Printer Friendly

Tortugas fosiles (Testudinoidea, Cryptodira) del Pleistoceno del yacimiento de brea de Talara, Peru.

Pleistocene Fossil Turtles (Testudinoidea, Cryptodira) from the Talara Tar Seeps, Peru

Introduction

The Talara Tar Seeps (TTS) is an asphaltic paleontological locality that consists of a series of fossil-bearing deposits, late Pleistocene in age between 13616 [+ or -] 600 and 14418 [+ or -] 500 radiocarbon years before present (Churcher 1966), where numerous fossil skeletons of megafauna and other animals have been found (Seymour 2015, Lindsey & Seymour 2015). The fossil fauna of the TTS includes: crocodylians (Alligatoridae), lepidosaurians (Boidae, Colubridae, Phyllodactylidae, Iguanidae, Gymnophthalmidae, and Teiidae), turtles (Emydidae, Geoemydidae, and Testudinidae), at least 23 families of non-passerine and 8 families of passerine birds (Campbell 1979, Oswald & Steadman 2015) and mammals represented by marsupials (Didelphidae), chiropterans (Phyllostomidae and Vespertilionidae), rodents (Hydrochoeridae and Cricetidae), carnivorans (Canidae, Felidae, Mephitidae, and Mustelidae), xenarthrans (Megatheriidae, Mylodontidae, and Pampatheriidae), artiodactyls (Cervidae, Tayassuidae, and Camelidae), perissodactyls (Equidae) and proboscideans (Gomphotheriidae) (Churcher 1959, 1962, 1965, 1966, Churcher & Van Zyll de Jong 1965, Czaplewski 1990, Lemon & Churcher 1961, Marshall et al. 1984, Moretto et al. 2017, Seymour 2015).

Most of the fossil turtle material from the TTS was collected in 1958 by an expedition of scientists from the division of Zoology and Paleontology of the Royal Ontario Museum, Toronto, Canada, and has remained housed in the collections of that museum. During the 1970s, Philip Currie completed a preliminary study of the amphibians and reptiles from the TTS as a student project. The preliminary study of this material by Currie attributed the fossil turtles to several genera and species of the Testudinoidea, including Trachemys sp., Rhinoclemmys melanosterna, and Chelonoidis sp. However, his work was never published, and none of these specimens have been re-evaluated since that time (Seymour 2015).

The purpose of this study is to provide a description, taxonomy and systematic paleontology of the fossil turtle material from the TTS, as well as to discuss its paleobiogeographical and paleoenvironmental implications. This work is also a contribution to a better understanding of the fossil record of Peru after the last interglacial, and before the beginning of the Holocene.

Institutional abbreviations. CRI Chelonian Research Institute, Oviedo, Florida, USA; MTKD Senckenberg Museum of Natural History, Dresden collections, Germany; ROM Royal Ontario Museum, Canada; UF University of Florida, Gainesville, Florida, USA; USNM Smithsonian Natural History Museum, Maryland, USA; UPSE paleontological collection, Universidad Estatal de la Peninsula de Santa Elena, La Libertad, Santa Elena Province, Ecuador.

Geological framework

The turtle remains described here were collected at the TTS (Fig. 1) located at 04[degrees]38'38.92"S, 81[degrees]8'9.47"W in La Brea, one of the six districts of Talara, Piura Department, Peru. The deposits overlie the Mancora Tablazo, one of the three marine terraces uplifted during the early, middle and late Pleistocene known as Tablazos, which comprise a series of calcareous sandstones, siliciclastic sandstones, sandy limestones, and fine conglomerates with abundant fossil mollusks (Lemon & Churcher 1961). The Tablazos deposits overlie Paleogene rocks, some of which seep oil that emerges onto the surface in numerous locations, creating paleontological sites taphonomically and faunistically similar to the famous Rancho La Brea in California, U.S.A. (Lindsey & Seymour 2015).

Materials and methods

We re-examined the fossil turtle material collected in Talara in January 1958, now housed at the Royal Ontario Museum (ROM) in Toronto, Canada. All specimens correspond to isolated and in some cases highly fractured plates and long bones. We measured and photographed all the specimens and compared them with skeletons of the extant taxa Chelonoidis nigra (Quoy & Gaimard, 1824) (specimen USNM 59867) and extant species of Rhinoclemmys fully listed in Cadena et al. (2012: appendix 2), to establish their anatomical and taxonomic identification. Measurements were taken using a digital caliper with an accuracy of 0.02 mm and rounded to the nearest 0.1 mm. A summary and measurements of all the material housed in the ROM collections from TTS that can be recognized at the family or genus level is presented in Appendix 1. As most of the material is extremely fragmentary, we only describe and illustrate here the most complete and relevant bones.

Systematic Paleontology

ORDER TESTUDINES BATSCH 1788

SUBORDER CRYPTODIRA COPE 1868

SUPERFAMILY TESTUDINOIDEA FITZINGER 1826

FAMILY GEOEMYDIDAE THEOBALD 1868

GENUS RHINOCLEMMYS FITZINGER 1835

Rhinoclemmys sp.

Material referred

Carapacial bones: three left costal bones 2 or 4 (ROM-42144, 42149 and 42154); two right costal bones 3 or 5 (ROM-42174 and 42138); two right costal bones 2 or 4 (ROM-42147 and 42159); four left costal bones 3 or 5 (ROM-41277, 42099, 42143 and 42175); two right costal bones 6 (ROM-42135 and 42152); one left costal bone 6 (ROM-42170); one right costal bone 8 (ROM-42134); three neural bones 1 (ROM-42179-42181); one neural bone 3 or 5 (ROM-42182); one nuchal bone (ROM-42058); ten peripheral bones of the anterior margin of the carapace (ROM-42080, 42087, 42084, 42093, 42068, 42078, 42082, 42090, 42059 and 42079); five peripheral bones of the carapace-plastron bridge (ROM-42112, 42057, 42115, 42166 and 42116); eleven peripheral bones of the posterior margin of the carapace (ROM-42076, 42083, 42150, 42101, 42091, 42153, 42074, 42094, 42131, 42088 and 41849 (previously attributed to Trachemys sp. in the list of Seymour 2015); one pygal bone portion (ROM-42105); one suprapygal bone (ROM-42100).

