Printer Friendly

The ecology and natural history of foliar bacteria with a focus on tropical forests and agroecosystems.

Table of Contents
I.    Abstract
I.    Introduction
      A. Definitions
III.  Bacterial colonization and recruitment to the phyllosphere
      A. From soil to seedling
         1. Mechanical chauffeuring
      B. Wind and rain
      C. Animal vectors
      D. Vertical transmission
      E. The core microbiome
IV.   From the canopy to the forest floor: temperature, humidity, and
        radiation structure phyllobacterial communities
      A. Temperature and humidity
      B. UV radiation
V.    Tropical leaf architecture likely supports greater
        phyllobacterial colonization and abundance compared to temperate
        leaves
VI.   Interactions among bacteria on the leaf surface
      A. Competition and niche partitioning
      B. Bacterial aggregation
VII.  Bacterial-fungal interactions on the phyllosphere
VIII. Bacteria in the interior portions of plant tissue and their
        impacts on plant performance
      A. Gaining access to the interior of the leaf
      B. Bacterial endophytes significantly promote plant growth:
           lessons from root endophytes
IX.   Foliar pathogens: who they are, how they overcome plant
        defenses, and their deleterious potential to tropical plants
      A. The main players
      B. How the overcome plant defenses
      C. Bacterial pathogens in tropical systems
X.    Foliar bacteria in the tropics
      A. Phyllobacteria in tropical habitats
      B. Bacterial endophytes in tropical habitats
XI.   What are the impacts of bacterial pathogens for plant
        communities: two perspectives
XII.  Conclusions and future directions
XIII. Acknowledgements
XIV.  Tables
XV.   Boxes
XVI.  Appendix
XVII. Literature Cited


Introduction

Sometimes referred to as the "great unseen," bacteria are by far the most abundant organisms on Earth (4-6*[10.sup.^30] individuals) and represent the largest organic pool of nitrogen and phosphorus (Whitman et al., 1998). Comprising a global biomass of 350,000-550,000 million tonnes (Whitman et a, 1998), bacteria outweigh invertebrates by orders of magnitude and exceed the biomass of all plants and animals on Earth (Groombridge & Jenkins, 2002; Hogan, 2010). If, as Wilson (1987) argued, invertebrates are the "little things that ran the world," we argue that by their sheer abundance and biomass alone, bacteria have as much, if not more, of a function in worldwide ecology.

Whereas soil microbial communities and their effects on plants have received extensive attention, (Mills & Bever, 1998; Packer & Clay, 2000; Reynolds et al., 2003; Bever, 2003; Falkowski et al., 2008; van der Heijden et al., 2008; Mangan et al., 2010; Maron et al., 2011; Schnitzer et al., 2011; van der Putten et al., 2013), relatively little is known about foliar bacteria and their interactions with plants in nature. Yet bacteria are by far the most abundant colonizers of the leaf surface, occurring at densities of up to 107 cells/[cm.sup.2] on leaves (Lindow & Brandi, 2003; Delmotte et al., 2009). Moreover, the global leaf surface area (upper and lower leaf surface) may be one of the largest microbial habitats at over 1 billion [km.sup.2] (Morris & Kinkel, 2002; Vorholt, 2012), which is two times larger than the earth's surface area (510 million [km.sup.2]: CIA, 2010).

Though studies from agricultural systems and plantations are more common, the degree to which foliar bacteria benefit or are detrimental to wild plants remains little studied, particularly in the tropics (see Gilbert, 2002; Ghazoul & Sheil, 2010). The degree to which bacteria-plant interactions are comparable between non-wild and wild systems remains unclear. For example, major differences in the phylogenetic diversity and species composition of plant hosts likely occur among temperate agroecosystems, tropical agroecosystems, and tropical forests. In addition, major differences almost certainly exist among these systems, particularly in terms of their microbial communities, canopy structure, and disturbance regimes.

Nevertheless, we use findings from agricultural systems as a means to guide our hypotheses and predictions and to inform us about the diversity, abundance, and potential impact of foliar bacteria in tropical forests. That being said, only a handful of studies have examined tropical foliar bacteria in the wild (see Lambais et al., 2006; Furnkranz et al., 2008; Li et al., 2008; Qin et al., 2012; Kembel et al., 2014), and even the basic ecology of these organisms remains fertile ground for research. Here, we first examine the ecology and behavior of bacteria that reside on the leaf surface. Next, we discuss the ecological implications of foliar bacteria that reside in interior portions of leaf tissues. Later, we consider studies on foliar bacteria in tropical habitats to date. Finally, we examine evidence regarding the potential roles of foliar bacteria in structuring tropical plant communities.

Definitions

We modify Beattie and Lindow's (1999) definition of "phyllobacteria" and restrict it to those bacteria that live and persist on the leaf surface without being harmful or parasitic. This includes mutualistic and commensal taxa. They are true epiphytes (Kricher, 2011), functionally defined in part by not colonizing the interior of leaf tissues (though the proportion that remain solely on the leaf surface and never colonize the leaf interior is unknown). Thus we distinguish epiphytic phyllobacteria from bacterial endophytes and pathogens. Though we acknowledge that many microbiologists define endophytes as only those found inside plant tissues and function as mutualists (and typically not pathogens) to their plant hosts (reviewed by Wilson, 1995; Stone et al., 2000; Schulz & Boyle, 2006), we define bacterial endophytes as bacteria that reside inside leaves and are commensal, mutualistic, or pathogenic (Box 1). Pathogens and endophytes may colonize the leaf surface via horizontal transmission (e.g., passively, by factors such as wind or rain, or via animal vectors), or via vertical transmission (from a parental plant to offspring via seed or by raining down from a mother plant to offspring: Ewald, 1987), but they must reach the leaf's interior before they can cause disease or function as mutualists (Beattie & Lindow, 1995; Gnanamanickam, 2006). Last, we define "core microbiome" as a subset of ecologically important microbial taxa commonly shared among individuals of a single plant species or shared among multiple plant species living in the same habitat, community, or region (Shade & Handelsman, 2012).
Box 1 What is an endophyte?

The term "endophyte" has been extant in the literature for almost
  140 years. De Bary (1866) was the first to define "endophyte" as
  "any organisms occurring within plant tissues." Over time,
  however, many definitions for endophyte have been used (see
  review by Hyde & Soytong, 2008), though the most commonly used is
  Petrini's definition (1991). Petrini (1991) defined endophytes as
  "all organisms inhabiting plant organs that at some time in their
  life, can colonize internal plant tissues without causing apparent
  harm to the host." Bacteria (as well as fungi), though, may have
  dormant or latent phases inside leaf tissue before causing disease
  to plant hosts, which Wilson (1995) characterized as the
  "continuum of infection patterns." Thus, under this definition
  bacteria that are clearly pathogens may be considered mutualistic
  endophytes (Schulz & Boyle, 2006). For example, Bashan and Okon
  (1981) demonstrated that tomato plants grown in P. syringae
  infested soil were symptomless but produced up to 30 % less
  foliage than plants in sterile soil! We therefore side with De
  Bary (1866) and more recently Henis and Bashan (1986) and define
  foliar bacterial endophytes in this review as bacteria that have
  colonized the interior portions of leaf tissue.


Bacterial Colonization and Recruitment to the Phyllosphere

From Soil to Seed to Seedling

The origin of the bacteria that colonize the phyllosphere remains unclear (Bulgarelli et al., 2013), but some may originate from the surface of the seed. The seed surface harbors bacteria, which are transmitted to the emerging cotyledon during germination (Maude, 1996; Nelson, 2004; Gitaitis & Walcott, 2007). Seeds reside in soil, which is a rich habitat for bacteria. For example, Horner-Divine et al. (2003) estimated the abundance of bacteria to be 108 in a single gram of soil. In another study, 10 g of soil hosted 8.3 * [10.sup.6] bacterial species (Gans et al., 2005). Indeed, evidence suggests that seeds "recruit" bacterial populations via seed exudates, some of which may make up the core microbiome that reach the phyllosphere upon germination (Vorholt, 2012). For instance, seeds release a variety of exudates, many of which can either inhibit bacterial pathogens or attract beneficial bacteria to ward off pathogens (reviewed by Nelson, 2004; for seed endophytes that colonize the rhizosphere see Johnston-Monje & Raizada, 2011; Links et al,, 2014). Furthermore, naturally-occurring seed endophytes have been isolated from coffee (Vega et al., 2005), Norway spruce (Cankar et al., 2005), rice (Tripathi et al., 2006), and rapeseed (Graner et al., 2003), though little is known about their ecology (but cf Mastretta et al., 2009). Additionally, bacterial pathogens are known to be seedborne (Maude, 1996; Gitaitis & Walcott, 2007). For example, over 60 species of pathogenic bacteria, representing 5 genera, transmit from seed to seedling in the 100 host crop species studied to date; however, these studies have been largely concentrated in temperate regions (Neergaard, 1977; Phatak, 1980). Because tropical soils are often acidic they may harbor less abundant and diverse bacterial communities compared to temperate soils (Baath & Anderson, 2003; Fierer & Jackson, 2006; Lauber et al., 2009; Rousk et al., 2010). Nonetheless, tropical seeds are still exposed to an enormous abundance of soil bacteria. The few studies characterizing tropical seed microbiomes focus exclusively on fungal communities and all but ignore bacterial communities (reviewed by Gilbert, 2002; Dalling et al., 2011; but cf. Gallery et al., 2010; Garcia et al., 2013; Zalamea et al., 2015). Empirical studies are needed to determine the degree to which soil bacteria infect seeds and go on to colonize the phyllosphere after germination.

Mechanical Chauffeuring

When a young developing shoot emerges from the soil it may contact bacteria on the surface of the seed or in the soil and thereby mechanically transport bacteria onto the phyllosphere. We term this mechanical chauffeuring. Free-living bacterial pathogens in temperate soils in agroecosystems may fail to survive for more than a few days (Schaad & White, 1974; Schuster & Coyne, 1974; McCarter ct ah, 1983; Goodnow et al., 1990; Kocks et al., 1998). Still, Bacterial survival may be longer in tropical soils, which remain moist and warm throughout much of the year. Indeed, bacterial pathogens of plants can survive on crop residues (e.g., litter, leaf stems) on the ground for up to 8 months and can even overwinter (Ark, 1958; Jones et al., 1986; Legard & Hunter, 1990; Maude, 1996; Zhao et al., 2002). For example, Ark (1958) showed that the gram-negative pathogen Xanthomonas campestris overwintered in Oklahoma on cotton debris on the soil surface and infected newly emerging plants the following year. Overall, we suggest that mechanical chauffeuring may be a common avenue by which bacteria colonize plant species in the emerging seedling stage when these plants may be particularly vulnerable to pathogens or when they need their bacterial mutualists early in development.

Wind and Rain

Wind, rain, and overland flow passively carry bacteria, particularly pathogenic ones, to new plant hosts on both small and large scales. Faulwetter (1917) was the first to propose that wind-blown rain was the primary dispersal agent of angular leaf spot (caused by X. campestris) among cotton plants in the southern United States. This has since been confinned for X. campestris, as well as X. citri and X. axonopodis in citrus and gram-negative Erwinia carotova in potato (reviewed by Fitt et al., 1989; Bock et al., 2005; Bock & Graham, 2010). Stall et al. (1980) showed that wind and rain dispersed the pathogen X. axonopodis (causal agent of citrus canker) up to 32 m from infected grapefruit trees. In fact, wind and rain caused by hurricanes are thought to be the primary causes of the most recent outbreak of X. axonopodis in citrus orchards in Florida (Gottwald et al., 2002; Graham et al., 2004; Irey et al, 2006).

Foliar bacteria may also be dispersed via the water cycle at regional and continental scales. The prominent gram-negative plant pathogen Pseudomonas syringae has been found in rain, snow, streams, lakes, and clouds in remote regions throughout Europe, the United States, and New Zealand (Amato et al., 2007; Christner et al., 2008; Morris et al., 2008; 2010). Morris et al. (2008) hypothesized that water runoff regionally disseminates P. syringae in both agricultural and natural systems and it can be taken up by aerosols that later precipitate bacteria into other non-adjacent ecosystems. Additionally, Williams (2013) proposed that bacteria in tree pollen can be dispersed via the water cycle. If this is true, it's possible that many plant-associated bacteria may disseminate via the global water cycle at scales much greater than for the vast majority of larger biota. This strongly suggests that particular plant-associated bacteria will have nearly worldwide distributions, which could lead to much broader host ranges than for taxa with more limited dispersal.

Animal Vectors

Animals, particularly insects, may passively spread bacteria using a variety of mechanisms. Herbivores and other animals (e.g., birds and reptiles) likely vector bacteria via defecation, however to our knowledge there have been no studies for larger animal species. Spreading bacteria via defecation may be particularly prominent in the tropics, where long-distance seed dispersal via defecation is common functions to promote tropical woody species diversity (Howe & Smallwood, 1982; Nathan & Muller-Landau, 2000; Muller-Landau & Hardesty, 2005; Kurten & Carson, 2015). Further, long-range migrating insects traveling to and from tropical regions may facilitate long-distance dispersal of bacteria among host plants across vast regions and among different biomes (reviewed by Chapman et al, 2015). Here, we focus on how insects vector bacteria because this has been the focus of much research. Hemipterans (particularly xylem and phloem tappers) account for more than two thirds of the examples of insect vectoring bacterial pathogens (Nadarasah & Stavrinides, 2011). Their specialized piercing mouthparts often insert bacteria directly into the plant, allowing them to circumvent defenses or the inhospitable environment on the phyllosphere (e.g., Bruton et al, 2003). Chrysomelid beetles also can directly deposit pathogenic bacteria inside leaves but in some cases the bacteria migrate from trass deposited on the leaf and pass through wounds caused by the herbivores (Yao et al., 1996). In other cases, bacteria may be ingested by their insect vector and later spread via saliva (Stavrinides et al, 2009). Finally, bacteria can be transferred on the surface of insects (e.g., antennae and legs) and later deposited mechanically as a byproduct of feeding or pollination (Yao et al, 1996; Hildebrand et al., 2000).

Insects vector bacteria that commonly occur on the phyllosphere of tropical plants, hence insects may commonly mediate phyllosphere community composition. For example, leaf-cutting ants (Acromyrmex and Alla spp.) in the Neotropics culture and harbor gram-positive Streptomyces bacteria; these bacteria function to protect their fungal gardens from pathogenic fungi (Currie et al., 1999; Haeder et al., 2009; Schoenian et al., 2011). Furthermore, individuals from the genus Streptomyces frequently produce secondary metabolites, including antibiotics that are widely used in agriculture to primarily kill pathogenic bacteria (Schrey & Tarkka, 2008 for roots; Lauber et al., 2009). Streptomyces is the predominant genus in the class Actinobacteria, which is the fifth most common class of bacteria on the phyllosphere among 57 tropical tree species in Panama (Kembel et al., 2014). We hypothesize that during foraging these leaf cutter ants may disperse Streptomyces to the plant surface and even high into the canopy where these bacteria may function to ward off pathogens. This idea is intriguing and should be evaluated empirically. In all, we hypothesize that insect vectors shape foliar bacterial communities on the tropical phyllosphere. Testing this hypothesis would require fairly simple experiments where insects are excluded from plants (e.g., via netting) over relevant time frames and the resulting bacterial communities compared to control plants where insects are present.

Vertical Transmission

Phyllosphere bacteria may colonize leaves via vertical transmission, a process by which bacteria are passed from one generation to the next via seed. Bacteria can be transmitted in this manner in three ways: 1. Seeds may be systemically infected via the maternal vascular system 2. Seeds can be indirectly infected from the maternal stigma, where bacteria move through stylar tissues to the embryo. 3. An external infection of maternal flowers or fruits can indirectly infect seeds (Maude, 1996). We also propose that pollen can transmit bacterial pathogens, because pollen is known to contain a variety of antibacterial chemicals that inhibit pathogens in vitro (Basim et al, 2006; Carpes et al., 2007; Morais et al., 2011). The extent to which pathogens as well as mutualists are vertically transmitted and ultimately colonize the seedling phyllosphere is not well understood. Recent studies on grasses and forbes suggest that vertical transmission of fungal mutualists may be common (Cook et al., 2013; Hodgson et al., 2014), though this area remains contentious and research on woody species is lacking (Rodriguez et al., 2009; Sanchez-Marquez et al., 2012). Among temperate agricultural crops, Schaad (1982) and Vidhyasekaran (2004) collectively listed 20 species of seed-borne bacterial pathogens (26 strains). In one of the few tropical examples, Cottyn et al. (2001) characterized bacterial communities of crushed seeds from harvested rice from farms in the Philippines. They identified a large proportion of Pseudomonas spp. (14 %), one of the most commonly represented genera on the phyllosphere among temperate crops as well as tropical trees (Vorholt, 2012; Bodenhausen et al., 2013; Kembel et al., 2014). More recently, Darrasse et al. (2010) demonstrated the transmission of Xanthomonas bean flowers from parent to offspring via seed. Bacterial species in the genus Xanthomonas are particularly inimical to tropical crop species (discussed below). In all, seeds in the tropics may inherit a large portion of their microbiome from the parent plant, and these communities may colonize the phyllosphere after germination. The vertical transmission of bacteria may have huge implications for plant populations as well as community dynamics if pathogenic bacteria are transferred from one generation to the next.

