Printer Friendly

The synthesis of NiO/Ti[O.sub.2] heterostructures and their valence band offset determination.

1. Introduction

Recently, the fabrication and the engineering of nanostructures based on metal oxides have drawn effective attention of the researchers due to their specific electronic and optoelectronic features and more practical applications in the industry and technology [1]. Among the various metal oxides, the nanostructures of titanium dioxide (Ti[O.sub.2]) are more popular because of their uniqueness and attractive properties in optics, electronics, photochemistry, and biology in addition to its usability in the fabrication of photovoltaic devices [2-4], lithium ion batteries [5], dye-sensitized solar cells [6, 7], and photocatalysts [8-15]. Different methods have been used to enhance the photocatalysts properties of titanium dioxide such as Ti[O.sub.2]-carbon hybrids and doping of Ti[O.sub.2] with metals and nonmetals has also significant contribution on the photocatalysts properties of titanium dioxide nanomaterial [10-12].

Several growth techniques have been used for the synthesis of one dimensional Ti[O.sub.2] nanostructures such as hydrothermal [16], template synthesis [17, 18], electrochemical etching [19, 20], chemical vapor deposition [21], and sol-gel process [22, 23]. Among above mentioned methods, the hydrothermal technique is highly promising because of its low temperature, simple, cost effectiveness, and the environment friendly advantages.

Besides titanium dioxide, nickel oxide (NiO) is p-type semiconductor material and is widely used in different applications such as transparent conductive films [24], electrochromic devices [25], as a potential candidate in the chemical sensors [26, 27]. NiO exhibits a wide bandgap of 3.6-4.0 eV at room temperature; thus, NiO is considered transparent in the visible light region. Moreover, NiO is largely used as a cocatalyst with different n-type semiconductors due its high p-type concentration, high hole mobility, and low cost [28]. The existence of NiO enhances the separation of electron and hole pairs via electric junction field and also promotes the interfacial charge transfer [29-31]. NiO nanostructures can be synthesized bysputtering [32], chemical vapor deposition [33, 34], hydrothermal method [27], and the sol-gel method [35, 36]. The hydrothermal method for the synthesis of NiO nanostructures is relatively more favourable due to its benign features and simplicity.

After surveying the literature it is known that the valence-band offset (VBO) of NiO/ZnO heterojunction has been investigated by few researchers. The growth pattern in their research was as follows: in some cases NiO was used as substrate and ZnO as the epitaxial layer [37, 38]. However in several cases NiO/ZnO based light emitting diodes, ZnO was used as substrate and NiO as the epitaxial layer [39]. The valence-band offset of many heterojunctions determined by XPS is closely linked to the process of growth of heterostructures [40]. To date there is no report about the determination of valence-band offset of NiO/Ti[O.sub.2] heterostructures.

In the present work, the fabrication and the design of Ti[O.sub.2] and NiO heterostructures are followed by hydrothermal method. Moreover, the valence-band offset (VBO) of NiO/Ti[O.sub.2] heterojunction is measured by XPS technique. The structural characterization of fabricated heterostructures was determined by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques.

2. Experimental Section

The growth process of the presented p-n junction based on Ti[O.sub.2] and NiO nanostructures on the fluorine doped tin oxide (FTO) glass substrate by hydrothermal method was as follows. Firstly, a commercially available and cleaned FTO substrate was used for the synthesis of Ti[O.sub.2] and NiO nanostructures. In a typical process 1mL of TTIP, 20 mL of 37% hydrochloric acid, and 40 mL of deionized water were mixed at constant stirring for 30 minutes. The growth solution was transferred into Teflon vessel of 125 mL capacity and it was sealed in autoclave and kept in preheated oven at 110[degrees] C for 12 hours. Afterwards, the Ti[O.sub.2] nanostructures grown FTO substrate was washed with the deionized water and dried at room temperature. NiO nanostructures were grown on the Ti[O.sub.2] nanostructures by hydrothermal method using equimolar concentration of (0.1M) nickel chloride hexahydrate and hexamethylenetetramine and the growth solution was left at 95[degrees]C for 4-6 hours in preheated electric oven. After the completion of growth time, the heterostructures were washed with the deionized water and dried with the flow of nitrogen gas at room temperature. Then heterostructures were annealed at 450[degrees]C for the complete conversion of Ni[(OH).sub.2] nanostructures into NiO crystalline phase. The structural characterization was performed by scanning electron microscopy and X-ray diffraction and the core levels and valence-band (VB) spectra of the prepared sample were measured by X-ray photoelectron spectrometer (XPS, Thermo ESCALAB 250) using a 1486.6 eV Al Kasource. All XPS spectra were measured by the C 1 s peak (284.8 eV) as a reference substance in order to compensate the charge effect.

