Printer Friendly

The effect of biopsy during precompacted morula stage on post vitrification development of blastocyst derived bovine embryos.

Introduction

In transgenic technology, in order to pre select offspring harboring exogenous DNA and in farm animal industry, preselection of offspring sex screened by PCR (1, 2), the microsurgical sampling, so-called biopsy of blastomeres from the embryos is required.

Storage of biopsied embryos until the results of genotyping determination and the proper recipients are available is crucially needed (3 - 5).

These circumstances have challenged researchers to establish and evaluate the long term storage methods that render biopsied embryos viable and competent after transfer to recipients. While it is claimed that the biopsy procedure has no harmful influences on the viability of fresh embryos, the developmental capacity of biopsied embryos following transfer is considerably reduced when they are cryopreserved (6, 7).

It has been shown that among the preimplantation mouse embryos biopsied at the 4-cell, 8-cell and morula stages, the biopsy has the least impact on developmental potential in vitro and in vivo when performed at the 8-cell stage (8).

The in vitro viability of manipulated or vitrified sheep embryos was significantly lower at precompacted morula and compacted morula stages than intact embryos at the same stages. No differences, however, were found at the blastocyst stage. Moreover, the in vitro survival rate of precompacted morula which were manipulated and immediately vitrified was lower than in those manipulated and, after a temporary period of culture, vitrified at blastocyst stage (9). It has also been reported that short-term in vitro culturing after microsurgical biopsy prior to cryopreservation has improved the post -warming survival rate of bovine embryos (10).

Considering the beneficial effect of temporary period of culture between embryo biopsy and cryopreservation on post warming survival rate of embryos and considering the cryotolerance of In Vitro Produced (IVP) embryos as a criteria to evaluate the quality of IVP embryos, this study was conducted to evaluate the effect of age and cell number of embryos at the time of biopsy on the quality of biopsy derived blastocysts.

Materials and Methods

Except where otherwise indicated, all chemicals were obtained from the Sigma (St. Louis, MO, USA).

In vitro embryo production

The production of bovine embryo was as previously described (11). Briefly, all visible ovarian follicles with a diameter of 2 to 8 mm were aspirated using gentle vacuum (30 mm Hg) and released into the preincubated hepes-TCM, supplemented with penicillin and streptomycin and 50 IU/ml heparin.

The Cumulus-Oocyte Complexes (COCs) with at least 3 layers of cumulus cells and oocytes with a uniform granulated cytoplasm, were selected for the experiments. The selected COCs were in vitro matured in TCM199 supplemented with 10% FBS (Fetal Bovine Serum, Gibco 10270), 0.02 mg/ml cysteamine and 0.1 IU/ml FSH for 24 hr in 5% CO2 in air at 39[degrees]C.

The motile spermatozoa were obtained by centrifugation of frozen-thawed semen on a discontinuous Percoll density gradient (1 ml 40% Percoll over 1 ml 90% Percoll) at 700xg for 20 min. In vitro-matured cumulus-oocyte complexes were co-cultured with motile spermatozoa at 1 x [10.sup.6] spermatozoa/ ml in TALP medium supplemented with 6 mg/ml BSA, 10 [micro]g/ml heparin, and 0.3 mM sodium pyruvate for 22-24 hr at 39[degrees]C in 5% CO2 in air.

After fertilization, presumptive zygotes were mechanically denuded of their cumulus cells and cultured in SOFaaBSA co-cultured with oviduct cells-monolayer (SOF-OCM) under mineral oil in maximum humidified atmosphere with 5% CO2. Cell sampling was performed at 2, 3, and 4 day post insemination of cleaved embryos.

Embryo biopsy

The embryos at days 2, 3, and 4 post-insemination with different cell numbers (4 to 16-cells) irrespective of grade, were transferred into the manipulation drop (HEPES-SOF) and subjected to biopsy using Narishige micromanipulators (Japan) in conjunction with an inverted microscope with Nomarsky optics (IX71 Olympus, Tokyo, Japan). While the embryo was immobilized by suction with a holding pipette, a drilling pipette (internal diameter 22 [micro]m) was placed in close contact with the zona pellucida and a hole was made with a controlled stream of pronase (P8811) solution (5 mg/ml; 28 IU/ml prepared in H-SOF). Immediately after penetration of zona the embryo was transferred to the next H-SOF drop in the same petri dish. Following the penetration of the embryos, the sampling pipette (internal diameter 22 [micro]m) was pushed through the hole and one or two cells were then removed by gentle suction.