The Core Microbiome

A recent study demonstrated that a core microbiome (see above) occurs on the phyllosphere among 57 tree species in a tropical forest, which starkly contrasts from a similar study among 56 temperate tree species (Redford et al., 2010; Kembel et al., 2014). For adult tropical trees, bacterial OTUs (operational taxonomic units, or the taxonomic level of bacterial sampling typically binned at 97 % sequence similarity) representing only 1.4 % of bacterial diversity were present on over 90 % of all individuals and made up 73 % of the total sequences (Schloss & Westcott, 2011). Simply put, a small subset of bacteria occurred over and over among all species of trees and made up a core microbiome (sensu Shade & Handelsman, 2012; Rastogi et al, 2012). This is a surprising result and suggests that a small group of bacteria are either the best at colonizing these tree species, or the best at surviving on the phyllosphere, or a combination of both. Comparatively, Redford et al. (2010) failed to identify a core microbiome for bacterial communities on 56 temperate tree species in Colorado using similar techniques. Here, not a single OTU co-occurred on the phyllosphere of all tree species. Regardless, it remains uncertain the degree to which OTUs in the core microbiome are beneficial or harmful to host plants. Additionally, whether these communities colonize via active recruitment by plant hosts or differential survival of bacteria remains poorly explored. Nevertheless, the finding that a small fraction of bacteria repeatedly co-occur across a large number of tree species in a small area of tropical forest is important and its ecological consequences deserve immediate attention.

A key goal for future research should be to understand the degree to which various sources (e.g., wind vs. insects) contribute to the bacterial phyllosphere, particularly to help us understand plant microbe interactions and how these will likely change. Molecular techniques should be used to determine whether plant hosts actively "recruit" bacterial mutualists to the phyllosphere, as they do for bacterial mutualists in the rhizosphere (reviewed by Mendes et al., 2013). Additionally, understanding the ecology of these taxa is critical, particularly in a changing world where these interactions, as well as the drivers of these interactions, will likely change. Indeed, climate change is projected to significantly alter biogeochemical cycles (Walther et al., 2002; Laurence & Peres, 2006; Lewis et al., 2009) as well as insect herbivores (Bale et al., 2002, Dyer et al., 2012) and precipitation (Walther et al., 2002). Uncovering the contributions of soil, animal vectors, wind and rain to phyllosphere communities may enable us to predict how global climate change will alter these bacterial communities and ultimately their plant hosts.

From the Canopy to the Forest Floor: Temperature, Humidity, and Radiation Structure Phyllobacterial Communities

Temperature and Humidity

Temperature and humidity in the tropical understory may be close to optimal for the survival and persistence of a large portion of phyllosphere bacteria. In general, many plant-pathogenic bacteria experience optimal growth at high humidity and at temperatures between 25 and 30 [degrees]C (Smirnova et al., 2001). An absence of cold temperatures is also key because winter freezing in temperate zones typically kills more than 99 % of plant pathogens each year (Burdon et al., 1996). Additionally, high moisture or humidity in tropical habitats likely support more abundant bacterial communities. For example, Monier & Lindow (2004) discovered that populations of the pathogen Pseudomonas syringae on bean leaves in agricultural fields decreased by 99 % after 8 days under low humidity (<50 %) whereas this species increased three-fold in 100 % relative humidity after 8 days (Monier & Lindow, 2004). Moreover, high humidity may increase the infection rate of foliar bacteria. Leben (1988) found that the infection rate of P. syringae on cucumber leaves increased by 48 % under high humidity (80-100 %) versus low humidity (30-50 %). Taken together these results suggest that persistently warm, moist, and humid tropical habitats will allow bacteria to reach densities that are much higher and more persistent than in temperate regions where below freezing temperatures knock back populations each year.

UV Radiation

Based on studies in temperate systems, we predict that UV radiation likely stratifies phyllobacterial communities from the canopy to the forest floor in tropical forests. High radiation levels damage bacterial DNA and moreover may restrict phyllobacteria to protected sites on the leaf such at trichome bases, stomatal openings, hydathodes (structures that allow the exudation of water from leaves), and beneath or in openings in the cuticle (Corpe & Rheem, 1989; Pfeifer, 1997; reviewed by Beattie & Lindow, 1999). In addition, the relative abundance of pigmented bacteria on the phyllosphere increases as radiation increases, and these pigments allow bacteria to withstand greater UV exposure by absorbing radiation and quenching oxygen free radicals (Corpe & Rheem, 1989; Sundin & Murillo, 1999; Kim & Sundin, 2000; 2001; Jacobs et al., 2005; Gunasekera & Sundin, 2006). Poplawsky et al. (2000) discovered that survival of X. campestris, the most destructive pathogen attacking Brassicaceae worldwide, decreases 1000 fold in the absence of its naturally-produced xanthomonadin pigments. In general, we predict bacterial abundance and diversity in tropical forests to increase from the canopy to the forest floor where light penetration can diminish to less than 1 % (Bjorkman & Ludlow, 1972; Chazdon & Fletcher, 1984). Moreover, bacteria in high light habitats (canopy, early successional) will likely be restricted to subsets with traits that confer UV tolerance. To our knowledge, the degree to which these adaptations are costly for phyllobacteria remains unexplored.

Tropical Leaf Architecture Likely Supports Greater Phyllobactcrial Colonization and Abundance Compared to Temperate Leaves

The architecture of leaves in tropical forests likely enhance abundance and diversity of phyllobacteria compared to their temperate counterparts. These traits include longer leaf life span, larger leaf surface area, lower degree of deciduousness, and higher hydathode density (Table 1). Together, these traits promote a larger and more stable substrate for bacteria to colonize or persist on and provide more microsites that afford protection. Moreover, some leaf traits that confer defense from arthropod enemies may make plant hosts more vulnerable to bacterial enemies. For instance, 30 % of vascular plants have glandular trichomes, or specialized hair tissues with glands that secrete chemicals to ward off herbivores (reviewed by Levin, 1973; Wagner, 1991; Wagner et al, 2004; Tissier, 2012). Glandular as well as non-glandular trichomes (simple hairs) can be constitutive and even induced in response to herbivore attack (Traw & Dawson, 2003; Traw, 2002; Traw & Bergelson, 2003; Shepherd et al., 2005; Gonzales et al., 2008). However, bacteria aggregate and are protected around the bases of glandular trichomes (Huang, 1986; Monier & Lindow, 2003; 2005), and in addition may benefit from secondary metabolites produced at the base of these trichomes (Karamanoli et al., 2012; but cf. Reisberg et al., 2012). If these bacteria are pathogenic, then a trait that deters herbivores may simultaneously enhance disease. This can potentially be a costly trade-off and suggests that the benefits of producing glandular trichomes must be particularly beneficial for plants if in these trichomes harbor and protect bacterial enemies.

Overall, we predict that colonization and abundance of bacteria on leaves in the tropics will be higher than in temperate zones. Out of 15 leaf traits, 11 show a shaip contrast between temperate and tropical forests (Table 1). Out of these 11 traits, seven will likely favor higher bacterial colonization, abundance, and survivorship among tropical leaves while 4 traits will favor an increase in these metrics among temperate leaves. Although simplified, we feel that these traits may be used to predict which systems, as well as which species and growth forms, will likely harbor more abundant and diverse communities of foliar bacteria. In fact, we argue that phyllobacterial communities should be classified as an independent leaf functional trait, which would classify phyllobacteria as a major axis of plant ecological strategy variation (see also Kembel et al., 2014).

Interactions Among Bacteria on the Leaf Surface Competition and Niche Partitioning

Carbon sources required for microbial growth are often limited on the leaf surface (Bashi & Fokkema, 1977; Fokkema et al., 1979; Dik & Vanpelt, 1992; Wilson & Lindow, 1994; Mercier & Lindow, 2000). Studies to date demonstrate that phyllobacterial populations increase as carbon resources increase and epiphytic bacteria rapidly consume these resources. For example, Mercier and Lindow (2000) quantified the total amount of mono- and polysaccharide sugars on leaves of six different temperate crop species. Next, they inoculated the leaf surface of all species with the bacterial epiphyte Pseudomonas fluoreseens. Bacteria reached higher densities on plant species with higher sugar content. Moreover, in less than 24 h P fluoreseens depleted sugar levels on bean leaves by as much as 80 % (Mercier & Lindow, 2000). Experiments have also confirmed that interspecific competition among bacterial species occurred for sugars, suggesting these bacteria occupied similar resource niches (Ji & Wilson, 2002; Innerebner et al., 2011). In laboratory experiments, Innerebner et al. (2011) demonstrated that gram-negative Sphingomonas spp. decreased the population size of P syringae, a pathogen with a similar carbon use profile, by up to 340-fold on the phyllosphere of Arabidopsis. Thus, we predict similar competitive interactions among phyllobacterial species in the wild but this remains speculative, especially the degree to which there is niche specialization or other processes that mediate or promote coexistence (see below).

Some epiphytic bacteria appear to specialize on distinct carbon sources (e.g., amino acids, organic acids, and carbohydrates), thereby allowing some degree of niche partitioning. In one of the only studies of its kind, Wilson and Lindow (1994) directly evaluated the relationship between species coexistence of epiphytic bacteria and their degree of ecological niche overlap. They inoculated potato leaves with five different bacterial species representing four different genera, and found that coexistence was promoted and competitive interactions mitigated when overlap in resource use was the least. Wilson and Lindow (1994) suggested bacteria could be placed within contrasting guilds (sensu Root, 1967) based solely on whether the bacteria specialized on amino acids versus organic acids versus carbohydrates. The variability of these compounds on the phyllosphere is likely to vary widely among plant species suggesting a critical basis for host specialization or affinity as well as coexistence.

Niche differentiation via habitat specialization likely occurs on the phyllosphere based upon fine scale leaf-surface heterogeneity, which is akin to the pit and mound topography that occurs on the forest floor (e.g., Putz, 1983; Peterson et al., 1990). Leaf surface landscapes are complex because of the presence of stomates, trichomes, and veins, as well as wide spatial variation in waxy cuticle layers and epiphyllous lichens in tropical systems (Mechaber et al., 1996; Lucking, 2001; Mechaber, 2002; Vorholt, 2012). In fact, Andrews (1992) noted that the distance to the top of an 800 pm trichome for a bacterium on the cuticle is four times greater than the distance from a person on the sidewalk to the top of the Sears Tower in Chicago. The extent to which phyllobacteria specialize on contrasting microhabitats isn't clear, but recent evidence suggests that the geography of the phyllosphere appears to shape taxa-specific colonization patterns on particular microhabitats (Remus-Emsermann et al, 2012; 2014). Further, it has long been known that UV-tolerant, pigmented bacterial species occur more readily across the leaf surface while other bacteria require "nooks and crannies" that shield them from harsh environmental conditions (see reviews by Beattie & Lindow, 1999; Lindow & Brandi, 2003; reviewed by Andrews & Harris, 2000). Mechaber et al. (1996) used atomic force microscopy to document the upper leaf landscape of cranberry. They found that young leaves contained a more homogeneous regular pattern of broad expanses or plateaus while older leaves were more heterogenous where heights changed more rapidly over shorter distances. Thus, we predict that the more irregular and sharper topographical contrasts that are occur on older leaves will enhance bacterial diversity and coexistence on the phyllosphere (Ricklefs, 1977; Comins & Noble, 1985; Tilman, 1994). This also might suggest the existence of repeatable patterns of bacterial succession as leaves age (see Redford & Fierer, 2009).

Bacterial Aggregation

Highly dense patches of bacteria enable individuals to communicate and even exchange genetic material with each other, which may explain how and when bacteria become pathogenic. The crowding of bacteria allows for quorum sensing (Box 2), a process by which individuals communicate so that certain traits are expressed when bacterial density reaches a minimum threshold (reviewed by von Bodman et al., 2003). Pathogens use quorum sensing to coordinate certain behaviors such as biofilm formation and exopolysaccharide production to enhance survival (Table 2). Additionally, quorum sensing allows pathogens to mount attacks together against plant hosts by triggering certain bacterial behaviors such as the production of chemicals that may be used to breach plant cell walls (von Bodman et al., 2003). Conversely, bacterial mutualists enhance plant performance by using quorum sensing to produce plant hormones and inducing plant resistance to pathogens (discussed below; reviewed by Hartmann et al., 2014). Perhaps more importantly, aggregating bacterial cells may spur the transfer of virulence or symbiosis-related factors among each other via horizontal gene transfer (the swapping of genetic material among neighboring bacteria; Bailey et al., 1996; Ochman et al., 2000; van Elsas et al., 2003; Sorensen et al., 2005). Indeed, plasmid gene transfer among P. putida strains on bean leaves occurred at frequencies as high as 33 % in one experiment and as high as 40 % among P. syringae cells in another (Normander et al., 1998; Bjorklof et al., 2000). In all, aggregates of phyllosphere bacteria particularly among protected microsites (e.g., trichome bases, stomates, hydathodes) will likely enhance bacterial survival and increase virulence for pathogenic species.
Box 2 Quorum sensing

Bacteria can monitor their own population density through the
  production and release of small, diffusible signals that enable
  them to synchronize the expression of specialized gene systems
  (Waters & Bassler, 2005). This process is called quorum sensing,
  which simply put means that bacteria can "count" their own
  numbers and alter their behavior accordingly (reviewed by von
  Bodman et al., 2003). Thus, individual bacteria can in essence
  "gang up" on their hosts, which may be particularly beneficial
  for pathogenic bacteria that aggregate at protected sites on the
  leaf surface (reviewed by Beattie & Lindow, 1999). In fact,
  quorum sensing might even camouflage bacterial pathogen
  populations by preventing or delaying host plant response until
  density is high enough to mount a formidable attack (Abramovitch
  et al., 2006). Additionally, bacteria can use quorum sensing to
  simultaneously produce compounds that can enhance stress
  tolerance to heat, UV radiation, or drought (Quinones et al.,
  2005; see Table 2). Other compounds produced via quomm sensing
  increase virulence by breaking down plant cell walls or aiding
  motility thereby promoting infection (Whitehead et al.,
  2002; Shepherd & Lindow, 2009). Quorum sensing molecules have
  been identified among many bacterial species that commonly
  associate with plants (see reviews by Cha et al., 1998; Loh et
  al., 2002; von Bodman et al., 2003; Ahmad et al., 2008; Hartmann
  et al., 2014). In fact, Elasri et al (2001) identified
  quorum-sensing molecules from a pool of 340 bacterial strains
  isolated from tissues of over 60 temperate crop species as well
  as in soil. They discovered that a larger portion of foliar and
  stem associated strains contained quorum-sensing molecules
  (49%) than root associated strains (28 %) and free-living
  strains from soil (0 %). Although the degree to which
  phyllobacteria among tropical plant hosts rely on quorum
  sensing to coordinate group behavior is unknown, these findings
  suggest that a large portion of leaf-associated bacteria rely on
  this phenomenon for survival and function.


Bacterial-Fungal Interactions on the Phyllosphere

Bacteria can dramatically reduce fungal pathogen disease severity on the phyllosphere (see Table 3), and this may be particularly important in controlling fungal pathogens in tropical agroecosystems. For example, in Colombia, the fungal pathogen Mycosphaerella fijiensis causes the black sigatoka leaf spot disease in banana plantations that reduce banana yields by nearly 40 % over vast regions pantropically (Marin et al., 2003). Ceballos et al. (2012) recently discovered that two widespread bacterial epiphytes, gram-positive Bacillus subtilis and B. amyloliquefaciens, isolated from banana leaves in Colombia caused dramatic reductions (>90 %) of black sigatoka (Ceballos et al., 2012) by interfering with fungal hyphae formation and inhibiting the germination of ascospores. The ability of these bacteria to form microbial biofilms appeared necessary for these bacteria to suppress the fungus. These results, though narrow and simplified in scope, suggest that bacteria may commonly mitigate or mediate fungal pathogens in natural systems. This area is ripe for additional research.

There are a few documented cases where phyllobacteria induce systemic host resistance to the entire plant from attack by fungal pathogens and other enemies (Bargabus et al., 2002; 2004; Tran et al., 2007; Verhagen et al., 2010; Brotman et al., 2012; Desoignies et al., 2013). This is similar to when exposure to a fungal pathogen triggers induced systemic host resistance; however, here the bacteria act as an early warning system and "alert" their host plants to the presence of pathogenic fungi (van Loon et al., 1998; Pieterse et al., 1998). This mutualism appears common for rhizosphere bacteria and confers plant resistance to soil pathogens, nematodes, and insects (van Loon et al., 1998; van Loon & Bakker, 2006; van Wees et al., 2008; Pineda et al., 2010). Unfortunately the degree to which phyllosphere bacteria are mutualists and suppress disease in situ is poorly understood. However, when they do, Jacobsen (2006) argued that these bacteria would benefit plant hosts most likely by triggering systemic resistance. In greenhouse and field experiments on sugar beet leaves, Bargabus et al. (2002, 2004) demonstrated that nonpathogenic bacteria (P. fluorescens, Bacillus mycoides and B. pumilus, respectively) produced compounds to induce resistance to pathogenic fungi (Heterodera schachtii and Cercospora beticola, respectively), thereby reducing fungal abundance by up to 90 %. Similarly, Tran et al. (2007) and Desoignies et al. (2013) found that non-pathogenic bacteria could also significantly suppress fungal pathogens in the laboratory on both tomato and beet leaves. Further, Pseudomonas spp., many of which reside in one of the most abundant genera in phyllosphere communities among agricultural crops as well as tropical trees, commonly induce systemic resistance to fungal infection (reviewed by Jankiewicz & Koltonowicz, 2012; Vorholt, 2012, Kembel et al., 2014). These findings are important because fungal pathogens are major agents of mortality for numerous species of tropical tree seedlings, particularly those in shaded understories (Augspurger, 1984; Augspurger & Kelly, 1984; Wenny, 2000). Though induced systemic host resistance may be common in the wild, to our knowledge the degree to which phyllobacterial mutualists induce enemy resistance for plant hosts has never been evaluated outside of an agricultural context.