Plastral bones: two entoplastra (ROM-42183 and 42184); two right epiplastra (ROM-42070 and 42095); two left epiplastra (ROM-41848 (previously attributed to Trachemys sp. in the list of Seymour, 2015) and 42085); two right hyoplastra (ROM-42110 and 42114); three right hypoplastra (ROM-42102, 42104 and 42106); one left hypoplastron (ROM-42109); three right xiphiplastra (ROM-42053, 42054 and 42097); two left xiphiplastra (rOM-42055 and 42056).

Cranial bones: two hyoids (ROM-42051 and 42052).

Forelimb bones: one left humerus (ROM-42062); two right humeri (ROM-42064 and 42065); two left radii (ROM-42060 and 42061); one left ulna (ROM-42036).

Pectoral girdle bones: one left scapula and acromion (ROM-42046).

Hindlimb bones: seven right femora (ROM-42032, 42034, 42035, 42047, 42048, 42049 and 42066); eight left femora (ROM-42040, 42041, 42042, 42043, 42044, 42045, 42050 and 42186); one right tibia (ROM-42063); one left fibula (ROM-42039).

Pelvic girdle bones: three right ilia (ROM-42037, 42363 and 42364); one left ilium (ROM-42038); one left ischium (ROM-42033).

Description

Carapacial bones:

ROM-41849 is a complete left peripheral bone of the posterior margin of the carapace, potentially peripheral 9 or 10, and is very well preserved (see Fig. 2A-B). The peripheral has a trapezoidal form. In dorsal view, the two sulci between the pleural and marginal scutes are apparent.

ROM-42099 is an almost complete left costal 5. On the dorsal surface, this specimen has visible rings because of the sculpturing pattern left by the pleural 3, and the inguinal scar is visible on its ventral surface (Fig. 2E-G).

ROM-42180 is a complete neural 1. It has an almost rectangular shape. On the dorsal surface, there is a sulcus between vertebral scutes 1 and 2 (Fig. 2H-I).

ROM-42058 is a completely preserved nuchal bone. On the dorsal surface, the sulci between marginal 1 and vertebral 2 are apparent, and the cervical scute sulci exhibit a narrow rectangular shape, being narrower anteriorly than posteriorly (Fig. 2J-K). On the posterolateral portions of the nuchal bone, some of the annular lines of vertebral 5 are also visible.

ROM-42079 is a right peripheral 3. On its dorsal surface, the two sulci left by the contact between marginals 3 and 4 and pleural 1 are apparent. On its ventral surface, the axillary buttress scar forms a narrow and deep channel (Fig. 2L-N).

ROM-42093 is a right peripheral 2. On its dorsal surface, this specimen has a well defined sulcus left by the contact between marginals 2 and 3, and a sulcus between these two scutes and pleural 1 (Fig. 2O-P).

ROM-42115 may be a left peripheral 5. On its dorsal surface, the sulci left by the contact between marginals 5 and 6 are apparent (Fig. 2Q-P). Furthermore, in this specimen, the sulcus left by the contact between these scutes and the pleural scute is visible.

ROM-42105 is the posteriormost portion of a pygal bone. On its dorsal surface, the sulcus between vertebral 5 and marginals 11? is visible, at the posteromedial edge it has a shallow notch (Fig. 2S-T).

ROM-42100 is a suprapygal bone. On its dorsal surface, the sulci between vertebrals 4 and 5 and pleurals 4 are apparent (Fig. 2W-X).

Plastral bones:

ROM-41848 is a complete left epiplastron (Fig. 3AB). On its ventral surface are two sulci dividing the epiplastron into three parts: the gular, humeral, and pectoral scutes. The first sulcus separates the gular scute from the humeral scute, and the second sulcus weakly marks the separation of the humeral scute from a small visible part of the pectoral. In ventral view, the epiplastron has a U-shape at the posterior edge. On the dorsal surface, there is evidence that the gular and humeral scutes reached the edge before the visceral surface of the bone.

ROM-42183 is an entoplastron. On the ventral surface are visible, well-defined gular-humeral and humeral-pectoral sulci on both sides of the specimen, which are nearly symmetrical (Fig. 3C-D). The humeral scutes were restricted to the anterolateral margins of the entoplastron without reaching its region of maximum width.

ROM-42070 is a partially preserved right epiplastron. On its ventral surface, ROM-42070 has a well-defined gular-humeral sulcus (Fig. 3E-F).

ROM-42114 is a partially preserved right hyoplastron. On the ventral surface, it has a slightly visible humeral-pectoral sulcus (Fig. 3G-H).

ROM-42102 is a fragment of the right hypoplastron. On its ventral surface, this specimen exhibits a well-preserved abdominal-femoral sulcus (Fig. 3I-J).

ROM-42053 is a complete right xiphiplastron with a well-defined femoral-anal sulcus on its ventral surface (Fig. 3K-L).

ROM-42056 is a left xiphiplastron. The femoral-anal sulcus is well preserved on its ventral surface (Fig. 3M-N).

Cranial bones:

ROM-42051 is the left hyoid process (Fig. 4A) exhibiting a slightly convex medial edge.

Forelimb bones:

ROM-42062 is a complete left humerus (Fig. 4B-C), with a narrow and deep ectepicondylar foramen at its distal lateral portion. In lateral view exhibits a very slender curved-shape with maximum arch at the shaft region.