Culture of biopsied embryos

The biopsied embryos were cultured (1 embryo in 20 [micro]l) in drops of SOF-OCM at 39[degrees]C under a gas phase of 5% CO2 in air. The embryos were assessed for morphological development to blastocyst and then subjected to vitrification procedure.

Vitrification and warming procedures

The embryos were vitrified according to the method described by Shirazi et al (12). Briefly, the basic media (PB1) for preparation of all vitrification solutions was prepared in [Ca.sup.2+]-[Mg.sup.2+] free PBS supplemented by 0.3 mM sodium pyruvate, 3.3 mM glucose, 100 IU/ml penicillin, and 20% (v/v) FCS.

The biopsy-derived blastocysts were sequentially exposed to corresponding equilibration and vitrification solutions at room temperature (25[degrees]C). For equilibration, the embryos were placed into the first 100 [micro]l drop of equilibration solution containing glycerol 1.4 M for 5 min, and then transferred into the second 100 [micro]l drop of equilibration solution (glycerol 1.4 M and ethylene glycol 3.6 M) for 5 min. The embryos were then transferred into a column of vitrification solution (3.4 M glycerol and 4.6 M ethylene glycol) at the centre of 0.25 ml straws using a fine glass capillary pipette. The column of vitrification solution in the straws was separated by 2 air bubbles from 2 columns of 0.5 M sucrose solution. The straws were sealed and then plunged immediately into LN2 and maintained until use. The time limit for the exposure of embryos to the vitrification solution and the immersion of straws into LN2 was 45 sec. For evaluation of post vitrification embryo survival rate the straws were warmed by being transferred from LN2 to the air for 8-10 sec and then immersed into a water bath at 25 -30[degrees]C for 8 sec. The contents of each straw were then expelled into thawing solution containing 1 M sucrose for 30 second; the medium was stirred gently to facilitate the mixture of the 2 solutions. The manipulated blastocysts were then transferred into 100 [micro]l drops of sucrose solution (0.5 M) for 5 min to allow the removal of intracellular cryoprotectants, and then washed in PB1. The freeze-thawed blasotcyst were cultured in SOF-OCM in 5% CO2 until blastocyst and hatched blastocyst stages. Post thaw viability of biopsy-derived blastocysts was assessed by their re-expansion, resumption of cellular division and reaching hatched blastocyst stage.

Statistical analysis

Data was collected over at least four replicates. Comparisons of post-biopsy embryo development between groups were carried out by the Chi-square test. A p<0.05 level was considered significant (SigmaStat version 2).

Results

As demonstrated in table 1, the post-warming survival and hatching rates of vitrified biopsy-derived blastocysts was not influenced by the biopsy when compared to the non-biopsy control group.

In biopsied groups, despite the considerable difference in post-warming survival rate of vitrified blastocysts derived from embryos biopsied at day 4 compared with day 3, the difference was not significant. Indeed, the age and cell number of embryos at the time of biopsy had no significant effect on post-thaw survival rate of vitrified blastocysts. The hatching rate was significantly higher in day 2 embryos biopsied at 4-cell stage compared with those embryos biopsied on days 2 (8-cell stage), 3 (8-cell stage), or 4 (16-cell stage).

The biopsy error in terms of deteriorating embryo viability due to cell sampling or aspiration of more than 1 to 2 cells was less than one percent.

Discussion

In bovine, the biopsy at pre-compacted morula stages had no detrimental effect on subsequent embryo development in term of blastocyst formation and hatching process (11).

It is known that vitrification and thawing procedures have lower deleterious effects on the viability rate of ovine embryos in advanced stages of development than those in earlier stages (9, 13, 14).

