Printer Friendly

Triterpenoids from Scorzonera veratrifolia Fenzl.


The ancient Mediterranean genus Scorzonera L. is a member of the family Asteraceae, subfamily Liguliforae, tribe Cichorieae. About 160 species of the genus are widely distributed in Eurasia, Central Asia and Africa. Turkey is considered as a diversity centre for the genus with its 52 species, 31 of which are endemic (Altinordu et al. 2015; Coskuncelebi et al. 2015). Some Scorzonera species have been used as a vegetable (raw or cooked). S. hispanica, S. cretica, S. austriaca, S. mollis, S. suberosa, S. cana, S. semicana and S. papposa are some of the species that are used in the traditional cuisine of various countries (Baytop 1999; Paraschos et al. 2001; Turan et al. 2003; Granica et al. 2015; Mukemre et al. 2016; Xie et al. 2016). Several species of the genus have been utilised as folk remedies. Treatment for pain, fever, rheumatism, wounds, gastrointestinal disorders, snake-bites, carbuncle, mastitis, hepatitis B, malignant stomach neoplasia, dysentery, pulmonary diseases, colds, hypertension, infertility and gout are some of the traditional uses of the genus Scorzonera in several countries including Turkey, Mongolia, China and some European countries (Baytop 1999; Zidorn et al. 2000; Tsevegsuren et al. 2007; Granica et al. 2015; Xie et al. 2016; Yang et al. 2016). Previous phytochemical studies of this genus yielded; dihydroisocoumarins, benzyl phthalides, favonoids, lignans, neolignans, bibenzyl derivatives, phenolic acid derivatives, kavalactones, sesquiterpenes and triterpenes (Sari 2012; Granica et al. 2015).

Scorzonera veratrifolia Fenzl is native to East Anatolia and grows on dry rocky hillsides at an altitude of 1600 - 2500 m (Chamberlain 1975). Previously, ethyl acetate fraction obtained from the methanol extract of the plant's roots was studied and two new benzyl phthalides and five phenolic acid derivates were reported (Sari 2010). Furthermore, it has been reported that the antimicrobial activities of the ethanolic extract, petroleum ether, ethyl acetate and n-butanol fractions of the plant can be used against Staphylococcus aureus, S. epidermidis, Salmonella typhi, Shigella flexneri, Candida albicans (Sari et al. 2009). This study aimed to investigate the petroleum ether fraction of the methanol extract obtained from the plant's roots. There are no previous records about the chemical composition of the fraction.


Plant material

Scorzonera veratrifolia was collected from Bitlis, Turkey, at an altitude of 2500 m in August 2004. A voucher specimen (F 12 446) was deposited at the Herbarium of the Faculty of Sciences and Letters, Van Yuzuncu Yil University.

Extraction and fractionation

The air-dried, ground roots of S. veratrifolia (600 g) were macerated with MeOH and concentrated under reduced pressure at 45[degrees]C using a rotary evaporator (Buchi R-200). The methanol extract was dissolved in MeOH : [H.sub.2]O (1 : 2) and successively extracted with petroleum ether (PE), ethyl acetate (EtOAc) and n-butanol respectively. The PE fraction (20g) was subjected to column chromatography (CC) using silica gel (Merck 60, 0.063-0.200) as an adsorbent. The gradient elution was started with PE, continued with the increasing rate of EtOAc and ended with 100% EtOAc. 82 fractions were provided and grouped based on their Thin Layer Chromatography (TLC, Silica gel, Merck 60 [F.sub.254]) findings. Fr 19-21 (7.3 g) was subjected to CC (Silica gel, [PE/CHCl.sub.3], 80 : 20, 70 : 30, 50 : 50, 0 : 100) to aford mixture BCV3 (20 mg, [alpha]-amyrin acetate + [beta]-amyrin acetate + germanicol acetate + lupeol acetate + taraxasterol acetate + [PHI] - taraxasterol acetate) and mixture BCV6 (20 mg, [alpha]-amyrinone + [beta]-amyrinone + germanicone + lupenone +Fern-7-en-3-one). Fr 36-45 (1.3 g) was further separated by CC (silica gel, [CHCl.sub.3]/MeOH, 1 : 1) to provide mixture BCV5 (30 mg, [alpha]-amyrin + [beta]-amyrin + germanicol + lupeol + taraxasterol + [PHI] - tarax-asterol). Fr 52-55 (927 mg) was subjected to CC (silica gel, PE/AcOEt, 1 : 1) and then to prep. TLC (silica gel, PE/AcOEt, 85: 15) to yield pure BCV7 (32.5 mg, [beta]-sitosterol).


