Printer Friendly

Theories about evolutionary origins of human hepatitis B virus in primates and humans.

Introduction

The human hepatitis B virus (HBV) is a small enveloped DNA virus that causes two forms of hepatitis - acute and chronic. The World Health Organization (WHO) estimates that more than 1/3 of the world population already possess serologic evidence of HBV infection, 350 million people are chronically infected and approximately 600,000 deaths are reported each year as a result of acute or chronic hepatitis B. (1,2) Infected patients have a high risk of developing serious problems related to the disease, such as fibrosis, cirrhosis and hepatocellular carcinoma (HCC). (3) Today, HCC is the fifth most frequent human cancer. (4,5)

A prophylactic vaccine against a subunit of the hepatitis B surface antigen (HBs) is already available. However, there can be failures in some cases such as emerging anti-HBs-escape mutant viruses, patients with compromised immune-response or heterologous HBV genotypes. (6-8) Despite the safety and efficacy of the developed vaccines, infection with hepatitis B virus (HBV) continues to persist as a public health problem and a leading cause of death from infectious diseases worldwide. HBV can be divided into at least ten genotypes (A-J), distinguished by more than an 8% difference in their genomic nucleotide sequence. There are variations in the geographical distribution of HBV genotypes. While the genotypes A, D and G are detected all over the world, genotypes B, C, I and J are most common in Asia, genotype F and H in Native Americans, and genotype E can be found in Western Africa. (9-11)

The Hepadnaviridae family is made up of genera Orthohepadnavirus and Avihepadnavirus. The former infects mammals and is represented by: HBV (Hepatitis B Virus), which infects humans; viruses similar to HBV (such as woolly monkey HBV and orangutan-HBV for example), which infect non-human primates; Woodchuck hepatitis virus (WHV) that causes hepatitis in woodchucks, and Ground squirrel hepatitis virus (GSHV) causing hepatitis in squirrels. (12,13) The latter infect birds, including Duck hepatitis B virus (DHBV) responsible for duck hepatitis and Heron hepatitis B virus (HHBV) which causes hepatitis in herons. (14-16)

General characteristics of Hepadnaviridae family

Hepadnaviridae family members have as common characteristics a tropism for liver cells. They also possess enveloped virions and icosahedral nucleocapsid; the genome consists of an incomplete double stranded DNA with their own DNA polymerase, which is a long negative strand and a short positive strand, with the latter of a variable length, depending on each species. They produce subviral particles; generate persistent infection and replicate through RNA intermediate via reverse

transcriptase. (17)

The genome of human HBV (which is the prototype species of the family Hepadnaviridae) has a peculiar genomic organization with a mechanism of asymmetric replication. This genome is relaxed circular and has a length of approximately 3200 base pairs and has four regions of open reading frame[s?] (ORF) which overlap: Pre-S1/Pre-S2/S, Pre C/C, X and P. These genes are responsible for encoding the three envelope (or surface) proteins; small (S), medium (M), and large (L), that constitute the HBV surface antigen (HBsAg), the core protein (HBcAg), the nuclear protein (HBeAg), X protein (that can affect viral replication and proliferation, and interfere in cellular processes of apoptosis and carcinogenesis) and viral polymerase (P). (18,19) The ORF of the P gene occupies 80% of the entire genome and encodes the viral DNA polymerase enzyme which has three areas: DNA polymerase, reverse transcriptase and RNAase. To better describe mutations in this gene, the reverse transcriptase domain was sub-divided into 7 sub-domains, classified A-G. (17,18,20) Mutations in the P gene cause a large increase in the synthesis of viral DNA and greater risk of liver carcinogenesis. (18)

Another characteristic is that hepatitis B is a non-retroviral virus that uses reverse transcriptase as part of its replication process, using the 'covalently closed circular DNA' (cccDNA), which serves as a template for transcription of four viral mRNAs and allows the maintenance of chronic HBV infection in hosts. (21)

HBV in primates

Besides human HBV, which is the model species of the family, there are viruses belonging to the same family that infect other primates (Table 1). Non-human HBV genotypes were found in higher Old World primates. (22,23) Together with the high diversity of African HBV subgenotypes and recombinants, this led to the possibility that the origin of HBV occurred in Old World primates. (23,24) Most isolates from non-human primates (NHP) were phylogenetically close to human HBV isolates. Viruses were found in gibbons (Nomascus sp. and Hylobates sp.), (25) chimpanzees (Pan troglodytes), (26-29) gorillas (Gorilla gorilla) (30) and orangutans (Pongo pygmaeus) (31) (Fig. 1).

The origin of these viruses remains controversial. Chimpanzees from different regions of the planet appear to be infected with different types of isolates, (27) supporting the concept that these viruses may have evolved with their hosts. However, the hepadnavirus isolated from woolly monkeys (Lagothrix lagotricha)--woolly monkey HBV (WMHBV) clearly is a new member of the Hepadnaviridae family. (32) Both the WMHBV and the New World human HBV genotypes F and H were in a phylogenetic sister-relationship which is more divergent to the Old World human HBV genotypes, strengthening hypotheses on an origin of HBV in New World primates. (33,34) Until the present moment, WMHBV has been detected only in captive animals at one zoo, but it was not found in another four zoos tested. (32) So far, there have been no reports about the presence of this virus in wild woolly monkeys.

