil has already been established (Bong et al. 2008). The weevils cause severe damage as a result of active feeding on the palms but also serve as a vector for plant parasitic nematodes (Kanzaki et al. 2009). They therefore play a major role in crop damage and yield loss. Several strategies have been tried and implemented for the control of these weevils, such as felling of diseased palms, and the use of pheromone baits and traps. However, the only natural method in trial so far is the use of entomopathogenic nematodes (Zaid et al. 2002). If the new mite species is indeed an obligate predator on the eggs and of developmental instars of this beetle, it will be interesting to determine if in the future the mite can be used as a biological control agent.


We thank the two anonymous reviewers for their constructive suggestions towards the improvement of this manuscript.


Bong, C.J., Er, C., Yiu, P. & Rajan, A. 2008. Growth performance of the red-stripe weevil Rhynchophorus schach Oliv. (Insecta: Coleoptera: Curculionidae) on meridic diets. American Journal of Agricultural and Biological Sciences 3 (1): 403-409.

Ekpo, K.E. & Onigbinde, A.O. 2005. Nutritional potentials of the larva of Rhynchophorus phoenicis (F). Pakistan Journal of Nutrition 4 (5): 287-290.

Gries, G., Gries, R., Perez, A.L., Gonzales, L.M., Pierce, H.D., Oehlschlager, A.C., Rhainds, M., Zebeyou, M. & Kouame, B. 1994. Ethyl propionate: synergistic kairomone for African palm weevil, Rhynchophorus phoenicis L. (Coleoptera: Curculionidae). Journal of Chemical Ecology 20 (4): 889-897.

Hirschmann, W. 1989. Die Ganggattung Uroobovella Berlese 1903. Artengruppen--Bestimmungstabel len--Diagnosen. Acarologie. Schriftenreihe fur Vergleichende Milbenkunde 36: 84-196.

Kanzaki, N., Giblin-Davis, R.M., Zeng, Y., Ye, W. & Center, B.J. 2009. Acrostichus rhynchophori n. sp. (Rhabditida: Diplogastridae): a phoretic associate of Rhynchophorus cruentatus Fabricius and R. palmarum L. (Coleoptera: Curculionidae) in the Americas. Nematology 11 (5): 669-688.

Lindquist, E.E., Krantz, G.W. & Walter, D.E. 2009. Order Mesostigmata. In: Krantz, G.W. & Walter, D.E., eds, A manual of acarology. Third edition. Lubbock, Texas, USA: Texas Tech University Press, pp. 124-232.

Nzikou, J.M., Mbemba, F., Mvoula-Tsieri, M., Diabangouaya-Batela, B., Malela, K.E., Kimbonguila, A., Ndangui, C.B., Pambou-Tobi, N.P., Silou, T. & Desobry, S. 2010. Characterisation and nutritional potentials of Rhynchophorus phoenicis larva consumed in Congo-Brazzaville. Current Research Journal of Biological Sciences 2 (3): 189-194.

Szymkowiak, P., Gorski, G. & Bajerlein, D. 2007. Passive dispersal in arachnids. Biological letters 44 (2): 75-101.

Wisniewski, J. 1993. Gangsystematik der Parasitiformes Teil 549. Die Uropodiden der Erde nach Zoogeo graphischen Regionen und Subregionen geordnet (mit Angabe der Lander). Acarologie. Schrif tenreihe fur Vergleichende Milbenkunde 40: 221-291.

Wisniewski, J. & Hirschmann, W. 1993. Gangsystematik der Parasitiformes Teil 548. Katalog der Gang gattungen, Untergattungen, Gruppen und Arten der Uropodiden der Erde. Acarologie. Schriften reihe fur Vergleichende Milbenkunde 40: 1-220.

Zaid, A. 1999. African palm weevil Rhynchophorus phoenicis F. attack on date palm in the Republic of South Africa and Zimbabwe. Middle East Red Palm Weevil Workshop, January, 1999, Cairo, Egypt, pp. 26-29.

Zaid, A., de Wet, P.F., Djerbi, M. & Oihabi, A. 2002. Chapter XII: Diseases and pests of date palm. In: Zaid, A. ed., Date Palm Cultivation. FAO plant production and protection paper 165 Rev. 1. Rome: Food and Agricultural Organization of the United Nations. (; accessed 22/08/2012)

Jeno Kontschan (1), James Tanyi Tambe (2) and Paola Riolo (3)

(1) Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 102, Hungary;

(2) Department of Evolutionary Biology, Via Aldo Moro 2, 53100 Siena (SI), Italy

(3) Dipartimento SAPROV, Sezione Protezione delle Piante, Via Brecce Bianche, Ancona (AN), Italy


Characteristic differences between the new
species and females of the Uroobovella minima-group.

Idiosoma              Idiosoma smooth

cavernosa       Peritremes     Peritremes
Hiramatsu,       S-shaped     hook-shaped

nitida         crenulata        Genital
Hiramatsu,     Hirschmann        shield
1981           & Zirngiebl      egg-like
okinawaensis   1962           browningi
Hiramatsu,                    Ryke, 1958
1979           neovarians
               Hiramatsu,     ceyloni
vulgaris       1918           varians
Hirschmann                    Hirschmann
& Zirngiebl    nova           & Zirngiebl
-Nicol,        -teutoniae     -Nicol, 1975
1972           Hirschmann,
               1981           japanoc
               parvula        Hiramatsu &
               Berlese,       Hirschmann,
               1913           1978

               portalis       japano
               Hirschmann,    -varians
               1973           Hiramatsu &
               portali        1978
               Hirschmann,    mexicana
               1981           Hirschmann,
               (willmann,     varians
               1953)          Hirschmann
                              & Zirngiebl
                              -Nicol, 1962

                      Idiosoma smooth


                      Genital shield
 Surface of            linguliform
   shield           Surface of genital
 ornamented           shield smooth

minima          Ventral         Ventral
(C. L.            setae         setae
Koch,            short,          long,
1841)           internal       internal
                  malae         malae
                 pilose         smooth

               araucariae    phoenicicola
               Hirschmann,   sp. n.


COPYRIGHT 2012 The Council of Natal Museum
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2012 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Kontschan, Jeno; Tambe, James Tanyi; Riolo, Paola
Publication:African Invertebrates
Article Type:Report
Geographic Code:6CAME
Date:Dec 1, 2012
Previous Article:A redescription of Merenius alberti Lessert, 1923 (Araneae: Corinnidae), with remarks on colour polymorphism and its relationship to ant models.
Next Article:Porcelloderes impenetrabilis gen. & sp. n. from Tanzania, an assassin bug camouflaging in the adult stage (Hemiptera: Heteroptera: Reduviidae:...

Terms of use | Privacy policy | Copyright © 2020 Farlex, Inc. | Feedback | For webmasters