Thermo Finnigan Trace GC Ultra (Thermo Electron Corporation) with AS 3000 Autosampler for gas chromatography and Thermo Finnigan Trace DSQ (Thermo Electron Corporation) for mass spectrometry were employed. Details of the method were as follows: Column: ZB 1 MS 0.25 [micro]m (30 m x 0.25 mm ID), carrier gas: He, flow rate: 1 mL/min, injection temperature: 300 [degrees]C, column temperature: 65 [degrees]C for 2 minutes, 300 [degrees]C for 20 minutes (increase rate 6 [degrees]C), injection volume: 2 [micro]L and ion source temperature: 200 [degrees]C. Full-scan mass spectra were acquired from 1 to 1050 m/z at a scan interval of 0.2 in EI mode. NMR spectrums were acquired on UNITY INOVA 500 MHz (Varian), in [CDCl.sub.3].


The PE fraction of methanol extract obtained from S. veratrifolia roots was investigated and six oleanane-type ([beta]-amyrin, [beta]-amyrin acetate, [beta]-amyrinone, germanicol, germanicol acetate, germanicone), seven ursane-type ([alpha]-amyrin, [alpha]-amyrin acetate, [alpha]-amyrinone, [PHI] - taraxasterol, [PHI] - taraxasterol acetate, tarax-asterol, taraxasterol acetate), three lupane-type (lupeol, lupeol acetate, lupenone), one fernane-type (Fern-7-en-3-one) triterpenes along with one sterol ([beta]-sitosterol) were determined (Table 1).

CC, prep. TLC and GC techniques were used for the separation of the compounds (Figure 1-4). Determination of the compounds was achieved by using GC-MS (Wiley/NIST database) and comparing findings with the literature data (Budzikiewicz et al. 1963; Hooper et al. 1982; Ahmad and Atta ur 1994; Shiojima et al. 1995; Oliveira et al. 2006; Gawronska-Grzywacz and Krzaczek 2007). Additionally, [.sup.1H] NMR and [.sup.13C] NMR techniques were used in the structure elucidation of pure BCV7 ([beta]-sitosterol) (Table 2). The NMR data of the compound was compared with the literature (Pateh et al. 2009).

All compounds were determined for the first time in S. veratrifolia. To the best of our knowledge, [alpha]-amyrinone, [beta]-amyrin, [beta]-amyrinone, [PHI] - taraxasterol and [PHI] - taraxasterol acetate are new for the genus Scorzonera. Other triterpenoids were found in several Scorzonera species (Table 3). Particularly, S. veratrifolia showed a similar triterpenoid composition as S. cretica. Also, [beta]-sitosterol has been reported from several Scorzonera species as well (S. tomentosa, S. austriaca, S. columnae, S. latifolia, S. undulata, S. hispanica tissue culture, S. suberosa and S. laciniata) (Tolstikhina et al. 1988; Oksuz et al. 1990; Harkati et al. 2010; Wu et al. 2011; Erden et al. 2013; Acikara et al. 2014; Benabdelaziz et al. 2014).

GC-MS data of the plants are valuable for setting up chemotaxonomic profiles. However, such studies on the genus Scorzonera are scarce. Moreover, terpenoids are considered to be potential anti-cancer, anti-inflammatory, hepatoprotective, anti-viral agents (Dudhgaonkar et al. 2009; Laszczyk 2009; Thyagarajan et al. 2010; Ding et al. 2011; Gao et al. 2011; Narayan et al. 2011; Dakeng et al. 2012; Ezzat et al. 2012). Thus, further investigations on the terpenoids of the genus Scorzonera are recommended.


The present work was supported by the Research Fund of Istanbul University, Project No: 3506. The authors thank to Dr Fevzi Ozgokce for collecting and identifying the plant material.