ROM-42061 is a left radius with a broad proximal head and very narrow shaft region (Fig. 4D-E).

ROM-42036 is a well-preserved left ulna exhibiting a S-shaped dorsolateral ridge, and relatively wide and flat proximal head for the articular with the humerus (Fig. 4F-G).

Pectoral girdle bones:

ROM-42046 (Fig. 4H-I) is a portion ofthe left scapula and acromion, exhibiting a nearly triangular glenoid, and an internal angle of approximately 80[grados] between both processes.

Hindlimb bones:

ROM-42041 is a left femur, exhibiting a spherical and prominent head and trochanters minor and major located almost at the same level (Fig. 4J-K).

ROM-42039 is a well-preserved left fibula, with an almost straight distal edge and slightly arched proximal region (Fig. 4L-M).

Pelvic girdle bones:

ROM-42038 (Fig. 4N-O) is a left ilium with a very broad posterior ilial process, at the shaft the bone is considerably narrow.

ROM-42033 (Fig. 4P-Q) is a left ischium with a pointed and projected lateral ischial process, forming an Ushape medial edge with the medial portion of the bone .

FAMILY TESTUDINIDAE BATSCH 1788

GENUS CHELONOIDIS FITZINGER 1835

Chelonoidis sp.

Material referred

Carapacial bones: three costals (ROM-42025, 42028 and 42029) and three peripheral bones (ROM-42026, 42030, and 2024).

Limb bones: thirty-four osteoderms (ROM-4057240599, 40620, 40600-40604 and 42190); one podial bone (ROM-40620).

Unidentified bones: six unidentified shell bones (ROM42021-42024, 42027 and 42031).

Description

Carapacial bones:

ROM-42024 is a peripheral bone from the carapaceplastron bridge region. Its dorsal surface exhibits the sulcus between two marginal scutes and the sulcus between these two and the pleural scute (Fig. 5A-B).

ROM-42028 is a portion of a costal bone, showing the sulcus between pleural scutes, which is similar to a canal with high lateral walls (Fig. 5C). The dorsal surface of the bone is also characterized by fine and highly dense vermiculation without long dichotomized lines. The thickness of the bone is 23 mm on average (Fig. 5D).

Limb bones:

ROM-42190 is an osteoderm being almost spherical in shape and exhibiting a micropitted bone surface (Fig. 5E) and ROM 37737 is a triangular osteoderm, without any clear articular facet. (Fig. 5F-G).

Discussion

Taxonomic attributions

Rhinoclemmys sp. assignation. The most abundant material of fossil turtles from the TTS described here is from geoemydids, and is comparable with the shell of extant species of Rhinoclemmys (see Cadena et al. 2012: appendix 2) characterized by costal bones with slightly straight-line sulci left by the contact between pleural scutes on the dorsal surface and a weak sculpturing pattern of the annuli on the lateral portion of the costal bones (Fig. 2F-G) (Cadena et al. 2017). The costal bones of geoemydids described here also exhibit weakly marked axillary and inguinal scars (Fig. 2E). The nuchal bone ROM-42058 described herein exhibits a cervical scute that is narrower anteriorly than posteriorly and being shorter than in Trachemys spp. and resembling in all aspects the nuchal of extant and fossil specimens of Rhinoclemmys (Cadena et al. 2017: fig. 2; Cadena & Carrillo-Briceno 2019: fig. 3). The neural bones exhibit a well-developed ridge on the dorsal surface (Fig. 2H-I), very similar as those exhibited by extant representatives of Rhinoclemmys, such as Rhinoclemmys melanosterna CRI-42056 (Fig. 2Y) (see also Cadena et al. 2017: fig. 2). The xiphiplastra of Rhinoclemmys sp. described here (Fig. 3K-3N) differ from extant and fossil representatives of Chelonoidis (Testudinidae) in that they have very large anal scutes.

In contrast to previous attributions (Currie unpublished data; Seymour 2015) of fossil turtles of the TTS to Rhinoclemmys melanosterna, we consider the material to be extremely fragmentary for undisputable attribution to a particular species, and therefore suggest attributing all of this material only to Rhinoclemmys sp. The only specimen that potentially could be attributed to R. melanosterna is the entoplastron ROM-42183 (Fig. 3C-D), which exhibits a bell-shaped entoplastron considered by Carr (1991) as one of the diagnostic features of this species (Fig. 3P). Also we attribute the two specimens previously considered as Trachemys sp. by Currie unpublished data; Seymour (2015), specimens ROM-41849 (peripheral bone, Fig. 2A-B) and ROM-41848 (left epiplastron, Fig. 3A-B) as belonging to Rhinoclemmys sp; based on that ROM-41849 lacks of the highly dentate margin of peripherals of Trachemys spp. (Fig. 2C-D) and that ROM-41848 exhibits similar lateral deep notch at the humerogular contact as in most of Rhinoclemmys spp. (Fig. 3P), being almost continuous or straight in Trachemys spp. (Fig. 3Q).

Furthermore, re-examination of all specimens housed in the ROM collections has allowed us to conclude that there is no evidence of diagnostic characters to support the occurrence of Trachemys (Emydidae) turtles in the TTS, considering the most complete bones, including nuchal, costal, pygal and plastral elements (See Fig. 2, Cadena et al. 2017: fig. 6; Cadena & Carrillon-Briceno 2019 for graphical comparisons between these bones in Rhinoclemmys and Trachemys). For example, the pygal bone ROM-42105 (Fig. 2S-T) described herein exhibits a vertebral 5 covering the most anterior portion of the bone in a triangular shape, as well as a very narrow and shallow medial notch at its posterior edge, similar as in Rhinoclemmys sp. UF-242075 from the Miocene of Panama, the extant Rhinoclemmys areolata UF(H)-54199 (Cadena et al. 2012: fig. 5) and Rhinoclemmys sp. UPSE-T0012 from the Pleistocene of Santa Elena, Ecuador (Cadena et al. 2017: fig. 2). In contrast, the posterior pygal of Trachemys spp. exhibits a vertebral 5 that covers only a small portion of the pygal and lacks the triangular shape, as well as develops a deeper posteromedial notch (Fig. 2U-V).