3. Results and Discussion

3.1. The Structural Characterization of p-Type NiO/n-Type Ti[O.sub.2] Heterostructures. Atypical SEMimage of Ti[O.sub.2] nanostructures grown on FTO glass substrate by hydrothermal growth technique is shown in Figure 1(a). It can be seen that nanostructures are dense and perpendicular to the substrate. The average diameter and length of nanostructures are 100 nm and 500 nm, respectively. Figure 1(b) shows the SEM image of NiO nanostructures and it can be observed that the nanostructures are like a porous structure. Figure 1(c) shows the composite structures of NiO/Ti[O.sub.2] nanostructures and from the presented image it is clear that almost top surface of Ti[O.sub.2] nanostructures is fully covered with the nanostructures of NiO.

Figure 1(d) shows the diffraction pattern of NiO/Ti[O.sub.2] nanostructures grown on the FTO glass substrate at room temperature. All the diffraction peaks could be assigned to rutile phase of Ti[O.sub.2] and well match to the JCPDS (card number 211276). The intense (002) peak reflects that the preferred orientation of Ti[O.sub.2] nanorods is along the (001) direction. However, some peaks of NiO are also shown in Figure 1(d) and it can be seen that the sample is composed of NiO and Ti[O.sub.2] nanostructures. Some diffraction peaks also appeared for FTO glass substrates which are indicated by star sign.

3.2. The Calculation of Band Offset by XPS Measurement. Figure 2 shows the core level (CL) spectrum of spin-orbit splitting of Ti 2p and Ni 2p peaks. The CL spectrum of Ni 2p 3/2 is represented by Figure 2(a) and two dominant peaks are found at 854.13 eV and 855.78 eV which are mainly concerned the Ni-O linkages. Figure 2(b) shows that the Ti 2p 3/2 peak at 458.3 [+ or -] 0.1 eV is indexed to the Ti-O bond and the peak at 464.0 [+ or -] 0.1 eV is assigned to the Ti 2p 1/2 oxidation state [41-43]. Both measured both peaks are symmetric and the FWHM of Ti 2p 3/2 is found to be 1.1 eV that is matching with the reported values, and it is attributed to the defect free Ti[O.sub.2] synthesized by sol-gel method (110) [42, 43]. The nickel 2p and Ti 2p peaks in the NiO/Ti[O.sub.2] heterostructures are shown in Figures 2(c) and 2(d). It has been indicated that the measured peaks are symmetric relative to that of information obtained from the pure samples of NiO and Ti[O.sub.2], the change in Ni 2p peak is observed from the value 0.3 eV to the binding energy value of 853.839 eV and the Ti 2p 3/2 is changed from the 0.056 to 459.16 eV. The valence-band (VB) spectrum of NiO and Ti[O.sub.2] is shown in Figures 3(a) and 3(b). The valence-band maximum (VBM) value of 0.73 eV for NiO is extrapolated from the VB spectrum using linear fitting. The VB spectrum for Ti[O.sub.2] was measured by similar a method as for NiO and is shown in Figure 3(b) and the VBM value of 0.73 eV was observed. For O 1 s in the NiO sample, the less intense peak at a binding energy of 529.47 eV corresponds to the O 1s peak of NiO. The very intense shoulder peak at 533.3 eV is assigned to the surface adsorbed oxygen as shown in Figure 3(c). The O 1s spectrum of Ti-O is comprised on the two apparent peaks, one at 530.48 eV is attributed to the Ti-O bonds and the other at 532.21 eV because of the surface adsorbed species as shown in Figure 3(d). The reported method [44] was used for the measurement of valence-band offset of NiO/Ti[O.sub.2] heterojunctions by applying the following formula:

[DELTA][E.sub.V] - ([E.sup.NiO.sub.Ni2p] - [E.sup.NiO.sub.VBM]) - ([E.sup.TiO.sub.Ti2p] - [E.sup.TiO.sub.VBM]) + [DELTA][E.sub.CL]. (1)

Here ([E.sup.NiO.sub.Ni2p] - [E.sup.NiO.sub.VBM]) is the energy difference between Ni 2p and VBM in the pure NiO nanostructures, ([E.sup.TiO.sub.Ti2p], - [E.sup.TiO.sub.VBM]) is the energy difference between the Ti 2p and the VBM in the Ti[O.sub.2], and [DELTA][E.sub.CL] = ([E.sup.TiO.sub.Ti2p] - [E.sup.TiO.sub.VBM]) is the energy difference betweenthe Ti 2p and Ni 2p corelevels (CLs) in the NiO/Ti[O.sub.2] heterostructures. Hence the measured valance-band offset of developed heterojunction is found to be ~0.41 eV. The conduction-band offset of NiO/Ti[O.sub.2] heterojunction was measured by the following formula:

[DELTA][E.sub.C] - ([E.sup.TiO.sub.band gap] - [E.sup.NiO.sub.band gap]) - [DELTA][E.sub.V]. (2)

The respective band gap for the NiO is 3.7 eV and 3.2 eV for Ti[O.sub.2], respectively, at room temperature; thus the calculated [DELTA][E.sub.C] is found to be -0.91 eV. However the schematic diagram of the band alignment is depicted in Figure 4. It can be observed that a type-II band alignment is produced at the junction of NiO/Ti[O.sub.2] heterojunction. The observed ratio of CBO and VBO [DELTA][E.sub.C]/[DELTA][E.sub.v] is 2.21.

4. Conclusion

In this study, the hydrothermal approach was used for the development of p-type NiO/n-type Ti[O.sub.2] heterojunction on the FTO glass substrate. The SEM and XRD techniques were used for the morphological and structural characterization. The XPS technique was used for the measurement of valence-band offset and the observed band offset was found to be ~0.41 eV and the conduction band of ~0.91 eV was determined. The ratio of conduction band and valence-band offset was found to be 2.21.

http://dx.doi.org/ 10.1155/2014/928658

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This project was supported by King Saud University, Deanship of Scientific Research, and College of Science Research Centre.

References

[1] G. R. Patzke, F. Krumeich, and R. Nesper, "Oxidic nanotubes and nanorods anisotropic modules for a future nanotechnology," Angewandte Chemie--International Edition, vol. 41, no. 14, pp. 2446-2461, 2002.

[2] M. Gratzel, "Sol-gel processed Ti[O.sub.2] films for photovoltaic applications," Journal of Sol-Gel Science and Technology, vol. 22, no. 1-2, pp. 7-13, 2001.

[3] Z. X. Ge, A. X. Wei, J. Liu, W. Zhao, and C. B. Liu, "Synthesis and photovoltaic devices performance of single crystalline Ti[O.sub.2] nanowire bundle arrays," Journal of Inorganic Materials, vol. 25, no. 10, pp. 1105-1109, 2010.

[4] H. Chen, W. Y. Fu, H. B. Yang et al., "Photosensitization of Ti[O.sub.2] nanorods with CdS quantum dots for photovoltaic devices," Electrochimica Acta, vol. 56, no. 2, pp. 919-924, 2010.

[5] Y. K. Zhou, L. Cao, F. B. Zhang, B. L. He, and H. L. Li, "Lithium insertion into Ti[O.sub.2] nanotube prepared by the hydrothermal process," Journal of the Electrochemical Society, vol. 150, no. 9, pp. A1246-A1249, 2003.