Bacteria in the Interior Portions of Plant Tissue and Their Impacts on Plant Performance

Gaining Access to the Interior of the Leaf

Phyllobacteria use multiple pathways to gain access into the leaf interior where they can then act as mutualists or pathogens. Phyllobacteria enter leaves at leaf openings such as trichome bases, stomata, or hydathodes (reviewed by Beattie & Lindow, 1995), or wounds created by insects (Agrios, 2005). Additionally, some insects passively disseminate bacteria onto or into preferred plant hosts (see above). Pathogenic bacteria also gain access to leaf interiors with extracellular virulence factors (see Box 3). For example, P. syringae produces coronatine, a jasmonic acid mimic that suppresses the tomato defense to pathogens and induces stomatal opening thereby allowing access to the apoplast (Zhao et al., 2003; Melotto et al., 2006; 2008). More recently, Schellenberg et al. (2010) discovered that P. syringae produces syringolin to open stomates on bean and Arabidopsis leaves. Once in the apoplast, bacteria typically have much higher growth rates (reviewed by Beattie & Lindow, 1999) where they can act as mutualistic endophytes or become pathogenic. Yu et al. (2013) recently found that once inside the apoplast of bean leaves, the pathogen P. syringae alters its gene expression from genes that code for exploration to those that produce enzymes and phytotoxins. This suggests that after entry, pathogens can rapidly switch patterns of resource allocation from exploration and persistence to evading the plant immune system (see Box 3).
Box 3 Bacterial pathogens and the plant immune system: an
evolutionary aims race

Plants have evolved two main lines of defense to detect bacterial
  pathogens, and pathogens have developed mechanisms to manipulate
  defense responses by secreting virulence effector molecules. The
  first line of plant defense is called the PAMP-triggered immunity
  (PTI), where plant extracellular pattern recognition receptors
  (PPRs) attempt to identify pathogen-associated molecular patterns
  (PAMPs; reviewed by Dangl et al., 2013; Newman et al., 2013).
  Bacterial pathogens use one of six highly evolved secretion
  systems, most commonly types III and IV, to interfere with PTI by
  delivering effector proteins into plant cells (reviewed in
  Wooldridge, 2009). These effector proteins either inhibit plant
  cellular functions or mimic plant hormones (discussed in "Foliar
  Pathogens" section). In Type IV secretion, pathogens use
  conjugation to deliver effector molecules into host cells (reviewed
  by Zechner et al., 2012; Christie et al., 2014; Low et al., 2014).
  Agrobacterium tumefaciens, for example, uses type IV secretion to
  induce tumors in many agricultural crop species (reviewed by
  Pitzschke & Hirt, 2010). The foremost system for pathogens, though,
  is the type III secretion system (reviewed by Jones & Dangl, 2006).
  Here, bacteria use a flagellar body like a syringe to inject a
  conglomerate of 20-30 proteins directly into the plant tissue cells
  (see recent reviews by Izore et al., 2011; Buttner, 2012). Some of
  the most ubiquitous and deleterious bacterial pathogens, such as P.
  syringae, Erwinia amylovora, Ralstonia solanacearum, and
  Xanthomonas spp., use the Type III secretion system (Buttner,
  2012).

If bacterial pathogens successfully enter the host cell, they meet
  the plant's highly specialized second line of defense called
  effector-triggered immunity (ETI, formerly known as gene-for-gene
  resistance; reviewed by Jones & Dangl, 2006). Plant ETI hinges on
  pathogen recognition by a class of receptor proteins that contain
  nucleotide-binding (NB) and leucine-rich repeat (LRR) domains. It
  is here where pathogens are "specifically recognized" by plant
  receptors, upon which the plant can resist disease and launch a
  hypersensitive response (HR, see "Foliar Pathogens.") This step in
  particular has led to co-evolutionary dynamics between bacteria and
  plant hosts, where pathogen effectors and plant receptors are
  notably diverse, variable, and frequently change (Boiler & He,
  2009; Dodds & Rathjen, 2010). While successful pathogen detection
  results in various defense responses, a successful pathogen
  suppresses or evades detection and is thereby able to cause
  disease.


Bacterial Endophytes Significantly Promote Plant Growth: Lessons from Root Endophytes

Much of what we know about the ecology of bacterial endophytes comes from root-associated bacteria (see reviews by Anand et al., 2006; Hardoim et al., 2008; Berg, 2009; Compant et al., 2010; Berg et al., 2014). Bacterial endophytes in roots protect plant hosts from pathogens and pests. Like epiphytes, endophytes colonize an ecological niche similar to phytopathogens and may simply compete for similar niches or carbon resources, thereby reducing the abundance of bacterial pathogens (Hallmann et al., 1997). For example, up to 35 % of root-associated bacteria inhibit fungal pathogen growth in vitro (e.g., Berg et al., 2002; 2005; Berg & Hallmann, 2006). Additionally, root bacterial endophytes may induce plant host systemic resistance to pathogens (discussed above), which can significantly decrease the severity of bacterial or fungal pathogens. Further, root endophytes produce or alter plant hormonal levels to enhance plant growth (see reviews by Rosenblueth & Martinez-Romero, 2006; Kloepper & Ryu, 2006; Hardoim et al., 2008). For example, root endophytes produce the plant growth regulator auxin, which controls root and meristem cell elongation and aid in regenerating wounded tissues (Davies, 1995, Schmelz et al., 2003; Spaepen et al., 2007; but cf Silverstone et al., 1993; Brandi & Lindow, 1998). In fact, more than 80 % of bacteria in the rhizosphere produce auxins, however the prevalence of this among foliar endophytes remains unexplored (Ramos-Solano et al., 2008; but cf Hoffman et al., 2013 for endohyphal bacteria). Additionally, root endophytes produce gibberellin (Gutierrez-Manero et al., 2001) and cytokinins (Bhore et al., 2010), which control diverse aspects of plant growth and development including root and stem elongation, leaf expansion, and senescence (reviewed by Santer et al., 2009). Root endophytes also break down the plant hormone ethylene via ACC deaminase to alleviate its adverse effects on plant growth (Glick, 2005; Saleem et al., 2007). Though we recognize that conditions in the rhizosphere and phyllosphere are different in many ways (e.g., different stressors, 02 levels, moisture regimes, etc.) and make direct comparisons somewhat tricky, we ultimately predict that foliar endophytes in the wild likely use similar mechanisms to enhance plant performance.

Additionally, bacterial endophytes isolated from all plant tissues including leaves inhibit fungal pathogens by synthesizing antifungal compounds (reviewed by Strobel et al., 2004; Brader et al., 2014). For example, Pseudomonas spp. comprise one of the most common and ubiquitous genera of bacterial endophytes and produce a group of antifungal peptides called pseudomycins (Strobel et al., 2004; Berdy, 2005). These peptides decrease the fungal pathogens that cause Dutch elm disease (Ceratocystis ulmi) and banana's black Sigatoka (Mycosphaerella fijiensis; Harrison et al., 1991; Ballio et al., 1994). While all of the above work was done in vitro, we predict that foliar endophytes in the wild may synthesize antifungal properties to ward off pathogens in leaves and suggest that this should be a research priority.

Foliar Pathogens: Who they are, how they Overcome Plant Defenses, and Their Deleterious Potential to Tropical Plants

The Main Players

Over 100 species of foliar bacteria are pathogenic and once in the apoplast cause hundreds of diseases to crops worldwide, though none are more "scientifically and economically important" than Pseudomonas syringae (Jackson, 2009; Mansfield et al., 2012). Pathogens may either be necrotrophs that first destroy host cells and later feed on the contents or biotrophs that derive nutrients from host cells without killing them (Glazebrook, 2005). Many bacterial pathogens, including P. syringae, display both lifestyles (Glazebrook, 2005). P syringae is by far the most extensively studied and possibly the most ubiquitous foliar pathogen in the world (Morris et al., 2013). At least 57 pathovars (strains or set of strains) of P. syringae exist, which are often highly specialized to particular host species (Bull et al., 2010; Hirano & Upper, 2000; Lindeberg et al., 2012). Further P. syringae strains inhabit a variety of environments and interact with a wide range of plants in most regions of the world (Silby et al., 2011). P. syringae causes disease in the families Sapinadaceae, Amaranthaceae, Meliaceae, Rosaceae, Fabaceae, and Actinidaceae (Horst, 1990; Sarkar & Guttman, 2004). All of these families are well represented in the tropics, particularly Fabaceae (the third largest angiosperm family), whose woody species are mostly confined to tropical and subtropical habitats (Rundel, 1989).

Xanthomonas is a prominent and largely pathogenic bacterial genus whose members commonly plague tropical crop systems. Xanthomonas comprises almost 30 species, which typically have mixed biotrophic-necrotrophic lifestyles and collectively cause disease in nearly 400 plant species (Ryan et al., 2011). Three Xanthomonas species (X. oryzae, X. campestris, and X. axonopodis) afflict pantropical hosts and are among the top ten most "scientifically and economically important" plant pathogenic bacteria in the world (Mansfield et al., 2012). 18 sequenced Xanthomonas genomes have been described, 12 of which cause disease among tropical crop species, including sugarcane, banana, cassava, citrus crops, and rice (Ryan et al., 2011). These species cause major crop losses. For example, in just 3 years X. campetris caused a decrease in Ugandan banana and plantain yields by 30-52 % (Karamura et al., 2006). This pathogen is expected to spread throughout East and Central Africa at a rate of 8 % per year in banana plantations (Kayobyo et al., 2005; Abele & Pillay, 2007). In a 50 ha tropical forest in Panama, Kembel et al (2014) found that Xanthomonadaceae is one of the most common families on the phyllosphere and xanthomonads alone made up almost 9 % of the core microbiome. If these bacteria are pathogenic and tree host species are differentially vulnerable, then these pathogens may be major agents of forest turnover particularly in small size classes and in areas around parent trees.

How Pathogens Overcome Plant Defenses

After entering the leaf, pathogens attempt to suppress the complex plant immune system. Pathogens inject effector proteins into plant cells, which help in evading the plant's first line of defense (Box 3) and aid in nutrient acquisition and dispersal (reviewed by Dodds & Rathjen, 2010). During the second line of defense (Box 3), plants use the jasmonic acid (JA) and salicylic acid (SA) hormone pathways to activate defenses to necrotrophs and biotrophs, respectively (Glazebrook, 2005). These two pathways are mutually inhibitory, and certain bacterial pathogens exploit this negative crosstalk to evade detection (Traw et al, 2004; Cipollini et al., 2004; reviewed by Thaler et al., 2012). For example, P. syringae produces jasmonic acid mimics to suppress the salicylic-acid-mediated defense in plant hosts (Zheng et al., 2012). These interactions frequently culminate in the induction of a hypersensitive response (HR) from plant hosts, which involves deliberate cell suicide localized at the infection site to limit pathogen spread (reviewed by Lam et al., 2001; Coll et al, 2011). Successful pathogens develop effectors to evade the plant's last line of defense and invade host cells to cause disease.

Bacterial Pathogens in Tropical Systems

Pathogens are particularly detrimental to tropical crops where disease losses may be 50 to 100 % higher than in temperate systems, though it remains uncertain the degree to which bacterial pathogens are inimical in hyper-diverse tropical forests (Hill & Waller, 1982; Thurston, 1998). Because the tropics are ideal for bacterial survival and persistence (see above), bacterial pathogens are likely to be more abundant and damaging. In fact, Wellman (1968, 1972) documented the known diseases (fungal and bacterial) among crops with ranges in both temperate and tropical zones. He concluded that for every disease that infected a given crop in temperate areas, there were 10 in the tropics (see also Gilbert, 2005). Clearly, a new focus on tropical bacteria is needed because papers studying pathogens in temperate systems have outnumbered tropical studies by over 25:1 (Lodge et al., 1996).

Foliar Bacteria in the Tropics

Phyllobacteria in Tropical Habitats

Phyllobacteria in the tropics are diverse, significantly contribute to forest nutrient cycling, and are likely fairly host-specific (Abril et al., 2005; Fumkranz et al., 2008; Kembel et al., 2014). To our knowledge, Lambais et al. (2006) were the first to use culture-independent methods to identify phyllosphere bacteria of tree species in the tropics. They identified up to 671 bacterial OTUs on each of nine phylogenetically diverse canopy tree species, and estimated that the phyllosphere of Brazilian Atlantic forest alone harbors as many as 10 million bacterial OTUs. Clone libraries generated for three of these tree species (Trichilia catigua, T. clausenni, and Campomanesia xanthocarpa) suggested that some of these phyllobacterial taxa may, to some degree, be host-specific. For example, Proteobacteria were twice as common on the phyllosphere of Trichilia spp. versus C. xanthocarpa. Further, cyanobacteria made up almost 15 % of the total sequences on C. xanthocarpa, however there was not a single cyanobacterial sequence found on either Trichilia species. Fumkranz et al. (2008) quantified nitrogen-fixation among phyllosphere bacteria of 13 herb, shrub, and tree species in a lowland Costa Rican forest. The bacteria associated with three of these plant species (G. cauliflora, P. wendlandii, and C. drudei) fixed up to 6 [micro]mol of [N.sub.2] per [m.sup.2] per day, enough to provide significant nitrogen input to the forest. Although the bacterial communities did not differ on the two high nitrogen fixing plant species (G. cauliflora and C. drudei) versus the low one (C. laevis), nitrogen fixation was highly variable among the 13 plant species sampled. Though preliminary, these data suggest that bacterial communities may fix very different amounts of nitrogen depending on the host. Further, nitrogen fixation by foliar bacteria may be patchy among tropical plants because they occur on host species that may be wildly scattered across the landscape.

Evidence from two recent studies suggests that host phylogenetic relationships are critical for structuring bacterial communities on the phyllosphere of tropical trees. Kim et al. (2012) characterized bacterial communities on leaves of six tree species in an arboretum in Malaysia. The relative abundance of bacterial taxa differed significantly among tree species. These differences were particularly prominent for Gammaproteobacteria, which is the second most common bacterial phylum among tree species in Panama (Kembel et al., 2014). More recently, Kembel et al. (2014) quantified bacterial communities on the phyllosphere of 57 mid-canopy tree species in a moist tropical forest. Bacterial taxa exhibited high host affinity, with plant host taxonomy explaining 47 % of the variation of bacterial communities. A suite of plant host traits dealing primarily with growth and mortality rates, nutrient concentrations, and leaf characteristics was also important in explaining variation (26 %) among bacterial communities. Overall, these findings suggest that bacterial communities on the phyllosphere of tropical trees are associated with particular plant hosts and are structured by key plant traits.

Bacterial Endophytes in Tropical Habitats

Though a handful of studies have characterized foliar bacterial endophytes among tropical trees, few generalizations are possible about these bacterial communities or their ecology. Bacterial endophytes have been studied primarily among crop species and have only been characterized in a few gymnosperm and angiosperm species (see reviews from Hallmann et al., 1997; Hardoim et al., 2008; Berg, 2009; Compant et al., 2010; Izumi, 2011; Carrell & Frank, 2014). Coffee, cacao, Citrus, and Eucalyptus, and black mangroves are the only tropical trees for which foliar endophytes have been characterized (Araujo et al., 2002; Vega et al., 2005; Shiomi et al., 2006; Hu et al., 2010; Melnick et al., 2011; Paz et al., 2012; for fungal endophytes in cacao leaves, see Herre et al., 2007, Mejia et al., 2008; 2014). The endophytic strains isolated were predominantly Bacillus spp. in all studies, and the authors suggested these strains could be used as biocontrol agents against fungal as well as bacterial diseases. In a recent study using plant stems, Bascom-Slack et al. (2009) isolated 14 endophytic actinomycete bacterial species from 12 shrub and tree species from 10 plant families in a Peruvian rainforest. Because these studies relied solely on culture dependent methods that fail to detect as much as 99 % of resident bacteria (reviewed by Muller & Ruppel, 2014, but cf Stiefel et al., 2013), it is difficult to draw conclusions about bacterial endophytic communities in tropical systems. With the exception of these few studies, the identity and ecology of foliar endophyte communities among tree hosts remain poorly explored globally. Bacterial endophytes have not been characterized from a single tree among some of the most common plant genera in the world, including Abies, Acacia, Alnus, Carpinus, Fagus, Fraxinus, and Shorea, many of whose species have tropical distributions (Izumi, 2011). This should be a research priority because Strobel (2012) argued that every plant on earth hosts both bacterial and fungal endophytes. Without knowing which bacteria species are present and in what abundance, it is impossible to understand anything about their impact on their hosts let alone anything about their function in the ecosystem.