In 2013, Dupinay et al. (35) investigated HBV infection in small primates of different origins and in Mauritius, 25.8% (in serum) and 42% (in liver) of HBV DNA positives were found. Genome sequencing data revealed that it was human HBV genotype D, subtype ayw3. This provides evidence for the existence of small model simian chronic HBV infection, immunologically near human and that it might have been transmitted from man hundred years ago.

Theories of HBV origins and evolution

With the advent of the new field of paleovirology, studies have revealed that integration into the nuclear genome of germline cells can lead to vertical inheritance of retroviral genes as host alleles. Such integration events are referred to as endogenous viral elements (EVEs). Paleoviral "fossils" were recently discovered from a wide range of viruses including EVE nonretroviral families (rtDNA viruses) e.g.: Hepadnaviridae. (36,37) Genomic "fossils" of avihepadnaviruses integrated into the genomes of diverse avian species suggest that the origin of this group is much older dating back several million years to the Mesozoic Era. (38-40) In a recent study, Suh et al. (40) emphasized that "insights into long-term sequence evolution, genome evolution and hypothetical ancestral hosts change the understanding of the prehistoric evolution of Hepadnaviridae, including the hypothetical origin of mammalian HBVs," contributing to several studies in the field of medical and paleontological research. The evolutionary origin of hepadnavirus in primates has been dated back several thousand years. (33) No "fossil" records have been described from primates so far.

Most of our knowledge about pathogenesis and the replication of hepatitis B virus has been obtained from studies of hepadnaviruses related to animals as models, including Duck Hepatitis B Virus (DHBV), (41) Woodchuck Hepatitis virus (WHV), (42) Ground Squirrel Hepatitis virus (GSHV), (43) Arctic Squirrel Hepatitis virus (ASHV), (44) Heron Hepatitis B Virus (HHBV), (45) and Stork Hepatitis B Virus (STHBV). (46)

Studies about pathogens that affect primates are of great scientific relevance because of their evolutionary relationship with humans. Non-human primates can be sentinels for surveillance of infectious agents and also biological models for important diseases affecting the human species, such as HBV. Checking for diseases common to humans and primates is crucial in reducing risks to the health of humans. (47)

All known hepadnaviruses that affect primates and other animals cause acute and chronic hepatic infection in their hosts. (48) A main characteristic of all the viruses in this family is the possibility of chronic infection with serious clinical consequences. (48,49) However, what are the implications of the origins of HBV?

During the 1990s, three competing hypotheses about the evolutionary origins of HBV emerged, as reviewed by Simmonds in 2001. (24) A New World origin was proposed because of the phylogenetic co-segregation between the New World HBV genotypes F and H and WMHBV in basal sister-relationship, to the Old World non-human primates and human HBV variants. The dissemination of HBV into the Old World would then have occurred either in the post-Columbian Era (nearly 500 years ago) or during earlier human migrations about 15,000 years ago. (33,34) A second theory suggests an Old World origin of HBV, and that it was spread following prehistoric human migrations over 100,000 years ago. (50) A third theory suggests a co-speciation of HBV in non-human primate hosts because of the proximity between the phylogeny of Old and New World NHP and their HBV variants. (28)

These theoretical approaches were unable to reconcile conflicting data resultant from the distribution of HBV variants in human and non-human primate hosts on a global scale. An example is that the HBV genotypes in Old World primates are mutually equidistant. This is unlikely to have occurred from independent acquisitions of human HBV variants in only a few hundred years, going against the New World origin theory. (24) In relation to the theory of a supposed exodus of HBV together with human migration out of Africa to other areas of the planet does not explain the distribution of HBV genotypes in the world. (24) For example, the New World HBV genotype F that is found in Native Americans is also found in genetically unrelated island populations of Polynesia. The closest relatives of Native Americans living in Northeastern Asia are predominantly infected by genotypes B and C of HBV. (24)

The widely host-specific HBV variants support the theory about HBV co-speciation with primate hosts. However, as noted by Simmonds, (24) this theory is challenged by a lack of shared HBV variants between humans and non-human primates, by the existence of cross-species HBV transmission and by the lack of higher diversification in NHP compared to human HBV variants. These have long been deemed unlikely, but recent data has shown that orangutans and gibbons sharing habitats in Asia harbour phylogenetically co-segregating HBV variants. Similarly, recombination events between HBV genotypes of chimpanzee and gorilla from Central Africa, phylogenetically grouped together and inter-species have been described. (22,23) Furthermore, sporadic detections of human-related HBV genotypes have been described in chimpanzees and Orangutans, both of the Hominidae family. (9,51) Cui (52) suggests that a large number of cross-species transmission events are probably also present in avihepadnaviruses, whose phylogeny does not match that of the host orders Gruiformes and Anseriformes. (52) Gibbons separated genetically from orangutans, gorillas and chimpanzees about 20 million years ago. Despite this, the orangutan and gibbon HBV variants found to date are similar. (22)