Chelonoidis sp. assignation. The testudinid material of the TTS described herein resembles extant and fossil members of the genus Chelonoidis based on their large size and bone thickness, as well as the characteristic sulci that form a canal with high lateral walls (Fig. 5C). The dorsal surface of the bone is also characterized by fine and highly dense vermiculation without long dichotomized lines (Cadena & Jaramillo 2015). The osteoderms also support the occurrence of these tortoises in TTS. However, the fossils are too fragmentary to allow attribution to a particular species or to erect a new species within the Chelonoidis genus. The attribution of this material as belonging to Chelonoidis genus is based also on that this is the only fossil and extant testudinid genus of South America (de la Fuente et al. 2014).

Paleobiogeographical and paleoenvironmental implications

The occurrence of Rhinoclemmys sp. (Geoemydidae) and Chelonoidis sp. (Testudinidae) in the northwestern region of Peru (Talara Tar Seeps), shows a wider past (Pleistocene) geographical distribution of these two families of turtles west of the South American Andes, similar to recent reports of the same genera from southwestern Ecuador (Cadena et al. 2017) and even East of the Andes for Rhinoclemmys (Cadena & Carrillo-Briceno 2019). Currently, geoemydids and testudinids are completely absent along the entire western margin of Peru (Turtle Taxonomy Working Group 2017), which indicates that their geographical constriction in distribution occurred in the last 14 kyr due to potential changes in the climatic conditions of the region, particularly in the El Nino-Southern Oscillation (ENSO), which induces considerable spatial variability in annual precipitation from north to south and along the coast (Morera et al. 2017). Wetter conditions of the Talara region during the Pleistocene are inferred not only by the occurrence of the fossil Rhinoclemmys, but also by diving beetles, frogs, caimans, ducks, grebes, herons, ibises, rails, plovers, sandpipers, and capybaras (Seymour 2015).

Taphonomic considerations

In contrast to other tar seep fossil sites where fossil skeletons are found almost complete or relatively articulated, such as Rancho La Brea (Lindsey & Seymour 2015), the fossil turtles from the TTS are generally found disarticulated and highly fragmented, which indicates that these bones were brought to the tar seep by river activity or small-scale drainage before they were trapped and preserved by the viscous tar. The dark color of some of the turtle bones and other species of the TTS is consistent with the hypothesis that the fossils accumulated in pools of asphalt (Lindsey & Seymour 2015). A deep taphonomic study of these fossils is out of the scope of this project and should be adressed by future studies.

doi: http://dx.doi.org/10.15381/rpb.v26i2.15118

Literature cited

Batsch A.J. 1788. Versuch einter Anleitung zur Kinntniss und Geschichte der Thiere und Mineralien. Jena: Akad. Buchhandlung, 22 pp.

Cadena E.A., J.R. Bourque, A.F. Rincon, et al. 2012. New turtles (Chelonia) from the Late Eocene through Late Miocene of the Panama Canal basin. Journal of Paleontology 86:539-557. https://doi.org/10.1666/11-106.!

Cadena E.A., J. Abella & M.D. Gregori. 2017. New findings of Pleistocene fossils turtles (Geoemydidae, Kinosternidae and Chelydridae) from Santa Elena Province, Ecuador. PeerJ 5:e3215. https://doi.org/10.7717/peerj.3215

Cadena E.A & J.D. Carrilo-Briceno. 2019. First fossil of Rhinoclemmys Fitzinger, 1826 (Cryptodira, Geoemydidae) east of the Andes. South American Journal of Herpetology 14:19-23. http://doi.org/10.2994/SAJHD-1700099.1.

Cadena E.A. & C. Jaramillo. 2015. Miocene turtles from the northernmost tip of South America; giant tortoises, chelids, and podocnemidids from Castilletes Formation, Colombia. Ameghiniana 52:188-203. https://doi. org/10.5710/AMGH.10.11.2014.2835.

Campbell K.E. 1979. The non-passerine Pleistocene avifauna of the Talara tar seeps, northwestern Peru. Royal Ontario Museum Life Sciences Contributions 118:1-203. https://doi.org/10.5962/bhl.title.52133

Churcher C.S. 1959. Fossil Canis from the tar pits of La Brea, Peru. Science 130: 564-565. 10.1126/science.130.3375.564

Churcher C.S. 1962. Odocoileus salinae and Mazama sp. from the Talara tar seeps, Peru. Royal Ontario Museum Life Sciences Contributions 57:1-27. https://doi. org/10.5962/bhl.title.52157

Churcher C.S. 1965. Camelid material of the genus Palaeolama Gervais from the Talara tar-seeps, Peru, with a description of a new subgenus, Astylolama. Proceedings of the Zoological Society (London) 145:161205. https://doi.org/10.1111/j.1469-7998.1965. tb02014.x

Churcher C.S. 1966. The insect fauna from the Talara tarseeps, Peru. Canadian Journal of Zoology 44:985-993. https://doi.org/10.1139/z66-102

Churcher C.S. & C.G. Van Zyll de Jong 1965. Conepatus talarae n. sp. from the Talara tar-seeps, Peru. Royal Ontario Museum Life Sciences Contributions 62:1-15. https:// doi.org/10.5962/bhl.title.52230

Cope E. 1868. On the origin of genera. Proceedings of the Academy of Natural Sciences of Philadelphia 20:242-300.