* Acikara OB, Citoglu GS, Dall'Acqua S, Smejkal K, Cvacka J, Zemlicka M (2012). A new triterpene from Scorzonera latifolia (Fisch. and Mey.) DC. Nat Prod Res 26: 1892-1897. [CrossRef]

* Acikara OB, Citoglu GS, Acqua SD, Cvacka J, Zemlicka M, Smejkal K (2014). Bioassay-guided isolation of the antinociceptive compounds motiol and [beta]-sitosterol from Scorzonera latifolia root extract. Pharmazie 69: 711-714.

* Ahmad VU, Atta ur R (1994). Handbook of natural products data. Volume 2: pentacyclic triterpenoids. Elsevier Science, Amsterdam.

* Altinordu F, Martin E, Makbul S, Coskuncelebi K, Gultepe M (2015). Cytogenetic studies on some Scorzonera L. s.l. (Asteraceae) taxa from Turkey. Turk J Bot 39: 429-438. [CrossRef]

* Bahadir O, Citoglu GS, Smejkal K, Dall'Acqua S, Ozbek H, Cvacka J, Zemlicka M (2010). Analgesic compounds from Scorzonera latifolia (Fisch. and Mey.) DC. J Ethnopharmacol 131: 83-87. [CrossRef]

* Baytop T (1999). Turkiye'de Bitkilerle Tedavi Gecmiste ve Bugun (Therapy with medicinal plants in Turkey). Nobel Tip, Istanbul.

* Benabdelaziz I, Haba H, Lavaud C, Benkhaled M (2014). Triterpenoids and favonoid from Scorzonera undulata ssp. alexandrina. Int J Chem Biol Sci 5: 1-5.

* Budzikiewicz H, Wilson JM, Djerassi C (1963). Mass Spectrometry in Structural and Stereochemical Problems. XXXII.1 Pentacyclic Triterpenes. J Am Chem Soc 85: 3688-3699. [CrossRef]

* Chamberlain DF (1975). Scorzonera L. In: PH Davis, VA Matthews, FK Kupicha, BS Parris (eds) Flora of Turkey and the East Aegean Islands, V, Edinburgh University Press, Edinburgh, 632-657.

* Coskuncelebi K, Makbul S, Gultepe M, Okur S, Guzel ME (2015). A conspectus of Scorzonera s.l. in Turkey. Turk J Bot 39: 76-87. [CrossRef ]

* Dakeng S, Duangmano S, Jiratchariyakul W, U-Pratya Y, Bogler O, Patmasiriwat P (2012). Inhibition of Wnt signaling by cucurbitacin B in breast cancer cells: Reduction of Wnt associated proteins and reduced translocation of galectin-3-mediated [beta]-catenin to the nucleus. J Cell Biochem 113: 49-60. [CrossRef ]

* Ding N, Yamashita U, Matsuoka H, Sugiura T, Tsukada J, Noguchi J, Yoshida Y (2011). Apoptosis induction through proteasome inhibitory activity of cucurbitacin D in human T-cell leukemia. Cancer 117: 2735-2746. [CrossRef ]

* Dudhgaonkar S, Thyagarajan A, Sliva D (2009). Suppression of the inflammatory response by triterpenes isolated from the mushroom Ganoderma lucidum. Int J Immunopharmacol 9: 1272-1280. [CrossRef ]

* Erden Y, Kirbag S, Yilmaz O (2013). Phytochemical composition and antioxidant activity of some Scorzonera species. Proc Natl Acad Sci, India, Sect B 83: 271-276.

* Ezzat SM, Abdallah HM, Fawzy GA, El-Maraghy SA (2012). Hepatoprotective constituents of Torilis radiata Moench (Apiaceae). Nat Prod Res 26: 282-285. [CrossRef]

* Gao Y, Zhang R, Zhang J, Gao S, Gao W, Zhang H, Wang H, Han B (2011). Study of the extraction process and in vivo inhibitory efect of Ganoderma triterpenes in oral mucosa cancer. Molecules 16: 5315. [CrossRef]

* Gawronska-Grzywacz M, Krzaczek T (2007). Identification and determination of triterpenoids in Hieracium pilosella L. J Sep Sci 30: 746-750. [CrossRef]

* Granica S, Lohwasser U, Johrer K, Zidorn C (2015). Qualitative and quantitative analyses of secondary metabolites in aerial and subaerial of Scorzonera hispanica L. (Black Salsify). Food Chem 173: 321-331. [CrossRef]

* Harkati B, Akkal S, Bayat C, Laouer H, Franca MGD (2010). Secondary metabolites from Scorzonera undulata ssp. deliciosa (Guss.) Maire (Asteracae) and their antioxidant activities. Rec Nat Prod 4: 171-175.