[6] P. Charoensirithavorn, Y. Ogomi, T. Sagawa, S. Hayase, and S. Yoshikawa, "A facile route to Ti[O.sub.2] nanotube arrays for dye-sensitized solar cells," Journal of Crystal Growth, vol. 311, no. 3, pp. 757-759, 2009.

[7] M. Anpo, "Preparation, characterization, and reactivities of highly functional titanium oxide-based photocatalysts able to operate under UV-visible light irradiation: approaches in realizing high efficiency in the use of visible light," Bulletin of the Chemical Society of Japan, vol. 77, no. 8, pp. 1427-1442, 2004.

[8] B. Q. Su, Y. J.Ma, Y. L. Du, C. Yang, and C.M.Wang, "In situ photoelectrocatalytic degradation behavior of methylene blue on Nano-Ti[O.sub.2] modified electrode," Journal of the Electrochemical Society, vol. 155, no. 10, pp. F213-F217, 2008.

[9] Y. Xie, "Photoelectrochemical application of nanotubular titania photoanode," Electrochimica Acta, vol. 51, no. 17, pp. 3399-3406, 2006.

[10] G. Yan, M. Zhang, J. Hou, and J. Yang, "Photoelectrochemical and photocatalytic properties of N+S co-doped Ti[O.sub.2] nanotube array films under visible light irradiation," Materials Chemistry and Physics, vol. 129, no. 1-2, pp. 553-557, 2011.

[11] M. Zhang, J. Wu, J. Hou, and J. Yang, "Molybdenum and nitrogen co-doped titanium dioxide nanotube arrays with enhanced visible light photocatalytic activity," Science of Advanced Materials, vol. 5, no. 6, pp. 535-541, 2013.

[12] M. Zhang, J. Wu, D. Lu, and J. Yang, "Enhanced visible light photocatalytic activity for Ti[O.sub.2] nanotube array films by codoping with tungsten and nitrogen," International Journal of Photoenergy, vol. 2013, Article ID 471674, 8 pages, 2013.

[13] R. Ciancio, E. Carlino, C. Aruta, D. MacCariello, F. M. Granozio, and U. S. Di Uccio, "Nanostructure of buried interface layers in Ti[O.sub.2] anatase thin films grown on LaAlO3 and SrTi[O.sub.3] substrates," Nanoscale, vol. 4, no. 1, pp. 91-94, 2012.

[14] S. Guo, S. Han, H. Mao et al., "Synthesis and characterization of nitrogen and phosphate codoped titanium dioxide with excellent visible-light photocatalytic activity," Journal of Alloys and Compounds, vol. 544, pp. 50-54, 2012.

[15] I. Lee, J. B. Joo, Y. Yin, and F. Zaera, "A yolk@shell nanoarchitecture for Au/Ti[O.sub.2] catalysts," Angewandte Chemie--International Edition, vol. 50, no. 43, pp. 10208-10211, 2011.

[16] Y. P. Guo, N. H. Lee, H. J. Oh et al., "Preparation of titanate nanotube thin film using hydrothermal method," Thin Solid Films, vol. 516, no. 23, pp. 8363-8371, 2008.

[17] C. Suwanchawalit and S. Wongnawa, "Triblock copolymer-templated synthesis of porous Ti[O.sub.2] and its photocatalytic activity," Journal of Nanoparticle Research, vol. 12, no. 8, pp. 2895-2906, 2010.

[18] A. Michailowski, D. Almawlawi, G. S. Cheng, and M. Moskovits, "Highly regular anatase nanotubule arrays fabricated in porous anodic templates," Chemical Physics Letters, vol. 349, no. 1-2, pp. 1-5, 2001.

[19] Y. S. Tian, C. G. Hu, X. S. He, C. L. Cao, G. S. Huang, and K. Y. Zhang, "Titania nanotube arrays for light sensor and UV photometer," Sensors and Actuators B, vol. 144, no. 1, pp. 203-207, 2010.