Czaplewski N.J. 1990. Late Pleistocene (Lujanian) occurrence of Tonatia silvicola in the Talara tar seeps, Peru. Anais Academia Brasileira Ciencias 62:235-238.

de la Fuente M.S., Sterli J., & I. Maniel. 2014. Origin, Evolution and Biogeographic History of South American Turtles. Springer, Heidelberg. 177pp.

Fitzinger L.J. 1826. Neue Classification der Reptilien, nach ihren Naturlichen Ver-wandtschaften nebst einer Verwandtschafts-Tafel und einem Verzeichnisse der Reptilien-Sammlung des k.k. Zoologischen Museum zu Wien. Wien: J.G. Hubner Verlagen, 66 pp.

Fitzinger L. 1835. Entwurf einer systematischen anordnung der Schildkroten nach den grundsatzen der naturlichen methode. Annalen des Wiener Museum der Naturgeschichte 1:103-128.

Lemon R.R.H. & C.S. Churcher. 1961. Pleistocene geology and Paleontology of the Talara region, Northwest Peru. American Journal of Science, 259:410-429. https:// doi.org/10.2475/ajs.259.6.410

Lindsey E.L. & K.L. Seymour 2015. "Tar pits" of the western Neotropics: Paleoecology, taphonomy, and mammalian biogeography. In: J.M. Harris (Ed.), La Brea and Beyond: The Paleontology of Asphalt preserved Biotas. Natural History Museum of Los Angeles County, Series, n[grados] 42, 111-123.

Marshall L.G., A. Berta, R. Hoffstetter et al. 1984. Mammals and stratigraphy: Geochronology of the continental mammal-bearing Quaternary of South America. Palaeovertebrata Mem. Extraord. 76pp.

Morera S.B., T. Condom, A. Crave et al. 2017. The impact of extreme El Nino events on modern sediment transport along the western Peruvian Andes (1968-2012). Scientific Reports 7: 11947. http://doi: 10.1038/ s41598-017-12220.

Moretto L., B.K. Lim, R. Cadenillas & J.N. Martinez 2017. Analysis of bat humeri from Late Pleistocene Talara Tar Seeps of northwestern Peru, with paleoenvironmental implications, Journal of Vertebrate Paleontology, 37:1, e1250097. http//doi: 10.1080/02724634.2017.1250097.

Oswald J. A. & D.W. Steadman. 2015. The changing diversity and distribution of dry forest passerine birds in northwestern Peru since the last ice age. The Auk: Ornithological Advances 132:836-862. https://doi.org/10.1642/ AUK-15-74.1.

Seymour K.L. 2015. Perusing Talara: Overview of the Late Pleistocene Fossils from the Tar Seeps of Peru. In: J.M. Harris (Ed.), La Brea and Beyond: The Paleontology of Asphalt-preserved Biotas. Natural History Museum of Los Angeles County, Series, no 42, 97-100.

Theobald W. 1868. Catalogue of reptiles in the museum of the Asiatic Society of Bengal. Journal of the Asian Society 88:3-12.

Turtle taxonomy working group [Rhodin A.G.J., Iverson J.B., Bour R. Fritz U., Georges A., Shaffe, H.B., and van Dijk P.P.]. 2017. Turtles of the World: Annotated checklist and atlas of taxonomy, synonymy, distribution, and conservation Status (8th Ed.). In: A.G.J. Rhodin, J.B. Iverson, P.P. van Dijk, R.A. Saumure, K.A. Buhlmann, P.C.H. Pritchard, & R.A. Mittermeier (Eds.), Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group. Chelonian Research Monographs 7:1-292. https://doi. org/10.3854/crm.7.checklist.atlas.v8.2017.

Acknowledgements:

We thank Dr. Kevin Seymour, from the Royal Ontario Museum, Toronto, Canada, for the opportunity to study the Talara collections. We thank Sara J. Mason, M.Sc., from Edanz Group (www.edanzediting. com/ac) for editing a draft of this manuscript. We thank to two reviewers Dr. E. Vachlos and one anonymous for their comments and suggestions.

Competing interests:

The authors have declared that no competing interests exist.

Author roles:

A.D, examined the ROM specimens; A.D, E.A.C, wrote the paper; J.N.M. made comments on the drafts and final version of the manuscript. All authors gave final approval for publication.

Funding:

Funding for this project was granted to A. Deza from the M.A. Fritz Travel Grants for the Advancement of Studies in Palaeontology of the Royal Ontario Museum and to E.A. Cadena from the Alexander von Humboldt Foundation of Germany.

Ethics / legal:

Not applicable, material Biological is proceedent from museological collections.
Appendix 1. List and measurements of fossil turtle specimens from the
Talara Tar Seeps, housed at the ROM collections, Toronto, Canada,
identifiable at genus level.

Specimen code       Anatomical identity   Length   Width
                                           (mm)    (mm)

Geoemydidae

Rhinoclemmys sp.