Evidence of animals as reservoirs, possible recombination between human and non-human primate HBV variants, and inter-species transmissions all provide important information that may assist in the eradication of HBV throughout the world. (28)

Co-evolution of HBV variants in non-human primates is further challenged by the comparable degree of diversification within viruses that affect chimpanzees, gibbons and gorillas, and phylogenetic sister-relationships between these viruses that do not reflect the evolution of their hosts. This includes the absence of outlier gorilla HBV variants in relation to chimpanzee variants and human HBV genotypes F and H in phylogenetic outlier position to the Old World NHP viruses. (22) Similarly, this theory fails to explain the position of gibbon HBV variants and their comparable diversification to other primate HBV genotypes (phylogenetically), while they should be more diversified than those of great apes given their divergence from the latter about twenty million years ago. (52) Co-evolution on the scale of the Hepadnaviridae family seems even less likely, given the high diversity of rodent and bird hepadnaviruses from their primate counterparts. As noted above, this does not match the timescale of the likely separation of these variants, which may be only 10-20 times greater than the development of monkey. (22)

Attempts to determine a non-recent Hepadnaviridae evolution are compromised by several factors. This includes the sequence constraints arising from largely overlapping ORFs. (33) While this technical problem can be dealt with, (33) there are several recent descriptions of avihepadnavirus genomic fossils. (38,39,53) These sequences have indicated that previous assumptions based on existent HBV variants may have underestimated the period of hepadnaviruses origin in the range of several million years. (38) Theoretically, a continuous appearance of infectious viruses from genomic pockets could explain the unusually slow rates of sequence change in the range of 10 per site per year observed that are necessary to explain the sequence divergence between non-human primates HBV hosts in a co-speciation scenario. (24,33)

Understanding the relationship between humans and NHP variants of HBV will help explain the possible role that humans and other primates have played in the spread of HBV around the globe. (22) No hepadnavirus elements in primate genomic data have been described to date. It is clear that one single theory has been unable to explain the emergence of HBV until now.

Primates in South America

The most plausible scenario to explain the arrival of primates in South America consists of a transatlantic migration at the end of the Eocene epoch. South American platyrrhine primates probably dispersed from either Asian or African catarrhine ancestors about 37-40 million years ago. However, the radiation of platyrrhines in the New World probably occurred during the Miocene epoch, (52,54) although the feasibility of this route is the subject of several debates. The oldest primate fossil discovered in South America is dated to about 27 million years ago. (50) Whether Old World hepadnaviruses could have been taken to today's South America by the natural barriers formed by the separation of the sub-continent from the Gondwanan supercontinent about 100 million years ago (28) is something that remains unknown. Hypothetical viruses would then have been passed to several host lineages, because a South American evolution of platyrrhines 100 million years ago is deemed highly unlikely. (28)

The high degree of complexity in epidemiological factors such as transmission routes can affect the large number of HBV variants in circulation. However, the propagation of these viruses can be enhanced with the development of recombinant variants, allowing the virus to be transmitted more efficiently between different species. (10,55)

There are many primates in South America, and in Brazil alone 133 species and subspecies of Neotropical primates can be found in the wild fauna, which represents approximately 21% of the existing group on the planet (56) (Fig. 2). Wild cycles and urban cycles of transmission of some pathogens start to intertwine forming new epidemiological settings with risks to human and animal populations in both environments. (57,58)

Until now there has been no study into infectious hepadnavirus in non-human primates of the fauna in South America and it is not known whether the existing species in the New World may or may not be carrying the hepatitis B virus that infects humans, or if it is another variant of the Hepadnaviridae family. Therefore, to investigate the presence of these viruses in this area it is important to try to help unravel the origin of the Hepadnaviruses and how they evolved in primates and humans.

ARTICLE INFO

Article history:

Received 28 September 2013

Accepted 13 December 2013

Available online 13 April 2014

Conflicts of interest

The authors declare no conflicts of interest.

REFERENCES

(1.) Kane M. Global programme for control of hepatitis B infection. Vaccine. 1995;13:47-9.

(2.) WHO. Hepatitis B; 2013. Available from: http://www.who.int/mediacentre/factsheets/fs204/en/ (accessed 10.06.13).

(3.) Maddrey WC. Hepatitis B--an important public health issue. Clin Lab. 2001;47:51-5.

(4.) Lavanchy D. Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J Viral Hepat. 2004;11:97-107.

(5.) Shepard CW, Simard EP, Finelli L, et al. Hepatitis B virus infection: epidemiology and vaccination. Epidemiol Rev. 2006;28:112-25.

(6.) Carman WF, Zanetti AR, Karayiannis P, et al. Vaccine-induced escape mutant of hepatitis B virus. Lancet. 1990;336:325-9.