* Hooper SN, Chandler RF, Lewis E, Jamieson WD (1982). Simultaneous determination of Sonchus arvensis L. triterpenes by gas chromatography-mass spectrometry. Lipids 17: 60-63. [CrossRef]

* Jehle M, Bano J, Ellmerer E P, Zidorn C (2010). Natural products from Scorzonera aristata (Asteraceae). Nat Prod Commun 5: 725-727.

* Laszczyk MN (2009). Pentacyclic triterpenes of the lupane, oleanane and ursane group as tools in cancer therapy. Planta Med 75: 1549-1560. [CrossRef]

* Menichini F, Statti G, Delle Monache F (1994). Flavonoid glycosides from Scorzonera columnae. Fitoterapia 65: 555-556.

* Mukemre M, Behcet L, Cakilcioglu U (2016). Survey of wild food plants for human consumption in villages of Catak (Van-Turkey). Indian J Tradit Knowle 15: 183-191.

* Narayan V, Kodihalli RC, Chiaro C, Cary D, Aggarwal BB, Henderson AJ, Prabhu KS (2011). Celastrol inhibits tat-mediated Human Immunodefficiency Virus (HIV) transcription and replication. J Mol Biol 410: 972-983. [CrossRef ]

* Oliveira P, Turatti I, Camilo Rodrigues de Oliveira D (2006). Comparative analysis of triterpenoids from Mikania cordifolia collected from four different locations. Braz J Pharm Sci 42: 547-552. [CrossRef ]

* Oksuz S, Goren N, Ulubelen A (1990). Terpenoids from Scorzonera tomentosa. Fitoterapia 61: 92-93.

* Paraschos S, Magiatis P, Kalpoutzakis E, Harvala C, Skaltsounis AL (2001). Three new dihydroisocoumarins from the Greek endemic species Scorzonera cretica. J Nat Prod 64: 1585-1587. [CrossRef]

* Pateh UU, K. HA, Garba M, Iliya I, Sule IM, Abubakar MS, A.A. A (2009). Isolation of stigmasterol, [beta]-sitosterol and 2-hydroxyhexadecanoic acid methyl ester from the rhizomes of Stylochiton lancifolius Pyer and Kotchy (Araceae). Nig Journ Pharm Sci 8: 19-25.

* Sari A (2010). Two new 3-benzylphthalides from Scorzonera veratrifolia Fenzl. Nat Prod Res 24: 56-62. [CrossRef ]

* Sari A (2012). Phenolic compounds from Scorzonera latifolia (Fisch. & Mey.) DC. Nat Prod Res 26: 50-55. [CrossRef]

* Sari A, Ozbek B, Ozgokce F (2009). Antimicrobial activities of two Scorzonera species growing in Turkey. Asian J Chem 21: 4785-4788.

* Shiojima K, Masuda K, Suzuki H, Lin T, Ooishi Y, Ageta H (1995). Composite constituents : forty-two triterpenoids including eight novel compounds isolated from Picris hieracioides subsp. japonica. Chem Pharm Bull 43: 1634-1639. [CrossRef]

* Thyagarajan A, Jedinak A, Nguyen H, Terry C, Baldridge LA, Jiang J, Sliva D (2010). Triterpenes from Ganoderma lucidum induce autophagy in colon cancer through the inhibition of p38 mitogenactivated kinase (p38 MAPK). Nutrition and Cancer 62: 630-640. [CrossRef ]

* Tolstikhina VV, Bryanskii OV, Syrchina AI, Semenov AA (1988). Chemical composition of a culture of tissue of Scorzonera hispanica. Chem Nat Compd 24: 655-655. [CrossRef]

* Tsevegsuren N, Edrada R, Lin W, Ebel R, Torre C, Ortlepp S, Wray V, Proksch P (2007). Biologically active natural products from Mongolian medicinal plants Scorzonera divaricata and Scorzonera pseudodivaricata. J Nat Prod 70: 962-967. [CrossRef ]

* Turan M, Kordali S, Zengin H, Dursun A, Sezen Y (2003). Macro and micro mineral content of some wild edible leaves consumed in eastern Anatolia. Acta Agric Scand Sect B Soil Plant Sci 53: 129-137. [CrossRef ]

* Wang B, Li G, Guan H, Yang L, Tong G (2009). A new erythrodiol triterpene fatty ester from Scorzonera mongolica. Acta Pharm Sin 44: 1258-1261.