A subset of gram-negative Burkholderia spp. reside in leaf galls of tropical angiosperms and act as lifelong obligate endosymbionts to plant hosts (reviewed by Compant et al., 2008). Unlike endophytes that colonize internal leaf tissue between mesophyll cells (Stone et al., 2000), Burkholderia colonize intracellularly and are surrounded by a host membrane (Reinhold-Hurek & Hurek, 2011). This association occurs in about 500 species in the families Primulaceae and Rubiaceae, particularly in the genera Pavetta, Sericanthe, and Psychotria of the Rubiaceae family (Miller, 1990). Despite the predominantly pantropical distribution of both families, leaf nodulated plants are restricted to tropical parts of Asia and Africa (Miller, 1990). Because Psychotria plants grown without Burkholderia resulted in distorted leaves, stunted growth, and eventual death of plant hosts (Gordon, 1963), van Oevelen et al. (2003) suggested that these two organisms have an obligate association with one another. Recently, Carlier and Eberl (2012) sequenced the genome of Burkholderia kirkii and discovered a collection of genes responsible for secondary metabolite synthesis on the B. kirkii plasmid. They hypothesized that these bacteria produce compounds to ward off pathogens and herbivores, however future studies are needed to test this hypothesis.

What are the Impacts of Bacterial Pathogens for Plant Communities in Tropical Habitats: Two Perspectives

One on hand, the detrimental impact of foliar bacterial pathogens may increase as the abundance of single host tree species increases, which can promote and maintain plant diversity in the tropics (Gillett, 1962; Janzen, 1970; Connell, 1971). Frequency-dependent reduction of conspecifics is the cornerstone for the Janzen-Connell hypothesis, which hypothesizes that density-dependent enemies regulate plant populations (Janzen, 1970; Connell, 1971; reviewed by Carson et al., 2008). This phenomenon occurs via specialist pests, who cause a reduction in the competitive ability of key plant species and make room for other plant species (Janzen, 1970; Connell, 1971). Frequency- dependent tree mortality has been observed numerous times in the tropics (most recently by Bagchi et al., 2014; see reviews by Carson et al., 2008; Mordecai, 2011; Comita et al., 2014), though not a single study determined whether this pattern exists for foliar bacteria. Griffin et al. (unpublished data) found that seedlings of three of five tree species grew more after experimentally reducing their foliar bacteria in situ for three years in a tropical forest in Panama. These results demonstrate that the net effect of these bacteria were pathogenic. In addition, studies to date indicate that prominent foliar pathogens in agroecosystems are relatively host specific (e.g., Leyns et al., 1984; Ryan et al., 2011; Lindeberg et al., 2012; see above). Moreover, wind, rain and insects all spread pathogens to new hosts (Butterworth & McCartney, 1991; Pruvost et al., 2002; Bock et al., 2005; Nadarasah & Stavrinides, 2011), suggesting that conspecific aggregations of tree species will facilitate bacterial colonization among nearby conspecifics. If this is true, the implications for the maintenance of species diversity in tropical forests are clear: enemies will build up around conspecifics and reduce their performance and dominance.

Conversely, bacterial pathogens may not be host specific "enough" and therefore not act to maintain plant community diversity in tropical forests. It's possible that the degree to which foliar pathogens specialize to plant hosts in the tropics is less than in temperate systems. Kembel et al (2014) found that a large portion of bacterial communities co-occur among 57 tree species in a tropical forest, though they did not determine whether or not these bacteria were pathogens. If these bacteria are generalists, they may simply spillover to other plant species in close proximity (Dobson, 2004, Power & Mitchell, 2004). Second, foliar pathogens in the tropics may be widespread and cause disease for plants quite broadly. For example, Morris et al (2008) hypothesized that the dispersal of the bacterial pathogen P. syringae is widespread, which increases the pathogen's exposure to reservoir plant species and other susceptible plant species (Brown & Hovmoller, 2002; Keesing et al., 2006; Morris et al., 2008). Additionally, highly competitive or common species may be tolerant of a bacterial pathogen, thus causing the pathogen to spillover and harm less common or rare species (Dobson, 2004; Power & Mitchell, 2004). Pathogen spillover may cause positive feedbacks and lead to single-species dominance as the exposure to susceptible plant species increases as tolerant species become more abundant in a community (reviewed by Mordecai, 2011).

It is clear that we cannot resolve this question at this time because no studies have measured the ability of foliar pathogens to enhance or reduce plant diversity. Studies to date suggest that fungal endophytes (Arnold et al., 2003; Arnold, 2008) and insect herbivores (Dyer et al., 2007) are host specific in tropical forests, though this topic remains contentious (Cannon & Simmons, 2002; Suryanarayanan et al., 2002; Novotny et al., 2002; Novotny & Basset, 2005; Novotny et al., 2006). Though the jury is still out, particularly for foliar bacteria, we predict that bacterial pathogens will turn out to be host specific enough and thus play an important role in the maintenance of hyperdiversity in tropical forests.

Conclusions and Future Directions

Our goal was to review the "the great unseen majority" of the plant phyllosphere in tropical habitats. First, we conclude that soil, wind, water, and animal vectors (especially invertebrates) are critical in transporting bacteria to the leaf. Recent studies suggest that bacteria may disperse worldwide via global climate cycles and animal vectors; thus, bacterial dispersal is likely much greater than previously thought (Morris et al., 2008, Chapman et al., 2015).

Additionally, we argue that colonization and abundance of bacteria on leaves in the tropics will be higher than in temperate zones. Leaf architecture and environmental conditions in the tropics, particularly high year-round temperatures, all favor bacterial colonization and survival compared to their temperate counterparts. Competitive exclusion and niche differentiation among phyllospheric bacteria are based upon limiting carbon resources, and species coexistence likely occurs via niche differentiation based on carbon usage and habitat specialization. Such studies demonstrate that that the phyllosphere is likely an ideal system to test other concepts of ecological theory such as patch dynamics, island biogeography, species-area relationships, and trophic dynamics (Meyer & Leveau, 2012). Though the degree to which phyllobacteria and endophytes of tropical plants are pathogenic or mutualistic remains unknown, we predict that the bacteria are primarily pathogenic and associate with particular host species. Ultimately, we hypothesize that the detrimental impact of bacterial pathogens increases with the abundance of hosts, which can promote and maintain plant diversity in tropical forests.

The recent development of new molecular techniques will lead to novel phylogenetic and functional insight of foliar bacterial communities. Researchers recently published the first phyllospheric metagenomes, -proteomes, and -transcriptomes for crop and model plant species under agricultural and natural conditions (Delmotte et al., 2009: soybean, clover, and Arabidopsis] Knief et al., 2012: Arabidopsis and Medicago truncatula; Bodenhausen et al., 2013; 2014; Horton et al., 2014: Arabidopsis). Delmotte et al. (2009) found that on average over 30 % of proteins identified on the phyllosphere on soybean, clover, and Arabidopsis had never been previously described. Horton et al. (2014) recently found evidence via pyrosequencing and genome-wide associations (GWAS) to suggest that bacterial richness and community composition differ among genotypes of Arabidopsis thaliana (see also Bodenhausen et al., 2014). Additionally, we can begin to gain new insights on tritrophic interactions among plants, bacteria, and fungi. The "omics" approaches enable us to explore species interactions, communication, development, and diversity, and even reveal the contribution of each partner to these interactions. This will be critical for our understanding of community ecology on the phyllosphere, where plants, bacterial, and fungal communities interact (sensu Bonfante & Anca, 2009 for tritrophic interactions in the rhizosphere). Additionally, future studies should include systematic assessments of bacterial and fungal community members that simultaneously sample the rhizosphere, root endosphere, the phyllosphere and inside the leaf on the same plant host. Ultimately, the increasing pace and cost effectiveness of molecular technology development will lead to a much better understanding of the composition, physiology, and ecology of leaf bacterial communities.

DOI 10.1007/s12229-015-9151-9

Acknowledgments We thank Joe Wright, Bert Leigh, Carolin Frank, Shannon Nix, Mike Chips, Sarah Neihaus, Camilo Zalamea, Carolina Sarmiento, the Carson-Praitt Lab Group, three anonymous reviewers, and in particular Brian Traw and Betsy Arnold for comments on various drafts of this manuscript. We thank Felipe Lacayo for translating the abstract into Spanish. We acknowledge financial support from a National Science Foundation Graduate Research Fellowship, a Smithsonian Tropical Research Institute Predoctoral Fellowship, a Lewis and Clarke Fund for Exploration and Field Research, Sigma Xi Grant-in-Aid of Research, and a CRDF grant from the University of Pittsburgh.

Abele, S. & M. Pillay. 2007. Bacterial wilt and drought stresses in banana production and their impact on economic welfare in Uganda: Implications for banana research in East African highlands. Journal of Crop Improvement 19: 173-191.

Abramovitch, R. B., J. C. Anderson & G. B. Martin. 2006. Bacterial elicitation and evasion of plant innate immunity. Nature Reviews Molecular Cell Biology 7: 601-611.

Abril, A. B., P. A. Torres & E. H. Buieher. 2005. The importance of phyllosphere microbial populations in nitrogen cycling in the Chaco semi-arid woodland. Journal of Tropical Ecology 21: 103-107.

Aerts, R. 1995. The advantages of being evergreen. Trends in Ecology & Evolution 10: 402-407.

Agrios, G. N. 2005. Plant diseases caused by prokaryotes: bacteria and mollicutes. Pp. 616-704. hr. Plant Pathology: Fifth Edition. Elsevier Academic Press, New York, NY, USA.

Ahmad, I., F. Aqil, F. Ahmad, M. Zahin & J. Musarrat. 2008. Quorum sensing in bacteria: potential in plant health protection. Pp 129-154. In: I. Ahmad, J. Pichtel, & S. Hayat (eds). Plant-bacteria interactions: strategies and techniques to promote plant growth. Wiley-Blackwell, Weinheim, Germany.

Alfano, J. R. & A. Colimen 1996. Bacterial pathogens in plants: Life up against the wall. The Plant Cell 8: 1683-1698.

Amato, P., M. Parazols, M. Sancelme, P. Laj, G. Mailhot & A.-M. Delort. 2007. FEMS Microbiology Ecology 59: 242-254.

Anand, R., L. Paul & C. Chanway. 2006. Research on endophytic bacteria: recent advances with forest trees. Pp 89-106. In: B. J. E. Schulz, J. C. Christine, & N. Thomas (eds). Microbial root endophytes. Springer, Berlin, Germany.

Andrews, J. H. 1992. Biological control on the phyllosphere. Annual Review of Phytopathology 30: 603-635.

--& R. F. Harris. 2000. The ecology and biogeography of microorganisms on plant surfaces. Annual Review of Phytopathology 38: 145-180.

Araujo, W. L., J. Marcon, W. Macchero, J. D. van Elsas, J. W. L. van Vuurde & J. L. Azevedo. 2002. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Applied and Environmental Microbiology 68: 4906-4914.

Ark, P. A. 1958. Longevity of Xanthomonas malvacearum in dried cotton plants. Plant Disease Reporter 42: 1293.

Arnold, A. E. 2008. Endophytic fungi: hidden components of tropical community ecology. Pp 254-271. In: W. P. Carson & S. A. Schnitzer (eds). Tropical forest community ecology. Wiley-Blackwell Publishing, Oxford, UK.

--, L. C. Mejia, D. Kyllo, E. I. Rojas, Z. Maynard, N. Robbins & E. A. Herre. 2003. Fungal endophytes limit pathogen damage in a tropical tree. Proceedings of the National Academy of Sciences of the United States of America 100: 15649-15654.

Aryal, B. & G. Neuner. 2010. Leaf wettability decreases along an extreme altitudinal gradient. Oecologia 162: 1-9.

Asner, G. P., J. M. O. Scurlockl & J. A. Hicke. 2003. Global synthesis of leaf area index observations: Implications for ecological and remote sensing studies. Global Ecology & Biogeography 12: 191-205.

Augspurger, C. K. 1984. Light requirements of neotropical tree seedlings: A comparative study of growth and survival. Journal of Ecology 72: 777-795.

--, & C. K. Kelly. 1984. Pathogen mortality of tropical tree seedlings:experimental studies of the effects of dispersal distance, seedling density, and light conditions. Oecologia 61:211-217.

Baath, E. & T. H. Anderson. 2003. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biology and Biochemistry 35: 955-963.

Bagchi, R., R. E. Gallery, S. Gripenberg, S. J. Gurr, L. Narayan, C. E. Addis, R. P. Freckleton & O. T. Lewis. 2014. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506: 85-88.

Bailey, M. J., A. K. Lilley & J. P. Diaper. 1996. Gene transfer between microorganisms in the phyllosphere. Pp 102-123. In: C. E. Morris, P. C. Nicot, & C. Nguyen (eds). Aerial plant surface microbiology. Plenum Press, New York, NY, USA.

Bale, J. S., G. J. Masters, I. D. Hodkinson, C. Awmack, T. M. Bezemer, V. K. Brown, J. Butterfield, A. Buse, J. C. Coulson, J. Farrar, J. E. G. Good, R. Harrington, S. Hartley, T. H. Joncs, R. L. Lindroth, M. C. Press, 1. Symrnioudis, A. D. Watt & J. B. Whittaker. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology 8: 1-16.

Ballio, A., F. Bossa, D. Di Giorgio, P. Ferranti, M. Paci, P. Pucci, A. Scaloni, A. Segre & G. A. Strobel. 1994. Novel bioactive lipodepsipeptides from Pseudomonas syringae: the pseudomycins. FEBS Letters 355: 96-100.

Bargabus, R. L., N. K. Zidack, J. E. Sherwood & B. J. Jacobsen. 2002. Characterization of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiological and Molecular Plant Pathology 61: 289-298.

--, --, -- & --. 2004. Screening for the identification of potential biological control agents that induce systemic acquired resistance in sugar beet. Biological Control 30: 342-350.

Bascom-Slack, C. A., C. Ma, E. Moore, B. Babbs, K. Fenn, J. S. Greene, B. D. Hann, J. Keehner, E. G. Kelly-Swift, V. Kembaiyan, S. J. Lee, P. Li, D. Y. Light, E. H. Lin, M. A. Schorn, D. Vehkter, L.-A. Boulanger, W. M. Hess, P. N. Vargas, G. A. Strobel & S. A. Strobel. 2009. Multiple, novel biologically active endophytic Actinomycetes isolated from upper Amazonian rainforests. Microbial Ecology 58: 374-383.

Bashan, Y. & Y. Okon. 1981. Inhibition of seed germination and development of tomato plants in soil infested with Pseudomonas tomato. Annals of Applied Biology 98: 413-417.

Bashi, E. & N. J. Fokkenta. 1977. Environmental factors limiting growth of Sporobolomyces roseus, an antagonist of Cochliobolus sativus, on wheat leaves. Transactions of the British Mycological Society 68: 17-25.

Basim, E., H. Basim & M. Ozcan. 2006. Antibacterial activities of Turkish pollen and propolis extracts against plant bacterial pathogens. Journal of Food Engineering 77: 992-996.

Bazzaz, F. A. & S. T. A. Pickett. 1980. Physiological ecology of tropical succession: a comparative review. Annual Review of Ecology and Systematics 11: 287-310.

Beattie, G. A. 2002. Leaf surface waxes and the process of leaf colonization by microorganisms. Pp 3-26. In: S. E. Lindow, E. I. Hect-Poinar, & V. J. Elliot (eds). Phyllosphere microbiology. APS Press, St. Paul, MN, USA.

--. 2011. Water relations in the interaction of foliar bacterial pathogens with plants. Annual Review of Phytopathology 49: 533-555.

--, & S. E. Lindow. 1995. The secret life of foliar bacterial pathogens on leaves. Annual Review of Phytopathology 33:145-172.

--, & --. 1999. Bacterial colonization of leaves: A spectrum of strategies. Phytopathology. 89: 353-359.

Berdy, J. 2005. Bioactive microbial metabolites. Journal of Antibiotics 58: 1-26.

Berg, G. 2009. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology 84: 11-18.

--, & J. Hallmann. 2006. Control of plant pathogenic fungi with bacterial endophytes. Pp. 53-69. In: B. Schulz, C. Boyle & T. Sieder (eds). Microbial root endophytes. Springer, Berlin, Germany.

--, M. Grube, M. Schloter & K. Smalla. 2014. Unraveling the plant microbiome: looking back and future perspectives. Frontiers in Microbiology 5: 148.

--, N. Roskot, A. Steidle, L. Eberl, A. Zock & K. Smalla. 2002. Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Applied and Environmental Microbiology 68: 3328-3338.

--, A. Krechel, M. Ditz, R. A. Sikora, A. Ulrich & J. Kallmann. 2005. Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. Microbial Ecology 51: 215-229.

Bever, J. D. 2003. Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytologist 157: 465-473.

Bhore, S. J., R. NIithya & C. Ying Loh. 2010. Screening of endophytic bacteria isolated from leaves of Sambung Nyawa [Gynura procumbens (Lour.) Merr.] for cytokinin-like compounds. Bioinformation 5: 191-197.

Bjorklof, K., E.-. L. Nurmiaho-Lassila, N. Klinger, K. Haahtela & M. Romantschuk. 2000. Colonization strategies and conjugal gene transfer of inoculated Pseudomonas syringae on the leaf surface. Journal of Applied Microbiology 89: 423-432.