(7.) Shizuma T, et al. Molecular analysis of antigenicity and immunogenicity of a vaccine-induced escape mutant of hepatitis B virus. J Gastroenterol. 2003;38:244-53.

(8.) Tacke F, Amini-Bavil-Olyaee S, Heim A, Luedde T, Manns MP, Trautwein C. Acute hepatitis B virus infection by genotype F despite successful vaccination in an immune-competent German patient. J Clin Virol. 2007;38:353-7.

(9.) Tatematsu K, Tanaka Y, Kurbanov F, et al. A genetic variant of hepatitis B virus divergent from known human and ape genotypes isolated from a Japanese patient and provisionally assigned to new genotype J. J Virol. 2009;83:10538-47.

(10.) Simmonds P, Midgley S. Recombination in the genesis and evolution of hepatitis B virus genotypes. J Virol. 2005;79:15467-76.

(11.) Tran TT, Trinh TN, Abe K. New complex recombinant genotype of hepatitis B virus identified in Vietnam. J Virol. 2008;82:5657-63.

(12.) Seerger C, et al. The cloned genome of ground squirrel hepatitis virus is infectious in the animal. Proc Natl Acad Sci USA. 1984;81:5849-952.

(13.) Pringle CR. The universal system of virus taxonomy of the International Committee on Virus Taxonomy (ICTV), including new proposals ratified since publication of the Sixth ICTV Report in 1995. Arch Virol. 1998;143:203-10.

(14.) Mandart E, Kay A, Galibert F. Nucleotide sequence of a cloned duck hepatitis B virus genome: comparison with woodchuck and human hepatitis B virus sequences. J Virol. 1984;49:782-92.

(15.) Seeger C, Mason WS. Hepatitis B virus biology. Microbiol Mol Biol Rev. 2000;64:51-68.

(16.) Fauquet CM, Mayo MA, Maniloff J, et al. Hepadnaviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA, editors. Virus taxonomy classification and nomenclature of viruses. Eight report of the international committee on taxonomy of viruses. Amsterdam: Elselvier, Academic Press; 2005. p. 373-84.

(17.) Madigan MTM, Martinko JM, Parker J. Brock Biologia de los Microorganismos. Prentice Hall: Pearson; 2003. p. 675-710.

(18.) Zhu R, Zhang HP, Yu H, et al. Hepatitis B virus mutations associated with in situ expression of hepatitis B core antigen, viral load and prognosis in chronic hepatitis B patients. Pathol Res Pract. 2008;204:731-42.

(19.) Wen Y, Golubkov VS, Strongin AY, Jiang W, Reed JC. Interaction of hepatitis B viral oncoprotein with cellular target HBXIP dysregulates centrosome dynamics and mitotic spindle formation. J Biol Chem. 2008;283:2793-803.

(20.) Oliveira CMA. Situacao imunologica dos profissionais de saude de um laboratorio de pesquisa em relacao ao virus da hepatite B. Universidade Federal do Para; 2009, 98f: Il.

(21.) Levrero M, Pollicino T, Petersen J, et al. Control of cccDNA function in hepatitis B virus infection. J Hepatol. 2009;51:581-92.

(22.) Lyons S, Sharp C, LeBreton M, et al. Species association of hepatitis B virus (HBV) in non-human apes; evidence for recombination between gorilla and chimpanzee variants. PLoS ONE. 2012;7:e33430.

(23.) Starkman SE, MacDonald DM, Lewis JC, Holmes EC, Simmonds P. Geographic and species association of hepatitis B virus genotypes in non-human primates. Virology. 2003;314:381-93.

(24.) Simmonds P. The origin and evolution of hepatitis viruses in humans. J Gen Virol. 2001;82 Pt 4:693-712.

(25.) Lanford RE, Chavez D, Rico-Hesse R, et al. Hepadnavirus infection in captive gibbons. J Virol. 2000;74:2955-9.

(26.) Hu XL, Margolis HS, Purcell RH, et al. Identification of hepatitis B virus indigenous to chimpanzees. Proc Natl Acad Sci USA. 2000;97:1661-4.

(27.) Hu XL, Javadian A, Gagneux P, et al. Paire chimpanzee hepatitis B virus (ChHBV) and mtDNA sequences suggest different ChHBV genetic variants are found in geographically distinct chimpanzee subspecies. Virus Res. 2001;79:103-8.

(28.) MacDonald DM, Holmes EC, Lewis JC, et al. Detection of hepatitis B virus infection in wild-born chimpanzees (Pan troglodytes verus): phylogenetic relationships with human and other primate genotypes. J Virol. 2000;74:4253-7.

(29.) Takahashi K, Mishiro S, Prince AM. Novel hepatitis B virus strain from a chimpanzee of Central Africa (Pan troglodytes troglodytes) with an unusual antigenicity of the core protein. Intervirology. 2001;44:321-6.

(30.) Grethe S, Heckel JO, Rietsche W, et al. Molecular epidemiology of hepatitis B virus variants in nonhuman primates. J Virol. 2000;74:5377-81.