* Wang B, Li GQ, Qiu PJ, Guan HS (2007). Two new olean-type triterpene fatty esters from Scorzonera mongolica. Chin Chem Lett 18: 708-710. [CrossRef]

* Wu QX, Su YB, Zhu Y (2011). Triterpenes and steroids from the roots of Scorzonera austriaca. Fitoterapia 82: 493-496. [CrossRef ]

* Xie Y, Guo QS, Wang GS (2016). Flavonoid glycosides and their derivatives from the herbs of Scorzonera austriaca Wild. Molecules 21: 803. [CrossRef ]

* Yang YJ, Yao J, Jin XJ, Shi ZN, Shen TF, Fang JG, Yao XJ, Zhu Y (2016). Sesquiterpenoids and tirucallane triterpenoids from the roots of Scorzonera divaricata. Phytochemistry 124: 86-98. [CrossRef ]

* Zidorn C, Ellmerer-Muller EP, Stuppner H (2000). Tyrolobibenzyls-Novel secondery metabolites from Scorzonera humilis. HeIv Chim Acta 83: 2920-2925. [CrossRef]

Betul Cetin [iD], Hasan Sahin [iD], Aynur Sari (*) [iD]

Department of Pharmacognosy, Faculty of Pharmacy, Istanbul University, 34116, Istanbul, Turkey

Cite this article as: Cetin B, Sahin H, Sari A. Triterpenoids from Scorzonera veratrifolia Fenzl. Istanbul J Pharm 48 (2): 23-27.

Address for Correspondence :

Aynur Sari, e-mail:

Received: 28.03.2018

Accepted: 25.06.2018

DOI: 10.5152/IstanbulJPharm.2018.410411
Table 1: Triterpenes and [beta]-sitosterol from the PE fraction of the
methanol extract obtained from S. veratrifolia roots determined by GC-MS

Peak Numbers      Compounds                                Retention
                                                           Time (min)

Mixture BCV3 (*)
1                 [beta]-Amyrin acetate                    45.16
2                 Germanicol acetate                       45.34
3                 Lupeol acetate + [alpha]-Amyrin acetate  46.28
4                 [PHI] - Taraxasterol acetate             47.99
5                 Taraxasterol acetate                     48.18
Mixture BCV5 (*)
1                 [beta]-Amyrin                            43.76
2                 Germanicol                               43.90
3                 Lupeol + [alpha]-Amyrin                  44.48
4                 [PHI] - Taraxasterol                     45.92
5                 Taraxasterol                             46.15
Mixture BCV6 (*)
1                 [beta]-Amyrinone                         43.50
2                 Germanicone                              43.63
3                 a-Amyrinone                              44.17
4                 Fern-7-en-3-one                          44.93
5                 Lupenone                                 45.52
BCV7 (*)          [beta]-sitosterol                        43.27

Peak Numbers      Molecular Weight  Molecular Formula

Mixture BCV3 (*)
1                 468               C32H52O2
2                 468               C32H52O2
3                 468 + 468         C32H52O2
4                 468               C32H52O2
5                 468               C32H52O2
Mixture BCV5 (*)
1                 426               C30H50O
2                 426               C30H50O
3                 426 + 426         C30H50O
4                 426               C30H50O
5                 426               C30H50O
Mixture BCV6 (*)
1                 424               C30H48O
2                 424               C30H48O
3                 424               C30H48O
4                 424               C30H48O
5                 424               C30H48O
BCV7 (*)          414               C29H50O

(*) BCV3, BCV5, BCV6 are the mixtures and BCV7 is the pure compound
obtained from the PE fraction of methanol extract of Scorzonera
veratrifolia roots