Bjorkman, O. & M. Ludlow. 1972. Characterization of the light climate on the floor of a Queensland rainforest. Carnegie Institution of Washington Yearbook 71: 85-91.

Bock, C. H. & J. H. Graham. 2010. Wind speed effects on the quantity of Xanthomonas citri subsp. citri dispersed downwind from canopies of grapefruit trees infected with citrus canker. Plant Disease 94: 725-736.

--, P. E. Parker & T. R. Gottwald. 2005. Effect of simulated wind-driven rain on duration and distance of dispersal of Xanthomonas axonopodis pv. citri front canker-infected citrus trees. Plant Disease 89: 71-80.

Bodenhausen, N., M. W. Horton & J. Bergelson. 2013. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS ONE 8, E56329.

--, M. Bortfeld-Miller, M. Ackermann & J. A. Vorholt. 2014. A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genetics 10: e1004283.

Boller, T. & S. Y. He. 2009. Innate immunity in plants: an arms race between pathogen recognition receptors in plants and effectors in microbial pathogens. Science 324: 742-744.

Bonfante, P. & I.-A. Anca. 2009. Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annual Review of Microbiology 63: 363-383.

Brader, G., S. Compant, B. Mitter, F. Trognitz & A. Sessitsch. 2014. Metabolic potential of endophytic bacteria. Current Opinion in Biotechnology 27: 30-37.

Brandl, M. T. & S. E. Lindow. 1998. Contribution of indole-3-acetic acid production to the epiphytic fitness of Erwinia herbicola. Applied and Environmental Microbiology 64: 3256-3263.

Brotman, Y., J. Lisec, M. Meret, 1. Chet, L. Willmitzer & A. Viterbo. 2012. Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana. Microbiology 158: 139-146.

Brown, J. K. M. & M. S. Hovmoller. 2002. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297: 537-541.

Bruton, B. D., F. Mitchell, J. Fletcher, S. D. Pair, A. Wayadande, U. Melcher, J. Brady, B. Bextine & T. W. Popham. 2003. Serratia marcescens, a phloem-colonizing, squash bug-transmitted bacterium: causal agent of cucurbit yellow vine disease. Plant Disease 87: 937-944.

Bulgarelli, D., K. Schlaeppi, S. Spaepen, E. V. L. van Themaat & P. Schulze-Lefert. 2013. Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology 64: 807-838.

Bull, C. T., S. H. De Boer, T. P. Denny, G. Firrao, M. Fischer-Le Saux, G. S. Saddler, M. Scortichini, D. E. Stead & Y. Takikawa. 2010. Comprehensive list of names of plant pathogenic bacteria, 1980-2007. Journal of Plant Pathology 92: 551-592.

Burd, M. 2007. Adaptive function of drip tips: a test of the epiphyll hypothesis in Psycliotria marginala and Faramea occidentalis (Rubiaceae). Journal of Tropical Ecology 23: 449-455.

Burdon, J. J., A. Wennstrom, T. Elmqvist & G. C. Kirby. 1996. The role of race specific resistance in natural plant populations. Oikos 76: 411-416.

Burse, A., H. Weingart & M. S. Ullrich. 2004. NorM, an Erwinia amylovora multidrug efflux pump involved in in vitro competition with other epiphytic bacteria. Applied and Environmental Microbiology 70: 693-703.

--, -- & --. 2004b. The phytoalexin-inducible multidrug efflux pump AcrAB contributes to virulence in the fire blight pathogen, Erwinia amylovora. Molecular Plant-Microbe Interactions 17:43-54.

Butterworth, J. & H. A. McCartney. 1991. The dispersal of bacteria from leaf surfaces by water splash. Journal of Applied Bacteriology 71: 484-496.

Buttner, D. 2012. Protein export according to schedule: architecture, assembly, and Regulation of type III secretion systems from plant- and animal-pathogenic Bacteria. Microbiology and Molecular Biology Reviews 76: 262-310.

Cankar, K., H. Kraigher, M. Ravnikar & M. Rupnik. 2005. Bacterial endophytes from seeds of Norway spruce (Picea abies L. Karst). FEMS Microbiology Letters 244: 341-345.

Cannon, P. F. & C. M. Simmons. 2002. Diversity and host preference of leaf endophytic fungi in the Iwokrama Fores Reserve, Guyana. Mycologia 94: 210-220.

Carlier, A. L. & L. Eberl. 2012. The eroded genome of a Psycliotria leaf symbiont: hypotheses about

lifestyle and interactions with its plant hosts. Environmental Microbiology 14: 2757-2769.

Carpes, T., R. Begnini, S. Mathis de Alencar & M. L. Masson. 2007. Study of preparations of bee pollen extracts, antioxidant and antibacterial activity. Ciencia e Agrotecnologia 31: 1818-1825.

Carrell, A. A. & A. C. Frank. 2014. Pinus flexilis and Picea engelmannii share a simple and consistent needle endophyte microbiota with a potential role in nitrogen fixation. Frontiers in Microbiology 5: 333.

Carson W. P., J. Anderson, E. G. Leigh Jr. & S. A. Schnitzer. 2008. Challenges associated with testing and falsifying the Janzen-Connell Hypothesis: a review and critique. Pp. 210-241. In: W. P. Carson & S. A. Schnitzer (eds). Tropical forest community ecology. Wiley-Blackwell Publishing, Oxford, UK.

Ceballos, I., S. Mosquera, M. Angulo, J. J. Mira, L. E. Argel, D. Uribe-Velez, M. Romez-Tabarez, S. Orduz-Peralta & V. Villegas. 2012. Cultivable bacteria populations associated with leaves of banana and plantain plants and their antagonistic activity against Mycosphaerella fijiensis. Microbial Ecology 64: 641-653.

Cha, C., P. Gao, Y.-C. Chen, P. D. Shaw & S. P. Farrand. 1998. Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Molecular Plant-Microbe Interactions 11: 1119-1129.

Chang, W.-S., M. van de Mortel, L. Nielsen, G. Nino de Guzman, X. Li & L. J. Halverson. 2007. Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. Journal of Bacteriology 189: 8290-8299.

Chapman, J. W., D. R. Reynolds & K. Wilson. 2015. Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences. Ecology Letters, doi:10.1111/ele.12407.

Chazdon, R. L. & N. Fletcher. 1984. Light environments of tropical forests. Pp 553-564. In: E. Medina, H. A. Mooney, & C. Vazquez-Yanes (eds). Physiological ecology of plants of the wet tropics. Dr. W. Junk Publishers, The Hague, Netherlands.

Choong, M. F., P. W. Lucas, J. S. Y. Ong, B. Pereira, H. T. VV. Tan & I. M. Turner. 1992. Leaf fracture toughness and sclerophylly: their correlations and ecological implications. New Phytologist 121: 597-610.

Christie, P. J., N. Whitaker & C. Gonzalez-Rivera. 2014. Mechanism and structure of the bacterial type IV secretion systems. Biochimica et Biophysica Acta 1843: 1578-1591.

Christner, B. C., C. E. Morris, C. M. Foreman, R. Cai & D. C. Sands. 2008. Ubiquity of biological ice nucleators in snowfall. Science 319: 1214.

CIA. 2010. The world factbook.

Cipollini, D., S. Enright, M. B. Traw & J. Bergelson. 2004. Salicylic acid inhibits jasmonic acid-induced resistance of Arabidopsis thaliana to Spodoptera exigua. Molecular Ecology 13: 1643-1653.

Coley, P. D. & M. T. Aide. 1991. A comparison of herbivory and plant defenses in temperate and tropical broad-leaved forests. Pp 25-49. In: P. W. Price, T. M. Lewinsohn, G. W. Fernandes, & W. W. Benson (eds). Plant-animal interactions: evolutionary ecology in tropical and temperate regions. John Wiley & Sons, New York, NY, USA.

--, & J. A. Barone. 1996. Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics 27: 305-335.

Coll, N. S., P. Epple & J. L. Dangl. 2011. Programmed cell death in the plant immune system. Cell Death & Differentiation 18: 1247-1256.

Collins, D. P. & B. J. Jacobsen. 2003. Optimizing a Bacillus subtilize isolate for control of sugar beet Cercospora leaf spot. Biological Control 26: 153-161.

Comins, H. N. & I. R. Noble. 1985. Dispersal, variability, and transient niches: species coexistence in a uniformly variable environment. The American Naturalist 126: 706-723. Comita, L. S., S. A. Queenborough, S. J. Murphy, J. L. Eck, K. Xu, M. Krishnadas, N. Beckman & Y. Zhu. 2014. Testing predictions of the Jansen-Connell hypothesis: a meta-analysis of experimental evidence for distance- and distance-dependent seed and seedling survival. Journal of Ecology 102: 845-856.

Compant, S., C. Clement & A. Sessitsch. 2010. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biology & Biochemistry 42: 669-678.

--, J. Nowak, T. Coenye, C. Clement & E. A. Barka. 2008. Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiology Reviews 32: 607-626.

Connell, J. H. 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Pp 298-312. In: P. J. den Boer & G. R. Gradwell (eds). Dynamics of populations. Center for Agricultural Publishing and Documentation, Wageningen, Netherlands.

Cook, D., W. T. Beaulieu, I. W. Mott, F. Riet-Correa, D. R. Gardner, D. Crum, J. A. Pfister, K. Clay & C. Marcolongo-Pereira. 2013. Production of the alkaloid swainsonine by a fungal endosymbiont of the ascomycete order chaetothyriales in the host Ipomoea carnea. Journal of Agricultural and Food Chemistry 61: 3797-3803.

Corpe, W. A. & S. Rheem. 1989. Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiology Ecology 62: 243-250.

Cottyn, B., E. Regalado, B. Lanoot, M. De Cleene, T. W. Mew & J. Swings. 2001. Bacterial populations associated with rice seed in the tropical environment. Phytopathology 91: 282-292.

Currie, C. R., J. A. Scott, R. C. Summerbell & D. Malloch. 1999. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398: 701-704.

Dalling, J. W., A. S. Davis, B. J. Schutte & A. E. Arnold. 2011. Seed survival in soil: interacting effects of predation, dormancy and the soil microbial community. Journal of Ecology 99: 89-95.

Dangl, J. L., D. M. Horvath & B. J. Staskawicz. 2013. Pivoting the plant immune system from dissection to deployment. Science 341: 746-751.

Danhorn, T. & C. Fuqua. 2007. Biofilm formation by plant-associated bacteria. Annual Review of Microbiology 61: 401-422.

Darrasse, A., A. Darsonval, T. Boureau, M.-N. Brisset, K. Durand & M.-A. Jacques. 2010. Transmission of plant-pathogenic bacteria by nonhost seeds without induction of an associated defense reaction at emergence. Applied and Environmental Microbiology 76: 6787-6796.

Davies, P. J. 1995. Plant hormones and their role in plant growth and development. Pp 1-12. In: P. J. Davies (ed). Plant Hormones physiology, biochemistry and molecular biology. Kluwer Academic Publishers, Dordrecht, Netherlands.

De Bary, A. 1866. Morphologie und Physiologie der Pilze, Flechten, und Myxomyceten. Holfmeister's Handbook of Physiological Botany. Vol 2. Leipzig, Germany.

De Costa, D. M., S. S. T. Samarasinghe, H. R. D. Dias & D. M. N. Dissanayake. 2008. Control of rice sheath blight by phyllosphere epiphytic microbial antagonists. Phytoparasitica 36: 52-65.

Delmotte, N., C. Knief, S. Chaffron, G. Innerebner, B. Roschitzki, R. Schlapbach, C. von Mering & J. A. Vorholt. 2009. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proceedings of the National Academy of Sciences of the United States of America 106: 16428-16433.

Desoignies, N., F. Schramme, M. Ongena & A. Legreve. 2013. Systemic resistance induced by Bacillus lipopeptides in Beta vulgaris reduces infection by the Rhizomania disease vector Polymyxa betae. Molecular Plant Pathology 14: 416-421.

Dik, A. J. & J. A. Vanpelt. 1992. Interaction between phyllosphere yeasts, aphid honeydew and fungicide effectiveness in wheat under field conditions. Plant Pathology 41: 661-675.

Dobson, A. P. 2004. Population dynamics of pathogens with multiple host species. The American Naturalist 164: 64-78.

Dodds, P. N. & J. P. Ratlijen. 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nature Reviews Genetics 11: 539-548.

Dong, Y.-. H., J.-L. Xu, X.-Z. U & L.-H. Zhang. 2000. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia caratovora. Proceedings of the National Academy of Sciences of the United States of America 97: 3526-3531.

Dunne, W. M. 2002. Bacterial adhesion: seen any good biofilms lately? Clinical Microbial Reviews 15: 155 166.

Dyer, L. A., W. P. Carson & E. G. Leigh. 2012. Insect outbreaks in tropical forests: patterns, mechanisms, and consequences. Pp 219-245. In: P. Barbosa, D. K. Letourneau, & A. A. Agrawal (eds). Insect outbreaks revisited. Wiley-Blackwell, Hoboken, NJ, USA.

--, M. S. Singer, J. T. Lill, J. O. Stireman, G. L. Gentry, R. J. Marquis, R. E. Ricklefs, H. F. Greeney, D. L. Wagner, H. C. Morais, I. R. Diniz, T. A. Kursar & P. D. Coley. 2007. Host specificity of Lepidoptera in tropical and temperate forests. Nature 448: 696-700.

Elad, Y. 1996. Mechanisms involved in the biological control of Botrytis cinera incited diseases. European Journal of Plant Pathology 102: 719-732.

Elasri, M., S. Delorme, P. Lemanceau, G. Stewart, B. Laue, E. Glickmann, P. M. Oger et Y. Dessaux. 2001. Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soil-borne Pseudomonas spp. Applied and Environmental Microbiology 67: 1198-1209.

Ellis, J. G., A. Kerr, A. Petit & T. Tempe. 1982. Conjugal transfer of nopaline and agropine Ti-plasmids the role of agrocinopines. Molecular Genetics and Genomics 186: 269-274.

Enya, J., H. Shinohara, S. Yoshida, T. Tsukiboshi, H. Negishi, K. Suyanta & S. Tsushima. 2007. Culturable leaf-associated bacteria on tomato plants and their potential as biological control agents. Microbial Ecology 53: 524-536.

Ercolani, C. L. 1991. Distribution of epiphytic bacteria on olive leaves and the influence of leaf age and sampling time. Microbial Ecology 21: 35-48.

Evans, K. J., W. E. Nyquist & R. X. Latin. 1992. A model based on temperature and leaf wetness duration for establishment of Alternaria leaf blight of Muskmelon. Phytopathology 82: 890-895.

Ewald, P. W. 1987. Transmission modes and evolution of the parasitism-mutualism continuum. Annals of the New York Academy of Sciences 503: 295-306.

Falkowski, P. G., T. Fenchel & E. F. Delong. 2008. The microbial engines that drive Earth's biogeochemical cycles. Science 320: 1034-1039.

Fan, J., C. Crooks, G. Creissen, L. Hill, S. Fairhurts, P. Doerner & C. Lamb. 2011. Pseudomonas sax genes overcome aliphatic isothiocyanate-mediated non-host resistance in Arabidopsis. Science 331 : 1185-1188.

Faulwetter, R. C. 1917. Dissemination of the angular leaf spot of cotton. Journal of Agricultural Research 8: 457-475.

Fierer, N. & R. B. Jackson. 2006. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America 103: 626-631.

Fitt, B. D. L., H. A. McCartney & P. J. Walklate. 1989. The role of rain in dispersal of pathogen inoculum. Annual Review of Phytopathology 27: 241-270.

Flemming, H.-. C. & J. Wingender. 2010. The biofilm matrix. Nature Reviews Microbiology 8: 623-633.

Fokkema, N. J., J. G. den Houter, Y. J. C. Kosterman & A. L. Nelis. 1979. Manipulation of yeasts on field-grown wheat leaves and their antagonistic effect on Cochliobolus sativus and Septoria nodorum. Transactions of the British Mycological Society 72: 19-29.

Friesen, M. L., S. S. Porter, S. C. Stark, E. J. Von Wettberg, J. L. Sachs & E. Martinez-Romero. 2011. Microbially mediated plant functional traits. Annual Review of Ecology, Evolution, and Systematics 42: 23-46.

Furnkranz, M., W. Wanek, A. Richter, G. Abell, F. Rasche & A. Sessitsch. 2008. Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest in Costa Rica. The ISME Journal 2: 561-570.

Gallery, R. E., D. J. P. Moore & J. W. Dalling. 2010. Interspecific variation in susceptibility to fungal pathogens in seeds of 10 tree species in the neotropical genus Cecropia. Journal of Ecology 98: 147-155.

Gans, J., M. Wolinsky & J. Dunbar. 2005. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309: 1387-1390.

Garcia, K., J. P. Shaffer, C. Sarmiento, P. C. Zalamea, J. W. Dalling, A. Davis, D. A. Baltrus, R. E. Gallery & A. E. Arnold. 2013. Diversity and evolutionary relationships of bacteria affiliated with tropical seeds and seed-associated fungi (abstract). Pp. 572. The American Phytopathological Society and The Mycological Society of America Joint Meeting; August 10-14, 2013; Austin, Texas, USA.