(31.) Warren KS, Heeney JL, Swan RA, et al. A new group of hepadnaviruses naturally infecting oran-gutans (Pongo pygmaeus). J Virol. 1999;73:7860-5.

(32.) Lanford RE, Chavez D, Brasky KM, et al. Isolation of a hepadnavirus from the woolly monkey, a New World primate. Proc Natl Acad Sci USA. 1998;95:5757-61.

(33.) Fares MA, Holmes EC. A revised evolutionary history of hepatitis B virus (HBV). J Mol Evol. 2002;54:807-14.

(34.) Bollyky PL, Rambaut A, Grassley N, et al. Hepatitis B virus has a recent new world evolutionary origin. J Hepatol. 1998;28:96.

(35.) Dupinay T, Gheit T, Roques P, et al. Discovery of naturally occurring transmissible chronic hepatitis B virus infection among Macaca fascicular is from mauritius island. Hepatology. 2013, http://dx.doi.org/10.1002/hep.26428.

(36.) Patel MR, Emerman M, Malik HS. Paleovirology - ghosts and gifts of viruses past. Curr Opin Virol. 2011;1:304-9.

(37.) Katzourakis A, Gifford RJ. Endogenous viral elements in animal genomes. PLoS Genet. 2010;6:e1001191.

(38.) Gilbert C, Feschotte C. Genomic fossils calibrate the long-term evolution of hepadnaviruses. PLoS Biol. 2010;8.

(39.) Cui J, Holmes EC. Endogenous hepadnaviruses in the genome of the budgerigar (Melopsittacus undulatus) and the evolution of avian hepadnaviruses. J Virol. 2012;86:7688-91.

(40.) Suh AW, Brosius J, Schmitz J, et al. The genome of a Mesozoic paleovirus reveals the evolution of hepatitis B viruses. Nat Commun. 2013, http://dx.doi.org/10.1038/ncomms2798.

(41.) Mason WS, Seal G, Summers J. Virus of Pekin ducks with structural and biological relatedness to human hepatitis B virus. J Virol. 1980;36:829-36.

(42.) Summers J, Smolec JM, Snyder R. A virus similar to human hepatitis B virus associated with hepatitis and hepatoma in woodchucks. Proc Natl Acad Sci USA. 1978;75:4533-7.

(43.) Marion PL, Oshiro LS, Regnery DC, et al. A virus in Beechey ground squirrels that is related to hepatitis B virus of humans. Proc Natl Acad Sci USA. 1980;77:2941-5.

(44.) Testut P, Renard CA, Terradillos O, et al. A new hepadnavirus endemic in arctic ground squirrels in Alaska. J Virol. 1996;70:4210-9.

(45.) Sprenge R, Kaleta EF, Will H. Isolation and characterization of a hepatitis B virus endemic in herons. J Virol. 1988;62:3832-9.

(46.) Pult I, Netter HJ, Bruns M, et al. Identification and analysis of a new hepadnavirus in white storks. Virology. 2001;289:114-28.

(47.) Wolfe ND, Escalante AA, Karesh WB, et al. Wild primate populations in emerging infectious disease research: the missing link? Emerg Infect Dis. 1998;4:149-58.

(48.) Glebe D, Urban S. Viral and cellular determinants involved in hepadnaviral entry. World J Gastroenterol. 2007;13:22-38.

(49.) Liang TJ. Hepatitis B: the virus and disease. Hepatology. 2009;49 5 Suppl.:S13-21.

(50.) Magnius LO, Norder H. Subtypes, genotypes and molecular epidemiology of the hepatitis B virus as reflected by sequence variability of the S-gene. Intervirology. 1995;38:24-34.

(51.) Takahashi K, Brotman B, Usuda S, et al. Full-genome sequence analyses of hepatitis B virus (HBV) strains recovered from chimpanzees infected in the wild: implications for an origin of HBV. Virology. 2000;267:58-64.

(52.) Springer MS, Meredith RW, Gatesy J, et al. Macroevolutionary dynamics and historical biogeography of primate diversification inferred from a species supermatrix. PLoS ONE. 2012;7:e49521.

(53.) Liu W, Pan S, Yang H, et al. The first full-length endogenous hepadnaviruses: identification and analysis. J Virol. 2012;86:9510-3.

(54.) Poux C, Chevret P, Huchon D, et al. Arrival and diversification of caviomorph rodents and platyrrhine primates in South America. Syst Biol. 2006;55:228-44.

(55.) Sugauchi F, Orito E, Ichida T, et al. Hepatitis B virus of genotype B with or without recombination with genotype C over the precore region plus the core gene. J Virol. 2002;76:5985-92.

(56.) Chiarello AG, Aguiar LMS, Cerqueira R, et al. Mamiferos ameacados de extincao no Brasil. In: Livro vermelho da fauna brasileira ameacada de extincao. 1st ed. Brasil: Ministerio do Meio Ambiente, Brasilia; 2008. p. 681-842.