Carapace

ROM 41277           Left costal 5          45.8    28.2
ROM 41849           Left peripheral 2      29.1    34.5
ROM 42068           Left peripheral 2      23.2    22.8
ROM 42074           Right peripheral 9     24.1    27.1
ROM 42076           Right peripheral 8     36.3    50.9
ROM 42078           Left peripheral 2      36.0    37.8
ROM 42079           Right peripheral 3     26.1    31.4
ROM 42080           Right peripheral 1     26.2    35.4
ROM 42082           Left peripheral 2      9.8     33.1
ROM 42083           Right peripheral 8     31.0    45.0
ROM 42084           Right peripheral 2     33.7    47.6
ROM 42087           Right peripheral 1     36.7    37.8
ROM 42088           Left peripheral 10     31.1    39.1
ROM 42090           Left peripheral 2      34.5    37.4
ROM 42091           Left peripheral 8      27.5    36.7
ROM 42092           Left peripheral 8      32.5    43.3
ROM 42093           Right peripheral 2     39.9    39.2
ROM 42094           Right peripheral 9     34.5    33.5
ROM 42099           Left costal 5          25.2    55.8
ROM 42100           Suprapygal             21.4    26.1
ROM 42101           Right peripheral 7     18.9    24.5
ROM 42105           Pygal                  19.9    31.0
ROM 42112           Right peripheral 5     41.5    51.3
ROM 42115           Left peripheral 5      29.6    50.1
ROM 42116           Left peripheral 6       30     28.4
ROM 42131           Left peripheral 9      14.3    19.7
ROM 42134           Right costal 8         13.1    25.4
ROM 42135           Right costal 6         25.6    29.4
ROM 42138           Right costal 5         21.9    41.9
ROM 42143           Left costal 5          43.3    35.5
ROM 42144           Left costal 2          26.4    43.2
ROM 42147           Right costal 4         29.6    56.4
ROM 42149           Left costal 2          31.2    50.3
ROM 42150           Right peripheral 8     27.0    32.9
ROM 42152           Right costal 6         31.0    37.9
ROM 42153           Left peripheral 8      42.0    54.8
ROM 42154           Left costal 2          27.1    15.9
ROM 42159           Right costal 4         19.8    37.3
ROM 42166           Right peripheral 6     32.7    33.3
ROM 42170           Left costal 6          23.4    23.9
ROM 42174           Right costal 3         29.9    42.7
ROM 42175           Left costal 5          41.6    33.1
ROM 42179           Neural 1               26.1    18.8
ROM 42180           Neural 1               32.9    21.8
ROM 42181           Neural 1               31.8    21.3
ROM 42182           Neural 5               19.3    20.2

                    Plastron

ROM 41848           Left epiplastron       53.2    53.8
ROM 42053           Right xiphiplastron    71.6    80.9
ROM 42054           Right xiphiplastron    65.8    72.8
ROM 42055           Left xiphiplastron     64.9    73.6
ROM 42056           Left xiphiplastron     70.2    72.1
ROM 42053           Right xiphiplastron    71.6    80.9
ROM 42054           Right xiphiplastron    65.8    72.8
ROM 42055           Left xiphiplastron     64.9    73.6
ROM 42056           Left xiphiplastron     70.2    72.1
ROM 42070           Right epiplastron      46.6    34.6
ROM 42085           Left epiplastron       39.2    42.4
ROM 42095           Right epiplastron      37.6    25.7
ROM 42097           Xiphiplastron          17.5    34.6
ROM 42102           Right hypoplastron     9.7     46.0
ROM 42104           Right hypoplastron     62.3    81.5
ROM 42106           Right hypoplastron     20.6    41.1
ROM 42109           Left hypoplastron      35.7    55.7
ROM 42110           Right hyoplastron      60.2    45.6
ROM 42114           Right hyoplastron      56.6    37.5
ROM 42183           Entoplastron           40.6    43.4
ROM 42184           Entoplastron           38.6    43.3

                    Skull--neck

ROM 42051           Hyoid                  24.3     --
ROM 42052           Hyoid                  28.0     --
ROM 42185           Vertebra                --      --
ROM 42187           Vertebra                --      --

                    Pectoral--Pelvic

ROM 42046           Left scapula           28.3     --
ROM 42046           Left acromial          32.8     --
ROM 42033           Ischium                33.5     8.6
ROM 42037           Right ilium            38.7     --
ROM 42363           Right ilium            26.3     --
ROM 42364           Right ilium            24.6     --

                    Limbs

ROM 42032           Right femur            40.7     --
ROM 42034           Right femur            63.1     --
ROM 42035           Right femur            28.9     --
ROM 42036           Left ulna              34.6     --
ROM 42038           Left ilium             33.7     --
ROM 42039           Left tibia             31.9     --
ROM 42040           Left femur             20.9     --
ROM 42041           Left femur             50.9     --
ROM 42042           Left femur             46.6     --
ROM 42043           Left femur             44.9     --
ROM 42044           Left femur             36.6     --
ROM 42045           Left femur             43.6
ROM 42047           Right femur            38.3     --
ROM 42048           Right femur            48.8     --
ROM 42049           Right femur            41.7     --
ROM 42050           Left femur             33.3     --
ROM 42060           Left radius            31.6     --
ROM 42061           Left radius            31.4     --
ROM 42062           Left humerus           55.5     --
ROM 42063           Right tibia            35.5     --
ROM 42064           Right humerus          63.5     --
ROM 42065           Right humerus          46.9     --
ROM 42066           Right femur            49.9     --
ROM 42186           Left femur             30.2     --

Testudinidae

Chelonoidis sp.

                    Carapace

ROM 2024            Right peripheral 2    176.9    142.9
ROM 42025           Costal                 47.2    29.9
ROM 42026           Peripheral             91.4    62.0
ROM 42029           Costal                105.3    82.8
ROM 42030           Peripheral            113.5    103.6

                    Limbs

ROM 37737           Osteoderm              26.6    14.6
ROM 40620           Podial                 27.6    19.4
ROM 42190           Osteoderm             24.18    18.50

Specimen code       Transverse diameter   Proximal width
                           (mm)                (mm)

Geoemydidae

Rhinoclemmys sp.