Ghazoul, J. & D. Sheil. 2010. The great unseen: fungi and microorganisms. Pp 33^)3. In: J. Ghazoul & D. Sheil (eds). Tropical rain forest ecology, diversity, and conservation. Oxford University Press, Oxford, UK.

Gilbert, G. S. 2002. Evolutionary ecology of plant diseases in natural ecosystems. Annual Review of Phytopathology 40: 13-43.

--. 2005. Dimensions of plant disease in tropical forests. Pp. 141-164. In: D. F. R. P. Burslem, M. A. Pinard & S. E. Hartley (eds). Biotic interactions in the tropics. Cambridge University Press, Cambridge, UK.

Gillett, J. B. 1962. Pest pressure, an underestimated factor in evolution. Systematics Association Publication 4: 37-46.

Gitaitis, R. & R. Walcott. 2007. The epidemiology and management of seedborne bacterial diseases. Annual Reviews of Phytopathology 45: 371-397.

Glazebrook, J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopatholgy 43: 205-227.

Click, B. R. 2005. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiology Letters 251: 1-7.

Gnanamanickam, S. S. 2006. Plant-associated bacteria. Springer, Dordrecht, Netherlands.

Goel, A. K., L. Rajagopal, N. Nagesh & R. V. Sonti. 2002. Genetic locus encoding functions involved in biosynthesis and outer membrane localization of xanthomonadin in Xanthomonas oryzae pv. oryzae. Journal of Bacteriology 184: 3539-3548.

Gonzales, W. L., M. A. Negritto, L. H. Suarez & E. Gianoli. 2008. Induction of glandular and nonglandular trichomes by damage in leaves of Madia sativa under contrasting water regimes. Acta Oecologia 22: 128-132.

Goodnow, R. A., M. D. Harrison, J. D. Morris, K. B. Sweeting & R. J. Laduca. 1990. Fate of ice nucleation-active Psuedomonas syringae in alpine soils and waters and in synthetic snow samples. Applied and Environmental Microbiology 56: 2223-2227.

Gordon, J. F. 1963. The nature and distribution within the plant of the bacteria associated with certain leaf-nodulated species of the families Myrisinaceae and Rubiaceae. Dissertaion, Imperial College, London, UK.

Gottwald, T. R., J. H. Graham & T. S. Schubert. 2002. Citrus canker: the pathogen and its impact. Plant Health Progress. doi:10.1094/PHP-2002-0812-01-RV.

Graham, J. H., T. R. Gottwald, J. Cubero & D. S. Achor. 2004. Xanthomonas axonopodis pv. citri: factors affecting successful eradication of citrus canker. Molecular Plant Pathology 5: 1-15.

Graner, G., P. Persson, J. Meijer & S. Alstrom. 2003. A study on microbial diversity in different cultivars of Brassica napus in relation to its wilt pathogen, Verticillium longisporum. FEMS Microbiology Letters 224: 269-276.

Groombridge, B. & M. D. Jenkins. 2002. World atlas of biodiversity: earth's living resources in the 21st century. University of California Press, Berkeley, CA, USA.

Gunasekera, T. S. & G. W. Sundin. 2006. Role of nucleotide excision repair and photoreactivation in the solar UVB radiation survival of Pseudomonas syringae pv. syringae B728a. Journal of Applied Microbiology 100: 1073-1083.

Gutierrez-Manero, F. J., B. Ramos-Solano, A. Probanza, J. Mehouachi, F. R. Tadeo & M. Talon. 2001. The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active giberellins. Physiologia Plantarum 111: 206-211.

Haeder, S., R. Wirth, H. Herz & D. Spiteller. 2009. Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic Escovopsis. Proceedings of the National Academy of Sciences of the United States of America 106: 4742-4746.

Haefele, D. M. & S. E. Lindow. 1987. Flagellar motility confers epiphytic fitness advantages upon Pseudomonas syringae. Applied and Environmental Microbiology 53: 2528-2533.

Hagai, E., R. Dvora, T. Havkin-Blank, E. Zelinger, Z. Porat, S. Schulz & Y. Helman. 2014. Surface-motility induction, attraction, and hitchhiking between bacterial species promote dispersal on solid surfaces. The ISME Journal 8: 1147-1151.

Hallam, A. & J. Read. 2006. Do tropical species invest more in anti-herbivore defense than temperate species? A test in Ecryphia (Cunoniaceae) in eastern Australian. Journal of Tropical Ecology 22: 41-51.

Hallmann, J., A. Quadt-Hallman, W. F. Mahafee & J. W. Kloepper. 1997. Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology 43: 895-914.

Hardoim, P. R., L. S. Van Overbeek & J. D. Van Elsas. 2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology 16: 463--471.

Harrison, L., D. B. Teplow, M. Rinaldi & G. Strobel. 1991. Pseudomycins, a family of novel peptides from Pseudomonas syringae possessing broad-spectrum antifungal activity. Journal of General Microbiology 137: 2857-2865.

Hartmann, A., M. Rothballer, B. A. Hense & P. Schroder. 2014. Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Frontiers in Plant Science 5: 131.

Henis, Y. & Y. Bashan. 1986. Epiphytic survival of bacterial leaf pathogens. Pp 252-268. In: N. J. Fokkema & J. van dev Heuvel (eds). Microbiology of the phyllosphere. Cambridge University Press, Cambridge, UK.

Herre, A. E., L. C. Mejia, D. A. Kyllo, E. Rojas, Z. Maynard, A. Butler & S. A. Van Bael. 2007. Ecological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizae. Ecology 88: 550-558.

Hildebrand, M., E. Dickler & K. Geider. 2000. Occurrence of Erwinia amylovora on insects in a fire blight orchard. Journal of Phytopathology 148: 251-256.

Hill, D. S. & J. M. Waller. 1982. Pests and diseases of tropical crops. Longman, London.

Hirano, S. S. & C. D. Upper. 2000. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringaea pathogen, ice nucleus, and epiphyte. Microbiology and Molecular Biology Reviews 64: 624-653.

Hodgson, S., C. de Cates, J. Hodgson, N. J. Morley, B. C. Suttton & A. C. Gange. 2014. Vertical transmission of fungal endophytes is widespread in forbs. Ecology and Evolution 4: 1199-1208.

Hoffman, M. T., M. K. Gunatilaka, K. Wijeratne, L. Gunatilaka & A. E. Arnold. 2013. Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte. PLoS ONE 8: e73132.

Hogan, C. M. 2010. Bacteria. In: S. Draggan & C. J. Cleveland (eds). Encyclopedia of Earth. National Council for Science and the Environment, Washington, D.C., USA.

Horner-Devine, M. C., M. A. Leibold, V. H. Smith & B. J. M. Bohannan. 2003. Bacterial diversity patterns along a gradient of primary productivity. Ecology Letters 6: 613-622.

Horst, R. K. 1990. Westcott's plant disease handbook, ed. 5th. Chapman & Hall, New York, NY, USA.

Horton, M. W., N. Bodenhausen, K. Beilsmith, D. Meng, B. D. Muegge, S. Subramanian, M. M. Vetter, B. J. Vilhjalmsson, M. Nordborg, J. I. Gordon & J. Bergelson. 2014. Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nature Communications. doi:10.1038/ncomms6320.

Howe, H. F. & J. Smallwood. 1982. The ecology of seed dispersal. Annual Review of Ecology, Evolution, and Systematics 13: 201-228.

Hu, H. Q., X. S. Li & H. He. 2010. Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of Capsicum bacterial wilt. Biological Control 54: 359-365.

Huang, J. S. 1986. Ultrastructure of bacterial penetration in plants. Annual Review of Phytopathology 24: 141-157.

Hyde, K. D. & K. Soytong. 2008. The fungal endophyte dilemma. Fungal Diversity 33: 163-173.

Innerebner, G., C. Knief & J. A. Vorholt. 2011. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Applied and Environmental Microbiology 77: 3202-3210.

Irey, M., T. R. Gottwald, J. H. Graham, T. D. Riley & G. Carlton. 2006. Post-hurricane analysis of citrus canker spread and progress towards the development of a predictive model to estimate disease spread due to catastrophic weather events. Plant Health Progress. doi:10.1094/PHP-2006-0822-01-RS.

Ivey, C. T. & N. Desilva. 2001. A test of the function of drip tips. Biotropica 33: 188-191.

Izore, T., V. Job & A. Dessen. 2011. Biogenesis, regulation, and targeting of the type 111 secretion system. Structure 19: 603-612.

Izumi, H. 2011. Diversity of endophytic bacteria in forest trees. Pp 95-105. In: A. M. Pirttila & A. C. Frank (eds). Endophytes of forest trees, Biology and applications series: Forestry sciences: forestry sciences, Vol. 80. Springer, Heidelberg, Germany.

Jackson, R. W. 2009. Plant pathogenic bacteria: Genomics and molecular biology. Caister Academic Press, Norfolk, UK.

Jackson, C. R. & VV. C. Denney. 2011. Annual and seasonal variation in the phyllosphere bacteria community associated with leaves of the southern magnolia (Magnolia grandiflora). Microbial Ecology 61: 113-122.

Jacobs, J. L., T. L. Carroll & G. W. Sundin. 2005. The role of pigmentation, ultraviolet radiation tolerance, and leaf colonization strategies in the epiphytic survival of phyllosphere bacteria. Microbial Ecology 49: 104-113.

Jacobsen, B. J. 2006. Biological control of plant diseases by phyllosphere applied biological control agents. Pp 133-147. In: M. J. Bailey, A. K. Lilley, T. M. Timms-Wilson, & P. T. N. Spencer-Phillips (eds). Microbial ecology of aerial plant surfaces. Cabi International, Wallingford, UK.

Janisiewicz, W. J. & L. Korsten. 2002. Biological control of postharvest diseases of fruits. Annual Review of Phytopathology 40: 411-441.

Jankiewicz, U. & M. Koltonowicz. 2012. The involvement of Pseudomonads bacteria in induced systemic resistance in plants. Applied Biochemistry and Microbiology 48: 276-281.

Janzen, D. H. 1970. Herbivores and the number of tree species in tropical forests. The American Naturalist 104: 501-528.

Ji, P. & M. Wilson. 2002. Assessment of the importance of similarity in carbon source utilization profiles between the biological control agent and the pathogen in biological control of bacterial speck of tomato. Applied and Environmental Micrbiology 68: 4383-4389.

Johnston-Monje, D. & M. N. Raizada. 2011. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography, and ecology. PLoS ONE 6: e20396.

Jones, J. D. G. & J. L. Dangl. 2006. The plant immune system. Nature 444: 323-329.

Jones, J. B., K. L. Pohronezny, R. E. Stall & J. P. Jones. 1986. Survival of Xanthomonas campestris pv. vesicatoria in Florida on tomato crop residue, weeds, seeds, and volunteer tomato plants. Phytopathology 76: 430-434.

Jones, S., B. Yu, N. J. Birdsall, B. W. Bycroft, S. R. Chhabra, A. J. Cox, P. Colby, P. J. Reeves & S. Stephens. 1993. The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. The EMBO Journal 12: 2477-2482.

Joosten, L. & J. A. van Veen. 2011. Defensive properties of pyrrolizidine alkaloids against microorganisms. Phytochemistry Reviews 10: 127-136.

Kang, H. & D. C. Gross. 2005. Characterization of a resistance-nodulation-cell division transporter system associated with the syr-syp genomic island of Pseudomonas syringae pv. syringae. Applied and Environmental Microbiology 71: 5056-5065.

Karamanoli, K., G. Thalassinos, D. Karpouzas, A. M. Bosabaldis, D. Vokou & H.-. I. Constantinidou. 2012. Are leaf glandular trichomes of oregano hospitable habitats for bacterial growth? Journal of Chemical Ecology 38: 476-485.

Karamura, E., G. Kayobyo, G. Blomme, S. Benin, S. J. Eden-Green & R. Markham. 2006. Impacts of BXM epidemic on the livelihoods of rural communities in Uganda. Pp 57. In: G. Saddler, J. Elphinstone, & J. Smith (eds). Programme and Abstract Book of the 4th International Bacterial Wilt Symposium, 17th-20th July 2006. The Lakeland Conference Centre, Central Science Laboratory, York, UK.

Kayobyo, G., L. Aliguma, G. Omiat, J. Mugisha & S. Benin. 2005. Impact of BXM on household livelihoods in Uganda. "Assessing the impact of the banana bacterial wilt (Xanthomonas campestirs pv. musacearum) on household livelihoods in East Africa," workshop. Kampala, Uganda.

Keesing, F., R. D. Holt & R. S. Ostfeld. 2006. Effects of species diversity on disease risk. Ecology Letters 9: 485-498.

Keith, L. M. W. & C. L. Bender. 1999. AlgT controls alginate production and tolerance to environmental stress in Pseudomonas syringae. Journal of Bacteriology 181: 7176-7184.

Kembel, S. W., T. K. O'Conner, H. K. Arnold, S. P. Hubbell, S. J. Wright & J. L. Green. 2014. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proceedings of the National Academy of Sciences of the United States of America 111: 13715-13720.

Kim, J. J. & G. W. Sundin. 2000. Regulation of the rulAB mutagenic DNA repair operon of Pseudomonas syringae by UV-B (290 to 320 nm) radiation and analysis of rulAB-mediated mutability in vitro and in planta. Journal of Bacteriology 182: 6137-6144.

-- & --. 2001. Construction and analysis of photolease mutants of Pseudomonas aeruginosa and Pseudomonas syringae: contribution of photoreactivation, nucleotide excision repair, and mutagenic DNA repair to cell Survival and mutability following exposure to UV-B radiation. Applied and Environmental Microbiology 67: 1405-1411.

Kim, M., D. Singh, A. Lai-Hoe, R. Go, R. A. Rahim, A. N. Ainuddin, J. Chun & J. M. Adams. 2012. Distinctive phyllosphere bacterial communities in tropical trees. Microbial Ecology 63: 674-681.

Kinkel, L. L. 1997. Microbial population dynamics on leaves. Annual Review of Phytopathology 35: 327-347.

Kishore, G. K., S. Pande & A. R. Podile. 2005. Biological control of late leaf spot of peanut (Arachis hypogaea) with chitinolytic bacteria. Phytopathology 95: 1157-1165.

--, --, & --. 2005b. Chitin-supplemented foliar application of Serratia marcescens GPS 5 improves control of late leaf spot disease of groundnut by activating defence-related enzymes. Journal of Phytopathology 153: 169-173.

Kloepper, J. W. & C. M. Ryu. 2006. Bacterial endophytes as elicitors of induced systemic resistance. Pp 33-52. In: B. J. E. Schulz, C. J. C. Boyle, & T. N. Sieber (eds). Microbial root endophytes. Springer, Berlin, Germany.

Knief, C., N. Delmotte, S. Chaffron, M. Stark, G. Innerebner, R. Wassman, C. von Mering & J. A. Vorholt. 2012. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. The ISME Journal 6: 1378-1390.

Knoll, D. & L. Schreiber. 1998. Influence of epiphytic micro-organisms on leaf wettability: wetting of the upper leaf surface of Juglans regia and of model surfaces in relation to colonization by micro-organisms. New Phytologist 140: 271-282.

--, & --. 2000. Plant-microbe interactions: wetting of ivy (Hedera helix L.) leaf surfaces in relation to colonization by epiphytic microorganisms. Microbial Ecology 41: 33-42.

Kocks, C. G., M. A. Ruissen, J. C. Zadoks & M. G. Duijkers. 1998. Survival and extinction of Xanthomonas campestris pv. campestris in soil. European Journal of Plant Pathology 104: 911-923.

Koutsoudis, M. D., D. Tsaltas, T. D. Minogue & S. B. von Bodman. 2006. Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii. Proceedings of the National Academy of Sciences of the United States of America 103: 5983-5988.

Kricher, J. C. 2011. Tropical ecology. Princeton University Press, Princeton, NJ, USA.

Kurten, E. & W. P. Carson. 2015. Do ground-dwelling vertebrates promote diversity in a Neotropical forest? Results from a long-term exclosure experiment. BioScience.

Lam, E., N. Kato & M. Lawton. 2001. Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411: 848-853.

Lambais, M. R., D. E. Crowly, J. C. Cury, R. C. Bull & R. R. Rodrigues. 2006. Bacterial diversity in tree canopies of the Atlantic forest. Science 312: 1917.

Lauber, C. L., M. Hamady, R. Knight & N. Fierer. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology 75: 5111-5120.

Laurence, W. F. & C. A. Peres (eds). 2006. Emerging threats to tropical forests. University of Chicago Press, Chicago, IL, USA.

Leben, C. 1988. Relative humidity and the survival of epiphytic bacteria with buds and leaves of cucumber plants. Phytopathology 78: 179-185.

Legard, D. E. & J. E. Hunter. 1990. Pathogenicity on bean of Pseudomonas syringae pv. syringae recovered from the phylloplane of weeds and bean crop residue. Phytopathology 80: 938-942.

Leigh, J. A. & D. L. Coplin. 1992. Exopolysaccharide in plant-bacterial interactions. Annual Review of Microbiology 46: 307-346.

Levin, D. A. 1973. The role of trichomes in plant defense. The Quarterly Review of Biology 48: 3-15.

--. 1976. The chemical defenses of plants to pathogens and herbivores. Annual Review of Ecology, Evolution, and Systematics 7: 121-159.