[20] P. Xiao, D. Liu, B. B. Garcia, S. Sepehri, Y. Zhang, and G. Cao, "Electrochemical and photoelectrical properties of titania nanotube arrays annealed in different gases," Sensors and Actuators B, vol. 134, no. 2, pp. 367-372, 2008.

[21] W. Li, S. I. Shah, C. P. Huang, O. Jung, and C. Ni, "Metallorganic chemical vapor deposition and characterization of Ti[O.sub.2] nanoparticles," Materials Science and Engineering B, vol. 96, no. 3, pp. 247-253, 2002.

[22] B. Mukherjee, C. Karthik, and N. Ravishankar, "Hybrid solgel combustion synthesis of nanoporous anatase," Journal of Physical Chemistry C, vol. 113, no. 42, pp. 18204-18211, 2009.

[23] K. Kanie and T. Sugimoto, "Shape control of anatase Ti[O.sub.2] nanoparticles by amino acids in a gel-sol system," Chemical Communications, no. 14, pp. 1584-1585, 2004.

[24] H. Sato, T. Minami, S. Takata, and T. Yamada, "Transparent conducting p-type NiO thin films prepared by magnetron sputtering," Thin Solid Films, vol. 236, no. 1-2, pp. 27-31, 1993.

[25] X. C. Lou, X. J. Zhao, and X. He, "Boron doping effects in electrochromic properties of NiO films prepared by sol-gel," Solar Energy, vol. 83, no. 12, pp. 2103-2108, 2009.

[26] H. Steinebach, S. Kannan, L. Rieth, and F. Solzbacher, "H2 gas sensor performance of NiO at high temperatures in gas mixtures," Sensors and Actuators B, vol. 151, no. 1, pp. 162-168, 2010.

[27] M. A. Abbasi, Z. H. Ibupoto, M. Hussain et al., "Potentiometric zinc ion sensor based on honeycomb-like NiO nanostructures," Sensors, vol. 12, no. 11, pp. 15424-15437, 2012.

[28] Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, and Y. Liu, "Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity," ACS Applied Materials and Interfaces, vol. 2, no. 10, pp. 2915-2923, 2010.

[29] C. Shifu, Z. Sujuan, L. Wei, and Z. Wei, "Preparationand activity evaluation of p-n junction photocatalyst NiO/Ti[O.sub.2]," Journal of Hazardous Materials, vol. 155, no. 1-2, pp. 320-326, 2008.

[30] Y. Ku, C. N. Lin, and W. M. Hou, "Characterization of coupled NiO/Ti[O.sub.2] photocatalyst for the photocatalytic reduction of Cr(VI) in aqueous solution," Journal of Molecular Catalysis A, vol. 349, no. 1-2, pp. 20-27, 2011.

[31] Y. Chen, J. C. Crittenden, S. Hackney, L. Sutter, and D. W. Hand, "Preparation of a novel Ti[O.sub.2]-based p-n junction nanotube photocatalyst," Environmental Science and Technology, vol. 39, no. 5, pp. 1201-1208, 2005.

[32] J. L. Chung, J. C. Chen, and C. J. Tseng, "Preparation of Ti[O.sub.2]-doped ZnO films by radio frequency magnetron sputtering in ambient hydrogen-argon gas," Applied Surface Science, vol. 255, no. 5, pp. 2494-2499, 2008.

[33] J. K. Kang and S.W. Rhee, "Chemical vapor deposition of nickel oxide films from Ni[([C.sub.5][H.sub.5]).sub.2]/[O.sub.2]," Thin Solid Films, vol. 391, no. 1, pp. 57-61, 2001.

[34] K. Zheng, L. Gu, D. Sun, X. Mo, and G. Chen, "The properties of ethanol gas sensor based on Ti doped ZnO nanotetrapods," Materials Science and Engineering B, vol. 166, no. 1, pp. 104-107, 2010.