In the current study the difference in survival rate of vitrified-warmed biopsyderived blastocysts among the embryos biopsied at days 2, 3, and 4 was insignificant. There was also no significant difference between survival rate of vitrified-warmed blastocysts derived from biopsied and nonbiopsied embryos (evaluated by cytotoxicity test). The post-warming survival and hatching rates of biopsy and non-biopsy derived blastocysts following vitrification were in the range of what reported by other investigators (15 - 18). Furthermore, vitrification had no detrimental effect on hatching rate of biopsied embryos compared with non-biopsied ones which was in contrast to what reported by Naitana et al in ovine embryos (9). In that report the vitrification and thawing procedures had a more deleterious effect on hatching than manipulation (9).

Based on the current results, it seems, at least in term of hatching process the bovine embryos are more tolerable to embryo biopsy and vitrification compared with ovine embryos. In the majority of biopsied embryos, however, the hatching process occurred without thinning and expansion of the zona pellucidae, as compared with the intact embryos. Additionally, in some blastocysts the hatching process occurred incompletely. Since the difference in total cell numbers of biopsy and non-biopsy derived blastocysts was insignificant (11), the lack of zona pellucidae expansion in biopsy derived blastocysts could not be related to the number of total cells. Instead, it might be related to the effects of cryopreservation procedure and cryoprotectant exposure which could lead to the zona hardening (19, 20).

Another possibility for the failure of zona expansion during cellular proliferation in expanded blastocyst might be related to the presence of a hole in zona made by pronase. In the current study the higher hatching rate in blastocyst derived from embryos biopsied on day 2 at 4-cell stage might be attributed to the higher quality of the blastocyst.

In conclusion, the quality of biopsy derived blastocysts assessed by cryosurvivability is identical to that of non-biopsy derived blastocysts. Moreover, there was no difference in post vitrification survival rate among the embryos biopsied at different periods of precompaction morula stages.

References

(1.) Bowen RA, Reed ML, Schnieke A, Seidel GE Jr, Stacey A, Thomas WK, Kajikawa O. Transgenic cattle resulting from biopsied embryos: Expression of c-ski in a transgenic calf. Biol Reprod 1994; 50(3):664-668.

(2.) Hyttinen JM, Peura T, Tolvanen M, Aalto J, Janne J. Detection of microinjected genes in bovine preimplantation embryos with combined DNA digestion and polymerase chain reaction. Mol Reprod Dev 1996;43(2):150-157.

(3.) Agrawala PL, Wagner VA, Geldermann H. Sex determination and milk protein genotyping of preimplantation stage bovine embryos using multiplex PCR. Theriogenology 1992;38:969-978.

(4.) Handyside AH, Kontogianni EH, Hardy K, Winston RML. Pregnancy from human biopsied preim plantation embryos sexed by Y-specific DNA amplification. Nature 1990;344:768-770.

(5.) Herr CM, Reed KC. Micromanipulation of bovine embryos for sex determination. Theriogenolgy 1991;35:45-54.

(6.) Gustafsson H, Jaakma U, Shamsuddin M. Viability of fresh and frozen-thawed biopsied bovine embryos. Acta Vet Scand 1994;35(3):217-222.

(7.) Thibier M, Nibart M. The sexing of bovine embryos in the field. Theriogenology 1995;43(1):71-80.

(8.) Urszula B, Lutjen KJ, O'Neill C. Assessment of the viability and pregnancy potential of mouse embryos biopsied at different preimplantation stages of development. Hum Reprod 1990;5(2):203-208.

(9.) Naitana S, Loi P, Ledda S, Cappai P, Dattena M, Bogliolo L, et al. Effect of biopsy and vitrification on in vitro survival of ovine embryos at different stages of development. Theriogenology 1996;46(5): 813-824.

(10.) Chesne P, Heyman Y, Chupin D, Procureur R, Menezo Y. Freezing cattle demi-embryos: influence of a period of culture between splitting and freezing on survival. Theriogenology 1987;27:218.

(11.) Shirazi A, Borjian S, Nazari H, Ahmadi E, Heidari B, Bahiraee A. Effects of timing on cell biopsy from pre-compacted morula stage bovine embryos on subsequent embryonic development. J Reprod Infertil 2010;11(1):25-32.