Carapace

ROM 41277                   --                  --
ROM 41849                   --                  --
ROM 42068                   --                  --
ROM 42074                   --                  --
ROM 42076                   --                  --
ROM 42078                   --                  --
ROM 42079                   --                  --
ROM 42080                   --                  --
ROM 42082                   --                  --
ROM 42083                   --                  --
ROM 42084                   --                  --
ROM 42087                   --                  --
ROM 42088                   --                  --
ROM 42090                   --                  --
ROM 42091                   --                  --
ROM 42092                   --                  --
ROM 42093                   --                  --
ROM 42094                   --                  --
ROM 42099                   --                  --
ROM 42100                   --                  --
ROM 42101                   --                  --
ROM 42105                   --                  --
ROM 42112                   --                  --
ROM 42115                   --                  --
ROM 42116                   --                  --
ROM 42131                   --                  --
ROM 42134                   --                  --
ROM 42135                   --                  --
ROM 42138                   --                  --
ROM 42143                   --                  --
ROM 42144                   --                  --
ROM 42147                   --                  --
ROM 42149                   --                  --
ROM 42150                   --                  --
ROM 42152                   --                  --
ROM 42153                   --                  --
ROM 42154                   --                  --
ROM 42159                   --                  --
ROM 42166                   --                  --
ROM 42170                   --                  --
ROM 42174                   --                  --
ROM 42175                   --                  --
ROM 42179                   --                  --
ROM 42180                   --                  --
ROM 42181                   --                  --
ROM 42182                   --                  --

ROM 41848                   --                  --
ROM 42053                   --                  --
ROM 42054                   --                  --
ROM 42055                   --                  --
ROM 42056                   --                  --
ROM 42053                   --                  --
ROM 42054                   --                  --
ROM 42055                   --                  --
ROM 42056                   --                  --
ROM 42070                   --                  --
ROM 42085                   --                  --
ROM 42095                   --                  --
ROM 42097                   --                  --
ROM 42102                   --                  --
ROM 42104                   --                  --
ROM 42106                   --                  --
ROM 42109                   --                  --
ROM 42110                   --                  --
ROM 42114                   --                  --
ROM 42183                   --                  --
ROM 42184                   --                  --

ROM 42051                   3.2                 --
ROM 42052                   2.0                 --
ROM 42185                   4.3                 --
ROM 42187                   6.3                 --

ROM 42046                   6.3                 --
ROM 42046                   5.4                 --
ROM 42033                   --                  --
ROM 42037                   5.9                 --
ROM 42363                   5.6                 --
ROM 42364                   5.6                 --

ROM 42032                   4.2                10.9
ROM 42034                   6.9                18.3
ROM 42035                   3.4                14.1
ROM 42036                   4.3                6.6
ROM 42038                   5.4                 --
ROM 42039                   2.2                6.7
ROM 42040                   6.3                15.9
ROM 42041                   5.0                15.4
ROM 42042                   4.8                14.4
ROM 42043                   5.3                 --
ROM 42044                   5.2                15.1
ROM 42045                   5.6                 --
ROM 42047                   5.2                14.7
ROM 42048                   4.5                16.1
ROM 42049                   4.4                 --
ROM 42050                   7.0                 --
ROM 42060                   2.6                5.2
ROM 42061                   3.4                6.7
ROM 42062                   6.7                16.4
ROM 42063                   3.3                10.2
ROM 42064                   8.1                21.1
ROM 42065                   7.4                20.2
ROM 42066                   5.9                18.7
ROM 42186                   5.7                12.7

Testudinidae

Chelonoidis sp.

ROM 2024                    --                  --
ROM 42025                   --                  --
ROM 42026                   --                  --
ROM 42029                   --                  --
ROM 42030                   --                  --

ROM 37737                   --                  --
ROM 40620                   --                  --
ROM 42190                   --                  --

Specimen code       Distal width
                        (mm)

Geoemydidae

Rhinoclemmys sp.

Carapace

ROM 41277                --
ROM 41849                --
ROM 42068                --
ROM 42074                --
ROM 42076                --
ROM 42078                --
ROM 42079                --
ROM 42080                --
ROM 42082                --
ROM 42083                --
ROM 42084                --
ROM 42087                --
ROM 42088                --
ROM 42090                --
ROM 42091                --
ROM 42092                --
ROM 42093                --
ROM 42094                --
ROM 42099                --
ROM 42100                --
ROM 42101                --
ROM 42105                --
ROM 42112                --
ROM 42115                --
ROM 42116                --
ROM 42131                --
ROM 42134                --
ROM 42135                --
ROM 42138                --
ROM 42143                --
ROM 42144                --
ROM 42147                --
ROM 42149                --
ROM 42150                --
ROM 42152                --
ROM 42153                --
ROM 42154                --
ROM 42159                --
ROM 42166                --
ROM 42170                --
ROM 42174                --
ROM 42175                --
ROM 42179                --
ROM 42180                --
ROM 42181                --
ROM 42182                --

ROM 41848                --
ROM 42053                --
ROM 42054                --
ROM 42055                --
ROM 42056                --
ROM 42053                --
ROM 42054                --
ROM 42055                --
ROM 42056                --
ROM 42070                --
ROM 42085                --
ROM 42095                --
ROM 42097                --
ROM 42102                --
ROM 42104                --
ROM 42106                --
ROM 42109                --
ROM 42110                --
ROM 42114                --
ROM 42183                --
ROM 42184                --

ROM 42051                --
ROM 42052                --
ROM 42185                --
ROM 42187                --

ROM 42046                --
ROM 42046                --
ROM 42033                --
ROM 42037                --
ROM 42363                --
ROM 42364                --

ROM 42032                9.6
ROM 42034               13.3
ROM 42035                --
ROM 42036               10.9
ROM 42038                --
ROM 42039                6.1
ROM 42040                --
ROM 42041               12.8
ROM 42042                8.8
ROM 42043               17.9
ROM 42044                --
ROM 42045                --
ROM 42047                --
ROM 42048                --
ROM 42049               10.0
ROM 42050               10.8
ROM 42060                8.9
ROM 42061                9.4
ROM 42062                8.1
ROM 42063                6.2
ROM 42064                9.8
ROM 42065                --
ROM 42066                --
ROM 42186                --

Testudinidae

Chelonoidis sp.