(57.) Rylands AB, Mittermeier RA. The diversity of the new world primates (platyrrhini): an annotated taxonomy. Naturally acquired visceral leishmaniasis in non-human primates in Brazil. Vet Parasitol. 2010;169:193-7.

(58.) Daszak P, Cunningha AA, Hyatt AD. Emerging infectious disease of wildlife threats to biodiversity and human health. Science. 2000;287:442-9.

(59.) Njouom R, Mba SAS, Nerrienet E, et al. Detection and characterization of hepatitis B virus strains from wild-caught gorillas and chimpanzees in Cameroon, Central Africa. Infet Genet Evol. 2010;10:790-6.

(60.) Makuwa M, Souquiere S, Bourry O, et al. Complete-genome analysis of hepatitis B virus from wild-born chimpanzees in central Africa demonstrates a strain-specific geographical cluster. J Gen Virol. 2007;88:2679-85.

(61.) Makuwa M, Souquiere S, Telfer P, et al. Hepatitis viruses in non-human primates. J Med Primatol. 2006;35:384-7.

(62.) Ogata N, Ostberg L, Ehrlich PH, et al. Markedly prolonged incubation period of hepatitis B in a chimpanzee passively immunized with a human monoclonal antibody to the a determinant o hepatitis B surface antigen. Proc Natl Acad Sci USA. 1993;90:3014-8.

(63.) Vaudin M, Wolstenholme AJ, Tsiquaye KN, et al. The complete nucleotide sequence of the genome of a hepatitis B virus isolated from a naturally infected chimpanzee. J Gen Virol. 1988;69:1383-9.

(64.) Eichberg JW, Kalter SS. Hepatitis A and B: serologic survey of human and nonhuman primate sera. Lab Anim Sci. 1980;30:541-3.

(65.) Zuckerman AJ, Thornton A, Howard CR, et al. Hepatitis B outbreak among chimpanzees at the London Zoo. Lancet. 1978;2:652-4.

(66.) Davis HL, Suparto II, Weeratna RR, et al. CpG DNA overcomes hyporesponsiveness to hepatitis B vaccine in orangutans. Vaccine. 2000;18:1920-4.

(67.) Sall AA, Starkman S, Reynes JM, et al. Frequent infection of Hylobates pileatus (pileated gibbon) with species-associated variants of hepatitis B virus in Cambodia. J Gen Virol. 2005;86:333-7.

(68.) Aiba N, Nishimura H, Arakawa Y, et al. Complete nucleotide sequence and phylogenetic analyses of hepatitis B virus isolated from two pileated gibbons. Virus Genes. 2003;27:219-26.

(69.) Noppornpanth S, Haagmans BL, Bhattarakosol P, et al. Molecular epidemiology of gibbon hepatitis B virus transmission. J Gen Virol. 2003;84:147-55.

(70.) Thornton SM, Walker S, Zuckerman JN. Management of hepatitis B virus infections in two gibbons and a western lowland gorilla in a zoological collection. Vet Rec. 2001;149:113-5.

(71.) Norder H, Ebert JW, Fields HA, et al. Complete sequencing of a gibbon hepatitis B virus genome reveals a unique genotype distantly related to the chimpanzee hepatitis B virus. Virology. 1996;218:214-23.

(72.) Baptista M, Kramvis A, Jammeh S, et al. Follow up of infection of chacma baboons with inoculum containing A and non-A genotypes of hepatitis B virus. World J Gastroenterol. 2003;9:731-5.

(73.) Michaels MG, Lanford R, Demetris AJ, et al. Lack of susceptibility of baboons to infection with hepatitis B virus. Transplantation. 1996;61:350-1.

(74.) Saitou N, Nei M. The Neighbor-Joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406-25.

(75.) Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evaluation. 1985;39:783-91.

(76.) Nei M, Kumar S. Molecular evolution and phylogenetics. New York: Oxford University Press; 2000.

(77.) Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731-9.

(78.) Dickens C, Kew MC, Purcell RH, Kramvis A. Occult hepatitis B virus infection in Chacma baboons, South Africa. Emerg Infect Dis. 2013;19(4):598-605.

Breno Frederico de Carvalho Dominguez Souza (a), Jan Felix Drexler (b), Renato Santos de Lima (c), Mila de Oliveira Hughes Veiga do Rosdrio (a), Eduardo Martins Netto (a), *

(a) Infectious Diseases Research Laboratory, University Hospital Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BA, Brazil

(b) Institute of Virology, University of Bonn Medical Centre, Bonn, Germany

(c) Universidade Federal da Bahia, Salvador, BA, Brazil

* Corresponding author at: Laboratorio de Pesquisa em Infectologia, Nucleo Hospitalar de Infectologia, Rua Augusto Viana, SN, 6o andar, Canela, Salvador, 40110-060, BA, Brazil.

E-mail addresses: enetto@ufba.br, brenodominguez@hotmail.com (E.M. Netto).

http://dx.doi.org/10.1016/j.bjid.2013.12.006

Table 1--Characteristics of previous publications about HBV
infections in primates: PCR detection, HBsAg, HBcAb, genotypes
and observations.