--, & B. M. York, Jr. 1978. The toxicity of plant alkaloids: an ecogeographic perspective. Biochemical Systematics and Ecology 6: 61-76.

Lewis, S. L., J. Lloyd, S. Sitch, E. T. A. Mitchard & W. F. Laurance. 2009. Changing ecology of tropical forests: evidence and drivers. Annual Review of Ecology, Evolution, and Systematics 40: 529-549.

Leyns, F., M. De Cleene, J.-G. Swings & J. De Ley. 1984. The host range of the genus Xanthomonas. The Botanical Review 50: 308-356.

Li, J., G.-. Z. Zhao, H.-. H. Chen, H.-. B. Wang, S. Qin, W.-. Y. Zhu, L.-. H. Xu, C.-. L. Jiang & W.-. J. Li. 2008. Antitumor and antimicrobial activities of endophytic streptomcycetes from pharmaceutical plants in rainforest. Letters in Applied Microbiology 47: 574-580.

Lindeberg, M., S. Cunnac & A. Collmer. 2012. Pseudomonas syringae type III effector repertoires: last words in endless arguments. Trends in Microbiology 20: 199-208.

Lindow, S. E. & M. T. Brandi. 2003. Microbiology of the phyllosphere. Applied and Environmental Microbiology 69: 1875-1883.

--, G. Anderson & G. A. Beattie. 1993. Characteristics of insertional mutants of Pseudomonas syringae with reduced epiphytic fitness. Applied and Environmental Microbiology 59: 1593-1601.

Links, M. G., T. Demeke, T. Grafenhan, J. E. Hill, S. M. Hemmingsen & T. J. Dumonceauz. 2014. Simultaneous profiling of seed-associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on Triticum and Brassica seeds. New Phytologist 202: 542-553.

Lodge, D. L., D. L. Hawksworth & B. J. Ritchie. 1996. Microbial diversity and tropical forest functioning. Pp 69-100. In: G. H. Orians, R. Dirzo, & J. H. Cushman (eds). Biodiversity and ecosystem processes in tropical forests. Springer, New York, NY, USA.

Loh, J., E. A. Pierson, L. S. Pierson III, G. Stacey & A. Chatterjee. 2002. Quorum sensing in plant-associated bacteria. Current Opinion in Plant Biology 5: 285-290.

Low, H. IL, F. Gubellini, A. Rivera-Calzada, N. Braun, S. Connery, A. Dujeancourt, F. Lu, A. Redzej, R. Fronzes, E. V. Orlova & G. Waksman. 2014. Structure of a type IV secretion system. Nature 508: 550-553.

Lucking, R. 2001. Lichens on leaves in tropical rain forests: life in a permanently ephemerous environment. Dissertationes Botanicae 346: 41-78.

Maggiorani Valencillos, A., P. Rodriguez Palenzuela & E. Lopez-Solanilla. 2006. The role of several multidrug resistance systems in Erwinia chrysanthemi pathogenesis. Molecular Plant-Microbe Interactions 19: 607-613.

Mali, T.-. F. & G. A. O'Toole. 2001. Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology 9: 34-39.

Malhado, A. C. M., Y. Malhi, R. J. Whittaker, R. J. Ladle, H. Ter Steege, N. N. Fabre, O. Phillips, W. F. Laurance, L. E. O. C. Aregao, N. C. A. Pitman, H. Ramirez-Angulo & C. H. M. Malhado. 2012. Drip-tips are associated with intensity of precipitation in the Amazon rain forest. Biotropica 40: 1-10.

Mangan, S. A., S. A. Schnitzer, E. A. Herre, K. M. L. Mack, M. C. Valencia, E. I. Sanchez & J. D. Bever. 2010. Negative plant-soil feedback predicts free relative species abundance in a tropical forest. Nature 466: 752-756.

Mansfield, J., S. Genin, S. Magori, V. Citovsky, M. Sriariyanum, P. Ronald, M. Dow, V. Verdier, S. V. Beer, M. A. Machado, I. Toth, G. Salmond & G. D. Foster. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology 13: 614-629.

Mann, E. E. & D. J. Wozniak. 2012. Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiology Reviews 36: 893-916.

Marcell, L. M. & G. A. Beattie. 2002. Effect of leaf surface waxes on leaf colonizationby Pantoea agglomerans and Clavibacter michiganensis. Molecular Plant-Microbe Interactions 15: 1236-1244.

Marin, D. H., R. A. Romero, M. Guzman & T. B. Sutton. 2003. Black Sigatoka: an increasing threat to banana cultivation. Plant Disease 3: 208-222.

Maron, J. L., M. Marler, J. N. Klironomos & C. C. Cleveland. 2011. Soil fungal pathogens and the relationship between plant diversity and productivity. Ecology Letters 14: 36-41.

Mastretta, C., S. Taghavi, D. van der Lelie, A. Mengoni, F. Galardi, C. Gonnelli, T. Barac, J. Boulet, N. Weyens & J. Vangronsveld. 2009. Endophytic bacteria from seeds of Nicotina tabacum can reduce cadmium phytotoxicity. International Journal of Phytoremediation 11: 251-267.

Maude, R. B. 1996. Seedborne disease and their control: principles and practice. CAB International, Wallingford, UK.

McCarter, S. M., J. B. Jones, R. D. Gitaitis & D. R. Smitley. 1983. Survival of Pseudomonas syringae pv. tomato in association with tomato seed, soil, host tissue and epiphytic weed hosts in Georgia. Phytopathology 73: 1393-1398.

McLean, R. C. 1919. Studies in the ecology of tropical rain-forest: with special reference to the forests of South Brazil. Journal of Ecology 7: 122-174.

Mechaber, W. L. 2002. Mapping uncharted territory: nanoscale leaf surface topology. Pp 43-50. In: S. E. Lindow, E. I. Hect-Poinar, & V. J. Elliot (eds). Phyllosphere microbiology. APS Press, St. Paul, MN, USA.

--, D. B. Marshall, R. A. Mechaber, R. T. Jobe & F. S. Chew. 1996. Mapping leaf surface landscapes. Proceedings of the National Academy of Sciences of the United States of America 93: 4600-4603.

Mejia, L. C., E. I. Rojas, Z. Maynard, S. Van Bael, A. E. Arnold, P. Hebber, G. J. Samuels, N. Robbins & E. A. Herre. 2008. Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biological Control 46: 4-14.

--, E. A. Herre, J. P. Sparks, K. Winter, M. N. Garcia, S. A. Van Bael, J. Stitt, Z. Shi, Y. Zhang, M. J. Guiltinan & S. N. Maximova. 2014. Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Frontiers in Microbiology 5: 479.

Melnick, R. L., C. Suarez, B. A. Bailey & P. A. Backman. 2011. Isolation of endophytic endospore-forming bacteria from Theobrama cacao as potential biological control agents of cacao diseases. Biological Control 57: 236-245.

--, N. K. Zidack, B. A. Bailey, S. N. Maximova, M. Guiltinan & P. A. Bachman. 2008. Bacterial endophytes: Bacillus spp. from annual crops as potential biological control agents of black pod rot of cacao. Biological Control 46: 46-56.

Melotto, M., W. Underwood & S. Y. He. 2008. Role of stomata in plant innate immunity and foliar bacterial diseases. Annual Review of Phytopathology 46: 101-122.

--, --, J. Koczan, K. Nomura & S. Y. He. 2006. Plant stomata function in innate immunity against bacterial invasion. Cell 126: 969-980.

Mendes, R., P. Garbeva & J. M. Raaijmakers. 2013. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews 37:634-663.

Mercier, J. & S. E. Lindow. 2000. Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Applied and Environmental Microbiology 66: 369-374.

Meyer, K. M. & J. H. J. Leveau. 2012. Microbiology of the phyllosphere: A playground for testing ecological concepts. Oecologia 168: 621-629.

Miller, I. M. 1990. Bacterial leaf nodule symbiosis. Pp 163-234. In: 1. A. Callow (ed). Advances in botanical research, Vol. 17. Academic, San Diego, CA, USA.

Mills, K. E. & J. D. Bever. 1998. Maintenance of diversity within plant communities: Soil pathogens as agents of negative feedback. Ecology 79: 1595-1601.

Monier, J.-M. & S. E. Lindow. 2003. Differential survival of solitary and aggregated bacterial cells promotes aggregate formation of leaf surfaces. Proceedings of the National Academy of Sciences of the United States of America 100: 15977-15982.

--, & --. 2004. Frequency, size, and localization of bacterial aggregates on bean leaf surfaces. Applied and Environmental Microbiology 70: 346-355.

--, & --. 2005. Aggregates of resident bacteria facilitate survival of immigrant bacteria on leaf surfaces. Microbial Ecology 49: 343-352.

Morais, M., L. Moreira, X. Feas & L. M. Estevinho. 2011. Honeybee-collected pollen from five Portuguese natural parks: Palynological origin, phenolic content, antioxidant properties and antimicrobial activity. Food and Chemical Toxicology 49: 1096-1101.

Mordecai, E. A. 2011. Pathogen impacts on plant communities: Unifying theory, concepts, and empirical work. Ecological Monographs 81: 429-441.

Morris, C. E. & L. L. Kinkel. 2002. Fifty years of phyllosphere microbiology: Significant contributions to research in related fields. Pp 365-375. In: S. E. Lindow, E. I. Hect-Poinar, & V. Elliot (eds). Phyllosphere microbiology. APS Press, St. Paul, MN, USA.

--, & J. M. Monier. 2003. The ecological significance of biofilm formation by plant-associated bacteria. Annual Review of Phytopathology 41: 429-453.

--, C. L. Monteil & O. Berge. 2013. The life history of Pseudomonas syringae: linking agriculture to earth systems processes. Annual Review of Phytopathology 51: 85-104.

--, D. C. Sands, J. L. Vanneste, J. Montarry, B. Oakley, C. Guilbaud & C. Glaux. 2010. Inferring the evolutionary history of the plant pathogen Pseudomonas syringae from its biogeography in headwaters of rivers in North America, Europe, and New Zealand. mBio 1: e00107-10.

--, --, B. A. Vinatzer, C. Glaux, C. Guilbaud, A. Buffiere, S. Yan, H. Dominguez & B. M. Thompson. 2008. The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. The ISME Journal 2: 321-334.

Muller, T. & S. Ruppel. 2014. Progress in cultivation-independent phyllosphere microbiology. FEMS Microbiology Ecology 87: 2-17.

Muller-Landau, H. C. & B. D. Hardesty. 2005. Seed dispersal of woody plants in tropical forests: Concepts, examples, and future directions. Pp 267-309. In: D. Burslem, M. Pinard, & S. Hartley (eds). Biotic interactions in the tropics. Cambridge University Press, Cambridge, UK.

Murphy, P. G. & E. A. Lugo. 1986. Ecology of tropical dry forest. Annual Review of Ecology, Evolution, and Systematics 17: 89-96.

Nadarasah, G. & J. Stavrinides. 2011. Insects as alternative hosts for phytopathogen bacteria. FEMS Microbiology Reviews 35: 555-575.

Nathan, R. & H. C. Muller-Landau. 2000. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends in Ecology and Evolution 15: 278-285.

Neergaard, P. 1977. Seed pathology. Macmillan, London, UK.

Neher, O. T., M. R. Johnston, N. K. Zidak & B. J. Jacobsen. 2009. Evaluation of Bacillus mycoides isolate BmJ and B. mojavensis isolate 203-7 for the control of anthracnose of cucurbits caused by Glomerella cingulate var. orbiculare. Biological Control 48: 140-146.

Neinhuis, C. & W. Barthlott. 1997. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annuals of Botany 79: 667-677.

Nelson, E. B. 2004. Microbial dynamics and interactions in the spermosphere. Annual Review of Phytopathology 42: 271-309.

Newman, M. A., T. Sundelin, J. T. Nelson & G. Erbs. 2013. MAMP (microbe-associated molecular pattern) triggered immunity in plants. Frontiers in Plant Science 4: doi: 10.3389/fpls.2013.00139.

Normander, B., B. B. Christensen, S. Molin & N. Kroer. 1998. Effect of bacterial distribution and activity on conjugal gene transfer on the phylloplane of the bush bean (Phaseolus vulgaris). Applied and Environmental Microbiology 64: 1902-1909.

Novotny, V. & Y. Basset 2005. Host specificity of insect herbivores in tropical Forests. Proceedings of the Royal Society of London 272: 1083-1090.

--, --, S. E. Miller, G. D. Weiblen, B. Bremer, L. Cizek & P. Drozd. 2002. Low host specificity of herbivorous insects in a tropical forest. Nature 416: 841-844.

--, D. Pavel, S. E. Miller, M. Kulfan, M. Janda, Y. Basset & G. D. Weiblen. 2006. Why are there so many species of herbivorous insects in tropical forests? Science 313: 1115-1118.

Ochman, H., J. G. Lawrence & E. A. Groisman. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299-304.

Ophir, T. & D. L. Gutnick. 1994. A role for exopolysaccharides in the protection of microorganisms from desiccation. Applied and Environmental Microbiology 60: 740-745.

O'Toole, G., H. B. Kaplan & R. Kolter. 2000. Biofilm formation as microbial development. Annual Review of Microbiology 54: 49-79.

Packer, A. & K. Clay. 2000. Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature 404: 278-281.

Paz, I. C. P., R. C. M. Santin, A. M. Guimaraes, O. P. P. Rosa, A. C. F. Dias, M. C. Quecine, J. L. Azevedo & A. T. S. Matsumura. 2012. Eucalyptus growth promotion by endophytic Bacillus spp. Genetics and Molecular Research 11: 3711-3720.

Penuelas, J., L. Rico, R. Ogaya, A. S. Jump & J. Terradas. 2012. Summer season and long-term drought increase the richness of bacteria and fungi in the foliar phyllosphere of Quercus ilex in a mixed Mediterranean forest. Plant Biology 14: 565-575.

Peterson, C. J., W. P. Carson, B. C. McCarthy & S. T. A. Pickett. 1990. Micrositevariation and soil dynamics within newly created treefall pits and mounds. Oikos 58: 39-46.

Petrini, O. 1991. Fungal endophytes in tree leaves. Pp 179-197. In: J. H. Andrews & S. S. Hirano (eds). Microbial ecology of leaves. Springer, New York, NY, USA.

Pfeifer, G. P. 1997. Formation and processing of UV photoproducts: Effects of DNA sequence and chromatin environment. Photobiochemistry Photobiophysics 65: 270-283.

Phatak, H. C. 1980. The role of seed and pollen in the spread of plant pathogens particularly virases. Tropical Pest Management 26: 278-285.

Pieterse, C. M. J., S. C. M. van Wees, J. A. van Pelt, M. Knoester, R. Laan, H. Gerrits, P. J. Weisbeek & L. C. van Loon. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis.

The Plant Cell 10: 1571-1580.

Pineda, A., S.-J. Zheng, J. J. A. van Loon, C. M. J. Pieterse & M. Dicke. 2010. Helping plants to deal with insects: The role of beneficial soil-borne microbes. Trends in Plant Science 15: 507-514.

Piper, K. R., S. B. von Bodman & S. K. Farrand. 1993. Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 362: 448-450.

Pitzschke, A. & H. Hirt. 2010. New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. The EMBO Journal 29: 1021-1032.

Poplawsky, A. R., S. C. Urban & W. Chun. 2000. Biological role of Xanthomonadin pigments in Xanthomonas campesitris pv. campestris. Applied and Environmental Microbiology 66: 5123-5127.

Power, A. G. & C. E. Mitchell. 2004. Pathogen spillover in disease epidemics. The American Naturalist 164: S79-S89.

Pruvost, O., B. Boher, C. Brocherieux, M. Nicole & F. Chiroleu. 2002. Survival of Xanthomonas axonopodis pv. citri in leaf lesions under tropical environmental conditions and simulated splash dispersal of inoculum. Phytopathology 92: 336-346.

Putz, F. E. 1983. Treefall pits and mounds, buried seeds, and the importance of soil disturbance to pioneer trees on Barro Colorado Island, Panama. Ecology 64: 1069-1074.

Qin, S., H.-H. Chen, G.-Z. Zhao, J. Li, W.-Y. Zhu, L.-H. Xu, J.-H. Jiang & W.-J. Li. 2012. Abundance and diverse endophytic actinobacteria associated with medicinal plant Maytenus austroyunnanensis in Xishuangbanna tropical rainforest revealed by culture-dependent and culture-independent methods. Environmental Microbiology Reports 4: 522-531.

Quinones, B., G. Dulla & S. E. Lindow. 2005. Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Molecular Plant-Microbe Interactions 18: 682-693.

Rahme, L. G., F. M. Ausubel, H. Cao, E. Drenkard, B. C. Goumnerov, G. W. Lau, S. Mahajan-Miklos, J. Plotnikova, M.-. W. Tan, J. Tsongalis, C. L. Walendziewicz & R. G. Tompkins. 2000. Plants and animals share functionally common bacterial virulence factors. Proceedings of the National Academy of Sciences of the United States of America 97: 8815-8821.

Rakotoniriana, E. F., M. Rafamantanana, D. Randriamampionona, C. Rabemanantsoa, S. Urveg-Ratsimamanga, M. E. Jaziri, F. Munaut, A.-. IM. Corbisier, J. Quentin-Leclercq & S. Declerck. 2013. Study in vitro of the impact of endophytic bacteria isolated from Centella asiactica on the disease incidence caused by the hemibiotrophic fungus Colletotrichum higginsianum. Antonie van Leeuwenhoek 103: 121-133.