Table 2: 1H NMR and 13C NMR data of BCV7 ([beta]-sitosterol)

Position  [delta]H (J, Hz)  [delta]C  Position  [delta]H (J, Hz)

 1                            36.2     11
 2                            28.7     12
 3         3.45 m             72.0     13
 4                            41.2     14
 5                           139.7     15
 6         5.27 brs          120.7     16
 7                            30.6     17
 8                            30.8     18        0.61 s
 9                            50.2     19        0.94 s
10                           35.5     20

Position  [delta]C  Position  [delta]H (J, Hz)  [delta]C

 1        20.0      21        0.85 d (6.3)      17.7
 2        38.8      22                          32.9
 3        41.3      23                          25.1
 4        55.8      24                          44.8
 5        23.3      25                          27.8
 6        27.2      26        0.74 d (6.8)      18.8
 7        54.9      27        0.77 d (6.8)      18.0
 8        10.8      28        0.77 t (7.8)      22.0
 9        18.3      29        0.74 d (6.8)      10.9
10        35.1

Note: 1H NMR at 500 MHz in CD3OD and 13C NMR at 125 MHz in CD3OD

Table 3: Triterpenoids determined in the genus Scorzonera

Species                                    Triterpenoids

S. cretica (Paraschos et al. 2001)         germanicol, germanicone,
                                           germanicol acetate, lupeol,
                                           lupenone, lupeol acetate,
                                           taraxasterol, taraxasterol
                                           acetate, oleanolic acid,
                                           oleanol acetate
S. tomentosa (Oksuz et al. 1990)           lupeol, lupeol acetate,
S. aristata (Jehle et al. 2010)            lupeol, magnificol, 3-[alpha]
S. austriaca (Wu et al. 2011)              lupeol, taraxasterol, [PHI]
                                           -taraxasteryl-3 (3'-methyl
                                           -butanonate), 3[beta]-acetyl
                                           -oxidotaraxerol, D-friedours
                                           12[alpha]-epoxy [alpha]
                                           p-amyrin acetate, |3-amyrin
                                           glutinol, 3[beta]
                                           -oxo, (23Z)-cycloart-23-ene
                                           -3[beta], 25-dihydroxy
                                           9|3,19 cyclolanostane- 24
S. columnae (Menichini et al. 1994)        lupeol
S. latifolia (Bahadir et al. 2010;         fern-7-en-3-one, 3[beta]
                                           -acetate, 3-[beta]-hydroxy
Acikara et al. 2012; Acikara et al. 2014)  -one-acetate, fern-7-ene-3-ol
                                           ,taraxasterol acetate,
                                           taraxasterol myristate,
                                           -ene-11-one-3-acetyl, urs-12
S. undulata ssp. delicosa                  [beta]-amyrin acetate, methyl
                                           oleanate, methyl ursolate
(Harkati et al. 2010)
S. undulat a ssp. alexandrina              lupeol, 24
(Benabdelaziz et al. 2014)
S. mongolica                               3[beta]-tetradecanoyl
                                           moradiol, 3-[beta]-dodecanoyl
                                           moradiol, 3[beta]
                                           -tetradecanoyl erythrodiol,
(Wang et al. 2007; Wang et al. 2009)       3-[beta]-dodecanoyl
S. divaricata (Yang et al. 2016)           oleanolic acid,
                                           scorzodivaricin B, C, D,
                                           -diene, 23(Z)-3[beta], 25
                                           -diene, 20(R)-3[beta], 21
                                           -methylene-dammarane, 20(R)
S. hispanica tissue culture                oleanolic acid
(Tolstikhina et al. 1988)

Note: Bold written compounds are in common with S. veratrifolia
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2018 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Original Article
Author:Cetin, Betul; Sahin, Hasan; Sari, Aynur
Publication:Journal of the Faculty of Pharmacy of Istanbul University
Article Type:Report
Date:Aug 1, 2018
Previous Article:Targeted drug delivery and vaccinology approaches using virus-like particles for cancer.
Next Article:Design, synthesis, and evaluation of antitubercular activity of a novel benzothiazole-containing an azetidinone ring.

Terms of use | Privacy policy | Copyright © 2021 Farlex, Inc. | Feedback | For webmasters |