Publications                           Non--human primates    PCR (a)
                                         species
                                       Great monkeys (apes)
Lyons et al. (22) (Cameroon--tested    Pan troglodytes        51/268
in United Kingdom)                     spp.

Njouom et al. (59) (Cameroon)

Makuwa et al. (60) (Cameroon,
Republic of Congo and Gabon)
Makuwa et al. (61) (Republic of
Congo and Gabon)
Starkman et al. (23) (Cameroon --
tested in United Kingdom)
Takahashi et al. (29) (Sierraleone
and Gabon)

Hu et al. (27) (USA)
MacDonald et al. (28) (Cameroon and
United Kingdom)
Hu et al. (26) (USA)
Takahashi et al. (51) (Liberia)
Grethe et al. (30) (Germany)
Ogata et al. (62) (USA)

Vaudin et al. (63) (United Kingdom)
Eichberg and Kalter (64) (USA)

Zuckerman et al. (65) (United
Kingdom)
Starkman et al. (23) (Taiwan--         Pongo pygmaeus         32/104
tested in United Kingdom)              spp.
Davis et al. (66) (Canada)
Warren et al. (31) (Indonesia)
Vaudin et al. (63) (United Kingdom)
Sall et al. (67) (Cambodia)            Hylobates spp.         66/211
Starkman et al. (23) (Taiwan--
tested in United Kingdom)
Aiba et al. (68) (Japan)
Noppornpanth et al. (69) (Thailand)
Grethe et al. (30) (Germany,
France, Thailand, and Vietnam--
tested in Germany)
Thornton et al. (70) (United
Kingdom)
Lanford et al. (25) (USA)
Norder et al. (71) (Thailand--
tested in USA)
Vaudin et al. (63) (United Kingdom)
Lyons et al. (22) (Cameroon--tested    Gorilla gorilla        14/68
in United Kingdom)                     spp.

Njouom et al. (59) (Cameroon)
Makuwa et al. (60) (Republic of
  Congo and Gabon)
Thornton et al. (70) (United
Kingdom)
Grethe et al. (30) (Germany)
Zuckerman et al. (65) (United
Kingdom)

                                       Old world monkeys
Dickens, 2013 (78) (South Africa)      Papio spp.             19/97

Lyons et al. (22) (Cameroon--tested
  in United Kingdom)
Baptista et al. (72) (South Africa)

Michaels et al. (73) (USA)
Eichberg and Kalter (64) (USA)

Dupinay et al. (35) (Mauritius         Cercopithecus          0/37
  Island)
Lyons et al. (22) (Cameroon--tested    spp.
  in United Kingdom)
Makuwa et al. (60) (Republic of
  Congo and Gabon)
Starkman et al. (23) (Cameroon and
  Nigeria--tested in United Kingdom)
Eichberg and Kalter (64) (USA)
Lyons et al. (22) (Cameroon--tested    Mandrillus spp.        1/109
  in United Kingdom)
Starkman et al. (23) (Cameroon and
  Nigeria--tested in United Kingdom)
Makuwa et al. (60) (Republic of        Miopithecus talapoin   --
  Congo and Gabon)
Lyons et al. (22) (Cameroon--tested    Cercocebus             1/14
  in United Kingdom)                   (Lophocebus)
Makuwa et al. (60) (Republic of        albigena
  Congo and Gabon)
Makuwa et al. (60) (Republic of        Chlorocebus aethiops   --
  Congo and Gabon)
Dupinay et al. (35) (Mauritius         Macaca spp.            31/120
  Island)
Lyons et al. (22) (Cameroon--tested
  in United Kingdom)
Lyons et al. (22) (Cameroon--tested    Erythrocebus patas     0/3
  in United Kingdom)
                                       New world monkeys
Lanford et al. (32) (USA)              Lagothrix lagotricha   10/35
Eichberg and Kalter (64) (USA)         Saimiri sciureus       --
Eichberg and Kalter (64) (USA)         Callithrix jacchus     --
Eichberg and Kalter (64) (USA)         Saguinus oedipus       --

Publications                           HBsAg (a)--     Genotypes and
                                       HBcAb (a)       observations

