Printer Friendly

Universe in Flux: constant of nature might have changed.

Scientists have long assumed that a few characteristics of the cosmos are as unvarying as the laws of physics themselves. These so-called constants of nature include the speed of light in a vacuum and the masses of some elementary particles.

Now, a team of physicists and astronomers in the Netherlands, Russia, and France has found signs that one of the constants has undergone a subtle shift since the infancy of the universe.

The new findings indicate that the ratio between the mass of the proton and that of the electron--a number known as mu-might have decreased by about two-thousandths of a percent in the past 12 billion years, say Elmar Reinhold, now of the European Space Agency in Noordwijk, the Netherlands, and his colleagues. The evidence for the change in the constant, which has a current value of 1,836.153, emerged from light-absorption patterns of hydrogen molecules, the scientists report in the April 21 Physical Review Letters.

"If correct, it is a revolutionary result" comments Victor V. Flambaum of the University of New South Wales in Sydney, Australia. "It doesn't matter that the variation is small. If mu varies, we need new theoretical physics and cosmology."

Flambaum notes that variations in constants of nature as the cosmos evolves are part of some speculative theories of the universe, such as string theory, that call for dimensions beyond the familiar three of space plus one of time.

Since 2001, Flambaum and his colleagues have presented growing evidence that another constant, known as alpha or the fine-structure constant, has also varied (SN: 10/6/01, p. 222). That variation, however, is less than the newly determined change in mu. Investigations by several other teams have found no evidence that alpha, which represents the strength of the electromagnetic force, has changed its value (SN: 5/14/05, p. 318; 5/8/04, p. 301).

To arrive at the new findings for mu, Alexandre V. Ivanchik of the Ioffe Institute in St. Petersburg, Russia, and Patrick Petitjean of the Astrophysics Institute of Paris made extraordinarily precise telescope measurements of radiation coming from two quasars. The researchers focused on wavelengths absorbed by frigid clouds of hydrogen molecules in space. Because looking deep into space is equivalent to looking back in time, the quasar-radiation measurements probe characteristics of hydrogen molecules as they existed less than 2 billion years after the Big Bang.

Meanwhile, Reinhold and other members of the team, led by Wire Ubachs of the Free University of Amsterdam, determined with unprecedented accuracy the wavelengths of light that hydrogen molecules absorb from laser beams in the laboratory today, 13.7 billion years after the Big Bang.

The scientists found the wavelengths to be slightly different in the two sets of data. Because the wavelengths that hydrogen molecules absorb depend on the value of mu, the results suggest that mu has changed.

Nonetheless, the absorption evidence gathered so far from two quasars isn't strong enough to prove that mu varies, say members of the team and other scientists.

Investigators studying alpha have looked at 143 quasar systems, yet the notion that alpha has varied remains controversial, notes Michael T. Murphy of the University of Cambridge in England, one of the scientists who, with Flambaum, reported the alpha variation.

Scientists "need absolutely cast-iron proof" beyond the current study because the implications are so profound, agrees Lennox L. Cowie of the University of Hawaii, Manoa in Honolulu.
COPYRIGHT 2006 Science Service, Inc.
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2006, Gale Group. All rights reserved. Gale Group is a Thomson Corporation Company.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:This Week
Author:Weiss, P.
Publication:Science News
Date:Apr 29, 2006
Previous Article:Think thin.
Next Article:Brain delay: air pollutants linked to slow childhood mental development.

Related Articles
Return of the cosmological constant.
Hubble telescope eyes younger universe.
Making universe, constants out of nothing.
Constant Changes.
The Constants Of Nature: From Alpha to Omega--The Numbers that Encode the Deepest Secrets of the Universe.
Fundamental constant didn't vary after all.
Cosmic push: x-ray study confirms universe's dark side.
Galactic data shore up a constant.
Dark fingerprints: hubble sheds light on cosmic expansion.
No small matter: is theoretical physics stuck--and should you worry?

Terms of use | Privacy policy | Copyright © 2020 Farlex, Inc. | Feedback | For webmasters