(12.) Shirazi A, Soleimani M, Karimi M, Nazari H, Ahmadi E, Heidari B. Vitrification of in vitro produced ovine embryos at various developmental stages using two methods. Cryobiology 2010;60(2): 204-210.

(13.) Ali J, Shelton JN. Successful vitrification of day-6 sheep embryos. J Reprod Fertil 1993;99:65-70.

(14.) Szell AZ, Windsor DP. Survival of vitrified sheep embryos in vitro and in vivo. Theriogenology 1994;42:881-889.

(15.) Suzuki T, Saha S, Sumantri C, Takagi M, Boediono A. The influence of polyvinyl pyrolidone on freezing of bovine IVF blastocysts following biopsy. Cryobiology 1995;32(6):505-510.

(16.) Vajta G, Holm P, Greve T, Callesen H. Cumulative efficiency of biopsy, vitrification and in straw dilution in a bovine in vitro embryo production system. Theriogenology 1996;45(1):162.

(17.) Agca Y, Monson, RL, Northey DL, Peschel DE, Schaefer DM, Rutledge JJ. Normal calves from transfer of biopsied, sexed and vitrified IVP bovine embryos. Theriogenology 1998;50(1):129-145.

(18.) Lopes RFF, Forell F, Oliveira ATD, Rodrigues JL. Spliting and biopsy for bovine embryo sexing under fields conditions. Theriogenology 2001;56 (9): 1383-1392.

(19.) Carroll J, Depypere H, Matthews CD. Freezethaw-induced changes of the zona pellucida explains decreased rates of fertilization in frozenthawed mouse oocytes. J Reprod Fertil 1990;90: 547-553.

(20.) Ghetler Y, Skutelsky B, Ben Nun I, Ben Dor L, Amihai D, Shalgi R. Human oocyte cryopreservation and the fate of cortical granules. Fert Steril 2006;86(1):210-216.

Abolfazl Shirazi [1,2] *, Sara Borjian [2], Ebrahim Ahmadi [1], Hassan Nazari [1], and Banafsheh Heidari [2]

[1.] Research institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran

[2.] Reproductive Biotechnology Research Center, Avicenna Research institute, ACECR, Tehran, Iran

* Corresponding author:

Abolfazl Shirazi, D.V.M., Ph.D., Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran, P. O. Box: 115

Tel: +98 381 4421626

Fax: +98 381 4424412

E-mail: shiraziabbas@yahoo.com, a.shirazi@avicenna.ac.ir

Received: 16 May 2010

Accepted: 19 Jun 2010
Table 1. Effect of developmental stage of biopsied embryos on
cryotolerance of biopsy-derived blastocysts

                                       Blastocyst
                Embryo                    No.

Groups          Age (Day)   Cell No.     n (%)

Non-biopsied       --          --          68
                    2          4           14
                               8           18
Biopsied            3          4           22
                               8           22
                    4          8           16
                               16          16

                     Survived           Hatched
                    Blastocyst         Blastocyst

Groups                          n (%)

Non-biopsied         52 (76%)        38 (73%) (a,b)
                     10 (71%)        10 (100%) (a)
                     10 (56%)         4 (40%) (b)
Biopsied             12 (54%)        8 (67%) (a,b)
                     12 (54%)         6 (50%) (b)
                     12 (75%)        8 (67%) (a,b)
                     14 (88%)         6 (43%) (b)

(a,b) Data with different superscripts in the same
column differ significantly (p<0.01)
COPYRIGHT 2010 Avicenna Research Institute
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2010 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Short Communication
Author:Shirazi, Abolfazl; Borjian, Sara; Ahmadi, Ebrahim; Nazari, Hassan; Heidari, Banafsheh
Publication:Avicenna Journal of Medical Biotechnology (AJMB)
Date:Apr 1, 2010
Words:2449
Previous Article:Anti-arthritic activity of Premna serratifolia Linn., wood against adjuvant induced arthritis.
Next Article:IVF technology.
Topics:

Terms of use | Privacy policy | Copyright © 2020 Farlex, Inc. | Feedback | For webmasters