Lyons et al. (22) (Cameroon--tested    58/810-10/14    chHBV.
in United Kingdom)                                     Evidence for a
                                                       recombination
                                                       between goHBV
                                                       and ch--
                                                       derived HBV
Njouom et al. (59) (Cameroon)                          chHBV.
                                                       Recombination
                                                       between HBV P.
                                                       t. troglodytes
                                                       and P. t.
                                                       vellerosus
                                                       strains
Makuwa et al. (60) (Cameroon,                          chHBV
Republic of Congo and Gabon)
Makuwa et al. (61) (Republic of                        --
Congo and Gabon)
Starkman et al. (23) (Cameroon --                      chHBV
tested in United Kingdom)
Takahashi et al. (29) (Sierraleone                     chHBV, that
and Gabon)                                             can be a
                                                       recombination
                                                       between human
                                                       HBV and go/ch
                                                       HBV
Hu et al. (27) (USA)                                   chHBV
MacDonald et al. (28) (Cameroon and                    chHBV
United Kingdom)
Hu et al. (26) (USA)                                   chHBV
Takahashi et al. (51) (Liberia)                        chHBV
Grethe et al. (30) (Germany)                           chHBV
Ogata et al. (62) (USA)                                HBV
                                                       (experimental
                                                       infection)
Vaudin et al. (63) (United Kingdom)                    HBV (PCR)
Eichberg and Kalter (64) (USA)                         HBV
                                                       (serological
                                                       tests)
Zuckerman et al. (65) (United                          HBV
Kingdom)                                               (serological
Starkman et al. (23) (Taiwan--         58/141-1/14     -- tests)
tested in United Kingdom)
Davis et al. (66) (Canada)                             --
Warren et al. (31) (Indonesia)                         orHBV
Vaudin et al. (63) (United Kingdom)                    HBV (PCR)
Sall et al. (67) (Cambodia)            53/225-48/130   gbHBV
Starkman et al. (23) (Taiwan--                         gbHBV
tested in United Kingdom)
Aiba et al. (68) (Japan)                               gbHBV
Noppornpanth et al. (69) (Thailand)                    gbHBV
Grethe et al. (30) (Germany,                           gbHBV
France, Thailand, and Vietnam--
tested in Germany)
Thornton et al. (70) (United                           gbHBV
Kingdom)
Lanford et al. (25) (USA)                              HBV (PCR)
Norder et al. (71) (Thailand--                         gbHBV
tested in USA)
Vaudin et al. (63) (United Kingdom)                    HBV (PCR)
Lyons et al. (22) (Cameroon--tested    5/55-0/14       goHBV.
in United Kingdom)                                     Evidence for a
                                                       recombination
                                                       between goHBV
                                                       and ch--
                                                       derived HBV
Njouom et al. (59) (Cameroon)                          goHBV
Makuwa et al. (60) (Republic of                        --
  Congo and Gabon)
Thornton et al. (70) (United                           goHBV
Kingdom)
Grethe et al. (30) (Germany)                           goHBV
Zuckerman et al. (65) (United                          HBV
Kingdom)                                               (serological
                                                       tests)

Dickens, 2013 (78) (South Africa)      0/176-4/111     HBV,
                                                       subgenotype A2
Lyons et al. (22) (Cameroon--tested                    --
  in United Kingdom)
Baptista et al. (72) (South Africa)                    HBV
                                                       (experimental
                                                       infection)
Michaels et al. (73) (USA)                             --
Eichberg and Kalter (64) (USA)                         HBV
                                                       (serological
                                                       tests)
Dupinay et al. (35) (Mauritius         0/121-0/102     --
  Island)
Lyons et al. (22) (Cameroon--tested                    --
  in United Kingdom)
Makuwa et al. (60) (Republic of                        --
  Congo and Gabon)
Starkman et al. (23) (Cameroon and                     --
  Nigeria--tested in United Kingdom)
Eichberg and Kalter (64) (USA)                         --
Lyons et al. (22) (Cameroon--tested    0/252-0/252     Incomplete
  in United Kingdom)                                     data
Starkman et al. (23) (Cameroon and                     --
  Nigeria--tested in United Kingdom)
Makuwa et al. (60) (Republic of        0/5-0/5         --
  Congo and Gabon)
Lyons et al. (22) (Cameroon--tested    0/6-0/6         Incomplete
  in United Kingdom)                                     data
Makuwa et al. (60) (Republic of                        --
  Congo and Gabon)
Makuwa et al. (60) (Republic of        0/29-0/29       --
  Congo and Gabon)
Dupinay et al. (35) (Mauritius         0/223-0/223     Sequence was
  Island)                                              close to HBV
Lyons et al. (22) (Cameroon--tested                    genotype D
  in United Kingdom)                                   subtype ayw3
Lyons et al. (22) (Cameroon--tested    --              --
  in United Kingdom)

Lanford et al. (32) (USA)              7/31-X          WMHBV
Eichberg and Kalter (64) (USA)         0/20-X          --
Eichberg and Kalter (64) (USA)         0/6-X           --
Eichberg and Kalter (64) (USA)         0/12-X          --

(a) Positives/tested.
COPYRIGHT 2014 Contexto
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2014 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Souza, Breno Frederico de Carvalho Dominguez; Drexler, Jan Felix; de Lima, Renato Santos; do Rosario
Publication:The Brazilian Journal of Infectious Diseases
Article Type:Report
Date:Sep 1, 2014
Words:5774
Previous Article:Recommendations for the treatment of osteomyelitis.
Next Article:Drug-laboratory interaction between beta-lactam antibiotics and the galactomannan antigen test used to detect mould infections.
Topics:

Terms of use | Privacy policy | Copyright © 2022 Farlex, Inc. | Feedback | For webmasters |