ROM 2024                 --
ROM 42025                --
ROM 42026                --
ROM 42029                --
ROM 42030                --

ROM 37737                --
ROM 40620                --
ROM 42190                --


Anthony Deza (1) *, Edwin-Alberto Cadena (2) and Jean-Noel Martinez (1)

(1.) Instituto de Paleontologia, Universidad Nacional de Piura, Piura, Peru.

(2.) Grupo de Investigacion en Paleontologia Neotropical Tradicional y Molecular (PaleoNeo), Facultad de Ciencias Naturales y Matematicas, Universidad del Rosario, Bogota, Colombia.

Presentado: 10/09/2018

Aceptado: 28/04/2019

Publicado online: 31/05/2019

Correspondencia:

* Corresponding author

Anthony Deza: geologydeza@icloud.com

Edwin-A Cadena: edwin.cadena@urosario.edu.co

Jean-Noel Martinez: paleonto@yahoo.com

Otros datos de los autores / biografia:

ORCID Anthony Deza: 0000-0002-0007-9826

ORCID Edwin Cadena: 0000-0003-3038-567X

Caption: Figure 1. Map of Peru, Piura and Talara. (A) Map of Peru showing the location of Piura Department at the northwestern corner of the country. (B) Map of Piura Department showing the location of Talara and La Brea village. (C) Panoramic view of the Talara Tar Seeps.

Caption: Figure 2. Geoemydidae (Rhinoclemmys sp.) carapacial material from Talara Tar Seeps. (A-B) ROM-41849 peripheral bone of the posterior margin of the carapace, potentially peripheral 9 or 10 in dorsal view; (C-D) peripheral 8 of Trachemys scripta MTKD-26593 in dorsal view; (E-G) ROM-42099 left costal bone 5, (E) ventral view, (F-G) dorsal view; (H-I) ROM-42180 neural bone 1 in dorsal view; (J-K) ROM-42058 nuchal bone in dorsal view; (L-N) ROM-42079 right peripheral bone 3; (L) ventral view, (M-N) in dorsal view; (O-P) ROM-42093 right peripheral bone 2 in dorsal view; (Q-R) ROM-42115 left peripheral bone 5 in dorsal view; (S-T) ROM-42105 pygal bone in dorsal view; (U-V) pygal of Trachemys scripta MTKD-26593 in dorsal view; (W-X) ROM-42100 suprapygal bone in dorsal view; (Y) carapace of the extant Rhinoclemmys melanosterna CRI-4898 in dorsal view. Abbreviations: C, cervical scute; Co, costal bone; M, marginal scute; Ne, neural bone; Nu, nuchal bone; P, pleural scute; Pe, peripheral bone; Py, pygal bone; Su, suprapygal bone; V, vertebral scute.

Caption: Figure 3. Geoemydidae (Rhinoclemmys sp.) plastral material from Talara Tar Seeps. (A-B) ROM-41848 left epiplastron in ventral view; (C-D) ROM-42183 entoplastron in ventral view; (E-F) ROM-42070 right epiplastron in ventral view; (G-H) ROM-42114 right hyoplastron in ventral view; (I-J) ROM-42102 right hypoplastron in ventral view; (K-L) ROM-42053 right xiphiplastron in ventral view; (M-N) ROM 42056 left xiphiplastron in ventral view; (O) plastron of extant Rhinoclemmys melanosterna CRI-4898 in ventral view. (P) anterior plastral lobe of the extant Rhinoclemmys melanosterna CRI-2434 in ventral view; (Q) anterior plastral lobe of the extant Trachemys scripta MTKD-26593 in ventral view. Abbreviations: Abd, abdominal scute; Ana, anal scute; Epi, epiplastron bone; Fem, femoral scute; Ent, entoplastron bone; Gul, gular scute; Hum, humeral scute; Hyo, hyoplastron bone; Hyp, hypoplastron bone; Xip, xiphiplastron bone.

Caption: Figure 4. Geoemydidae (Rhinoclemmys sp.) limb bones material from Talara Tar Seeps. (A) ROM-42051 left hyoid bone in dorsal view; (B-C) ROM-42062 left humerus in right and left lateral views respectively; (D-E) ROM-42061 left radius in dorsal and ventral views respectively; (F-G) ROM-42036 left ulna in dorsal and ventral views respectively; (H-I) ROM-42046 left acromial and scapula in ventral and proximal views respectively; (J-K) ROM-42041 left femur in right and left lateral views; (L-M) ROM-42039 left tibia in ventral and dorsal views; (N-O) ROM-42038 left ilium in lateral and medial views; (P-Q) ROM-42033 right ischium in dorsal and ventral views.

Caption: Figure 5. Testudinidae (Chelonoidis sp.) carapace and limb material from Talara Tar Seeps. (A-B) ROM2024 peripheral bone from the carapace-plastron bridge region in dorsal view; (C-D) ROM-42028 partial costal bone in dorsal and posterior (cross-section) views; (E) ROM 42190 osteoderm in dorsal view; (F-G) ROM-37737 triangular osteoderm in dorsal and proximal views. 50 mm scale bar applies for A-B, 20 mm scale bar applies for C-D, 10 mm scale bar applies for E-G. Abbreviations: M, marginal scute; P, pleural scute.
COPYRIGHT 2019 Universidad Nacional Mayor de San Marcos
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2019 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:TRABAJOS ORIGINALES
Author:Deza, Anthony; Cadena, Edwin-Alberto; Martinez, Jean-Noel
Publication:Revista peruana de biologia
Date:Jul 1, 2019
Words:6110
Previous Article:Nuevos registros de Microtrypes Kuschel y nuevas localidades para Rhinotrypes Kuschel (Coleoptera, Curculionidae, Entiminae) en Peru, con una clave...
Next Article:Variacion ontogenetica y dimorfismo sexual en Platalina genovensium (Chiroptera: Phyllostomidae).
Topics:

Terms of use | Privacy policy | Copyright © 2021 Farlex, Inc. | Feedback | For webmasters |