[35] B. A. Reguig, A. Khelil, L. Cattin, M. Morsli, and J. C. Bernede, "Properties of NiO thin films deposited by intermittent spray pyrolysis process," Applied Surface Science, vol. 253, no. 9, pp. 4330-4334, 2007.

[36] R. G. S. Pala, W. Tang, M. M. Sushchikh et al., "CO oxidation by Ti- and Al-doped ZnO: oxygen activation by adsorption on the dopant," Journal of Catalysis, vol. 266, no. 1, pp. 50-58, 2009.

[37] R.Deng, B. Yao, Y. F. Li et al., "X-ray photoelectron spectroscopy measurement of n-ZnO/p-NiO heterostructure valence-band offset," Applied Physics Letters, vol. 94, no. 2, Article ID 022108, 2009.

[38] Y. Ishida, A. Fujimori, H. Ohta, M. Hirano, and H. Hosono, "Potential profiling of the nanometer-scale charge-depletion layer in n-ZnO/p-NiO junction using photoemission spectroscopy," Applied Physics Letters, vol. 89, no. 15, Article ID 153502, 2006.

[39] H. Long, G. J. Fang, H. H. Huang et al., "Ultraviolet electroluminescence from ZnO/NiO-based heterojunction light-emitting diodes," Applied Physics Letters, vol. 95, no. 1, Article ID 013509, 2009.

[40] P. Zurcher and R. S. Bauer, "Photoemission determination of dipole layer and VB-discontinuity formation during the MBE growth of GaAs on Ge(110)," Journal of Vacuum Science and Technology A, vol. 1, no. 2, pp. 695-700, 1982.

[41] W. Gopel, J. A. Anderson, D. Frankel et al., "Surface defects of Ti[O.sub.2](110): a combined XPS, XAES AND ELS study," Surface Science, vol. 139, no. 2-3, pp. 333-346, 1984.

[42] S. Petigny, H. Mostefa-Sba, B. Domenichini, E. Lesniewska, A. Steinbrunn, and S. Bourgeois, "Superficial defects induced by argon and oxygen bombardments on (110) Ti[O.sub.2] surfaces," Surface Science, vol. 410, no. 2-3, pp. 250-257, 1998.

[43] S. A. Bilmes, P. Mandelbaum, F. Alvarez, and N. M. Victoria, "Surface and electronic structure of titanium dioxide photocatalysts," Journal of Physical Chemistry B, vol. 104, no. 42, pp. 9851-9858, 2000.

[44] S. H. Wei and A. Zunger, "Calculated natural band offsets of all II-VI and III-V semiconductors: chemical trends and the role of cation d orbitals," Applied Physics Letters, vol. 72, no. 16, pp. 2011-2013, 1998.

Z. H. Ibupoto, (1) M. A. Abbasi, (1) X. Liu, (2) M. S. AlSalhi, (3,4) and M. Willander (1)

(1) Physical Electronics and Nanotechnology Division, Department of Science and Technology, Campus Norrkoping, Linkoping University, 60174 Norrkoping, Sweden

(2) Department of Physics, Chemistry & Biology (IFM), Linkoping University, 58183 Linkoping, Sweden

(3) Physics and Astronomy Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

(4) Research Chair for Laser Diagnosis of Cancer, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Correspondence should be addressed to Z. H. Ibupoto; zafar.hussain.ibupoto@liu.se

Received 25 October 2013; Revised 5 January 2014; Accepted 6 January 2014; Published 10 February 2014

Academic Editor: Chunyi Zhi
COPYRIGHT 2014 Hindawi Limited
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2014 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Research Article
Author:Ibupoto, Z.H.; Abbasi, M.A.; Liu, X.; AlSalhi, M.S.; Willander, M.
Publication:Journal of Nanomaterials
Date:Jan 1, 2014
Words:3532
Previous Article:Emerging nonvolatile memories to go beyond scaling limits of conventional CMOS nanodevices.
Next Article:A new method for superresolution image reconstruction based on surveying adjustment.
Topics:

Terms of use | Privacy policy | Copyright © 2021 Farlex, Inc. | Feedback | For webmasters |