Ramos-Solano, B. R., J. Barriuso & F. J. Gutierrez-Manero. 2008. Physiological and molecular mechanisms of plant growth promoting rhizobacteria (PGPR). Pp 41-54. In: I. Ahmad, J. Pitchel, & S. Hayat (eds). Plant-bacteria interactions: Strategies and techniques to promote plant health. Wile, Weinheim, Germany.

Rastogi, G., A. Sbodio, J. J. Tech, T. V. Suslow, G. L. Coaker & J. H. L. Leaveau. 2012. Leaf microbiota in an agroecosystems: Spatiotemporal variation in bacterial community composition on field-grown lettuce. The ISME Journal 6: 1812-1822.

Redford, A. J., R. M. Bowers, R. Knight, Y. Linhart & N. Fierer. 2010. The ecology of the phyllosphere: Geographic and phylogenetic variability of bacteria on tree leaves. Environmental Microbiology 12: 2885-2893.

-- & N. Fierer. 2009. Bacterial succession of the leaf surface: a novel system for studying successional dynamics. Microbial Ecology 58: 189-198.

Reinhold-Hurek, B. & T. Hurek. 2011. Living inside plants: Bacterial endophytes. Current Opinion in Plant Biology 14: 435-443.

Reisberg, E. E., U. Hildebrandt, M. Riederer & U. Hentschel. 2012. Phyllosphere bacterial communities of trichome-bearing and trichomeless Arabidopsis thaliana leaves. Antonie van Leeuwenhoek 3: 551-560.

Remus-Emsermann, M. N. P., R. Tecon, G. A. Kowalchuk & J. H. J. Leveau. 2012. Variation in local carrying capacity and the individual fate of bacterial colonizers in the phyllosphere. The ISME Journal 6: 756-765.

--, S. Lucker, D. B. Muller, E. Potthoff, II. Daims & J. A. Vorholt. 2014. Spatial distribution analysis of natural phyllosphere-colonizing bacteria on Arabidopsis thaliana revealed by fluorescence in situ hybridization. Environmental Microbiology 16: 2329-2340.

Reynolds, H. L., A. Packer, J. D. Bever & K. Clay. 2003. Grassroots ecology: Plant- microbe-soil interactions as drivers of plant community structure and dynamics. Ecology 84: 2281-2291.

Richards, P. W. 1996. The tropical rain forest: An ecological study, ed. 2nd. Cambridge University Press, Cambridge, U.K..

Ricklefs, R. E. 1977. Environmental heterogeneity and plant species diversity: A hypothesis. The American Naturalist 111: 376-381.

Rigano, L. A., F. Siciliano, R. Enrique, L. Sendin, P. Filippone, P. S. Torres, J. Questa, J. M. Dow, A. P. Castagnaro, A. A. Vojnov & M. R. Marano. 2007. Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri. Molecular Plant-Microbe Interactions 20: 1222-1230.

Rodriguez, R. J., J. F. White, A. E. Arnold & R. S. Redman. 2009. Fungal endophytes: Diversity and functional roles. New Phytologist 182: 314-330.

Root, R. B. 1967. The niche exploitation pattern of the blue-gray gnatcatcher. Ecological Monographs 37: 317-350.

Rosenblueth, M. & E. Martinez-Romero. 2006. Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions 19: 827-837.

Roth-Nebelsick, A., D. Uhl, V. Mosbrugger & H. Kerp. 2001. Evolution and function of leaf venation architecture: A review. Annals of Botany 87: 533-566.

Rousk, J., E. Baath, P. C. Brookes, C. L. Lauber, C. Lozupone, J. Gregory Caporaso, R. Knight & N. Fierer. 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal 4: 1340-1351.

Rudrappa, T., M. L. Biedrzycki & H. P. Bais. 2008. Causes and consequences of plant-associated biofilms. FEMS Microbiology Ecology 64: 153-166.

Rundel, P. W. 1989. Ecological success in relation to plant form and function in the woody legumes. In: C. H. Stirton & J. L. Zarucchi (eds). Advances in legume biology, monographs in systematic botany from the Missouri Botanical Gardens 29: 377-398.

Ryan, R. P., F.-J. Vorholter, N. Potnis, J. B. Jones, M.-A. Van Sluys, A. J. Bogdanove & J. M. Dow. 2011. Pathogenomics of Xanthomonas: Understanding bacterium-plant interactions. Nature Reviews Microbiology 9: 344-355.

Saleem, M., M. Arshad, S. Hussain & A. S. Bhatti. 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Industrial Microbiology & Biotechnology 34: 635-648.

Sanchez-Marquez, S., G. F. Bills, N. Herrero & I. Zabalgogeazcoa. 2012. Non-systemic fungal endophytes of grasses. Fungal Ecology 5: 289-297.

Santer, A., L. I. A. Calderon-Villalobos & M. Estelle. 2009. Plant hormones are versatile chemical regulators of plant growth. Nature Chemical Biology 5: 301-307.

Sarkar, S. & D. S. Guttman. 2004. Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Applied and Environmental Microbiology 70: 1999-2012.

Schaad, N. W. 1982. Detection of seedborne bacterial plant pathogens. Plant Disease 88: 885-890.

--, & W. C. White. 1974. Survival of Xanthomonas campestris in soil. Phytopathology 64: 1518-1520.

Schellenberg, B., C. Ramel & R. Dudler. 2010. Pseudomonas syringae virulence factor syringolin A counteracts stomatal immunity by proteasome inhibition. Molecular Plant-Microbe Interactions 23: 1287-1293.

Schloss, P. D. & S. L. Westcott. 2011. Assessing and improving methods used in operational taxonomic unit-based approaches for I6S rRNA gene sequenceanalysis. Applied and Environmental Microbiology 77: 3219-3226.

Schmelz, E. A., J. Engelberth, H. T. Alborn, P. O'Donnell, M. Sammons, H. Toshima & J. H. Tumlinson III. 2003. Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proceedings of the National Academy of Sciences of the United States of America 100: 10552-10557.

Schnitzer, S. A., J. N. Klironomos, J. Hillerislambers, L. L. Kinkel, P. B. Reich, K. Xiao, M. C. Rillig, B. A. Sikes, R. M. Callaway, S. A. Mangan, E. H. Van Nes & M. Scheffer. 2011. Soil microbes drive the classic plant diversity-productivity pattern. Ecology 92: 296-303.

Schoenian, I., M. Spiteller, M. Chaste, R. Wirth, H. Herz & D. Spiteller. 2011. Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proceedings of the National Academy of Sciences of the United States of America 108: 1955-1960.

Schreiber, L. 1996. Wetting of the upper needle surfaceof Abies grandis: Influence of pH, wax chemistry and epiphytic microflora on contact angles. Plant, Cell & Environment 4: 459-166.

--, U. Krimm, D. Knoll, M. Sayed, G. Auling & R. M. Kroppenstedt. 2005. Plant-microbe interactions: identification of epiphytic bacteria and their ability to alter leaf surface permeability. New Phytologist 166: 589-594.

Schrey, S. D. & M. T. Tarkka. 2008. Friends and foes: Streptomycetes as modulators of plant disease. Antonie Van Leeuwenhoek. 94: 11-19.

Schulz, B. & C. Boyle. 2006. What are endophytes? Pp 1-13. In: B. J. E. Schulz, C. J. C. Boyle, & T. N. Sieber (eds). Microbial root endophytes. Springer, Berlin, Germany.

Schuster, M. L. & D. P. Coyne. 1974. Survival mechanisms of phytopathogenic bacteria. Annual Review of Phytopathology 12: 199-221.

Shade, A. & J. Handelsman. 2012. Beyond the Venn diagram: The hunt for a core microbiome. Environmental Microbiology 14: 4-12.

Sharma, R. R., D. Singh & R. Singh. 2009. Biological control of postharvest disease of fruits and vegetables by microbial antagonists: A review. Biological Reviews 50: 205-221.

Shepherd, R. W., W. T. Bass, R. L. Houtz & G. J. Wagner. 2005. Phylloplanins of tobacco are defensive proteins deployed on aerial surfaces by short glandular trichomes. The Plant Cell 17: 1851-1861.

--, & S. E. Lindow. 2009. Two dissimilar N-acyl-homoserine lactone acylases of Pseudomonas syringae influence colony and biofilm morphology. Applied and Environmental Microbiology 75: 45-53.

Shiomi, H. F., H. S. A. Silva, 1. S. Melo, F. V. Nunes & W. Bettiol. 2006. Bioprospecting endophytic bacteria for biological control of coffee leaf rust. Scientia Agricola 63: 32-39.

Silby, M. W., C. Winstanley, S. A. C. Godfrey, S. B. Levy & R. W. Jackson. 2011. Pseudomonas genomes: Diverse and adaptable. FEMS Microbiology Reviews 35: 652-680.

Silo-Suh, L. A., B. J. Lethbridge, S. J. Raffel, H. He, J. Clardy & J. Handelsman. 1994. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Applied and Environmental Microbiology 60: 2023-2030.

Silverstone, S. E., D. G. Gilchrist, R. M. Bostock & T. Kosuge. 1993. The 73-kb plAA plasmid increases competitive fitness of Pseudomonas syringae subspecies savastanoi in oleander. Canadian Journal of Microbiology 39: 659-664.

Smirnova, A., H. Li, H. Weingart, S. Aufhammer, A. Burse, K. Finis, A. Schenk & A. S. Ullrich. 2001. Thermoregulated expression of virulence factors in plant-associated bacteria. Archives of Microbiology 176: 393-399.

Sorensen, S. J., M. Bailey, L. H. Hansen, N. Kroer & S. Wuertz. 2005. Studying plasmid horizontal transfer in situ: A critical review. Nature 3: 700-710.

Spaepen, S., J. Vanderleyden & R. Remans. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews 31: 425-448.

Stall, R. E., J. W. Miller, G. M. Marco & B. I. Canteros de Echenique. 1980. Population dynamics of Xanthomonas citri causing cancrosis of citrus in Argentina. Proceedings of the Florida State Horticultural Society 93: 10-14.

Stavrinides, J., J. K. Mccloskey & H. Ochman. 2009. Pea aphid as both host and vector for the phytopathogenic bacterium Pseudomonas syringae. Applied and Environmental Microbiology 75: 2230-2235.

Stiefel, P., T. Zambelli & J. A. Vorholt. 2013. Isolation of optically targeted single bacteria by application of fluidic force microscopy to aerobic anoxygenic phototrophs from the phyllosphere. Applied and Environmental Microbiology 79: 4895-4905.

Stoitsova, S. O., Y. Braun, M. S. Ullrich & H. Weingart. 2008. Characterization of the RND-type multidrug efflux pump MexAB-OprM of the plant pathogen Pseudomonas syringae. Applied and Environmental Microbiology 74: 3387-3393.

Stone, J. K., Bacon, C. W. & J. F. White Jr. 2000. An overview of endophytic microbes: endophytism defined. Pp. 3-29. In. C. W. Bacon & J. F. White Jr. (eds). Microbial endophytes, Marcel Dekker, New York, NY, USA.

Strobel, G. 2012. Genetic diversity of microbial endophytes and their biotechnical applications. Pp 249-262. In: K. E. Nelson & B. Jones-Nelson (eds). Genomics applications for the developing world. Springer, New York, NY, USA.

--, B. Daisy, U. Castillo & J. Harper. 2004. Natural products from endophyticmicroorganisms. Journal of Natural Products 67: 257-268.

Sundin, G. W. & J. Murillo. 1999. Functional analysis of the Pseudomonas syringae rulAB determinant in tolerance to ultraviolet B (290-320 nm) radiation and distribution of rulAB among P. syringae pathovars. Environmental Microbiology 1: 75-87.

Suryanarayanan, T. S., T. S. Murali & G. Venkatesan. 2002. Occurrence and distribution of fungal endophytes in tropical forests across a rainfall gradient. Canadian Journal of Botany 80: 818-826.

Thaler, J. S., P. T. Humphrey & N. K. Whiteman. 2012. Evolution of jasmonate and salicylate signal crosstalk. Trends in Plant Science 17: 260-270.

Thompson, I. P., M. J. Bailey, J. S. Fenlon, T. R. Fermor, A. K. Lilley, J. M. Lynch, P. J. McCormack, M. P. McQuilken, K. J. Purdy, P. B. Rainey & J. M. Whipps. 1993. Quantitative and qualitative seasonal changes in the microbial community from the phyllosphere of sugar beet (Beta vulgaris). Plant and Soil 150: 177-191.

Thorne, E. T., B. M. Young, G. M. Young, J. F. Stevenson, J. M. Labavitch, M. A. Matthews & T. L. Rost. 2006. The structure of xylem vessels in grapevine (Vitaceae) and a possible passive mechanism for the systemic spread of bacterial disease. American Journal of Botany 93: 497-504.

Thurston, H. D. 1998. Tropical plant diseases, ed. 2nd. American Phytopathological Society, St. Paul, MN, USA.

Tilman, D. 1994. Competition and biodiversity in spatially structured habitats. Ecology 75: 2-16.

Tissier, A. 2012. Glandular trichomes: What comes after expressed sequence tags? The Plant Journal 70: 51-68.

Tran, H., A. Ficke, T. Asiimwe, M. Hofte & J. M. Raaijmakers. 2007. Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytologist 175: 731-742.

Traw, M. B. 2002. Is induction response negatively correlated with constitutive resistance in black mustard? Evolution 56: 2196-2205.

--, & J. Bergelson. 2003. Interactive effects of jasmonic acid, sali-cylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiology 133: 1367-1375.

--, & T. E. Dawson. 2003. Differential induction of trichomes by three herbivores of black mustard. Oecologia 131: 526-532.

--, J. Kim, S. Enright, D. F. Cipollini & J. Bergelson. 2004. Negative cross-talk between salicylate and jasmonate-mediated pathways in the Wassilewskija ecotype of Arabidopsis thaliana. Molecular Ecology 12: 1125-1135.

Tripathi, A. K., S. C. Verma, S. P. Chowdhury, M. Lebuhn, A. Gattinger & M. Schloter. 2006. Ochrobactrum oryzae sp. nov., an endophytic bacterial species isolated from deep water rice in India. International Journal of Systematic and Evolutionary Microbiology 56: 1677-1680.

Tukey, H. B., Jr. 1970. The leaching of substances from plants. Annual Review of Plant Physiology 21: 305-324.

U.S. Food and Drug Administration. 2013. List of completed consultants on bioengineered foods. Center for Food and Safety and Applied Nutrition. Office of Food Additive Safety, http://www.accessdata.fda. gov/scripts/fdcc/?set=Biocon.html. Accessed July 2014.

van der Heijden, M. G. A., R. D. Bardgett & N. M. Straalen. 2008. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters 11: 296-310.

van der Putten, W. H., R. D. Bardgett, J. D. Bever, M. Bezemer, B. B. Casper, T. Fukami, P. Kardol, J. N. Klironomos, A. Kulmatiski, J. A. Schweitzer, K. N. Suding, T. F. J. Van de Voorde & D. A. Wardle. 2013. Plant-soil feedbacks: The past, the present and future challenges. Journal of Ecology 101: 265-276.

van Elsas, J. D., S. Turner & M. J. Bailey. 2003. Horizontal gene transfer in the phytosphere. New Phytologist 157: 525-537.

van Loon, L. C., P. A. H. M. Bakker & C. M. J. Pieterse. 1998. Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology 36: 453-183.

--, & --. 2006. Induced systemic resistance as a mechanism of disease suppression by rhizobacteria. Pp. 39-66. In: Z. A. Siddiqui (ed.). PGPR: biocontrol and biofertilization. Springer, Dordrecht, Netherlands.

Van Oevelen, R. De Wachter, E. Robbrecht & E. Prinsen. 2003. Bulgarian Journal of Plant Physiology Special issue: 242-247.

Van Wees, S., S. Van der Eht & C. M. J. Pieterse. 2008. Plant immune responses triggered by beneficial microbes. Current Opinion in Plant Biology 11: 443-448.

Vega, F. E., M. Pava-Ripoll, F. Posada & J. S. Buyer. 2005. Endophytic bacteria in Coffea arabica L. Journal of Basic Microbiology 45: 371-380.

Verhagen, B. W. M., P. Trotel-Aziz, M. Couderschet, M. Hofte & A. Aziz. 2010. Pseudomonas spp.-induced systemic resistance to Botrytis cinerea is associated with induction and priming of defence responses in grapevine. Journal of Experimental Botany 61: 249-260.

Vidhyasekaran, P. 2004. Concise encyclopedia of plant pathology. Food Products Press, New York, NY, USA.

Vokou, D., K. Vereli, E. Zarali, K. Karamanoli, H.-I. A. Constantinidou, N. Monokrousos, J. M. Halley & I. Sainis. 2012. Exploring biodiversity in the bacterial community of the Mediterranean phyllosphere and its relationship with airborne bacteria. Microbial Ecology 64: 714-724.

Von Bodman, S. B., VV. D. Bauer & D. L. Coplin. 2003. Quorum sensing in plant-pathogenic bacteria. Annual Review of Phytopathology 41: 455-482.

Vorholt, J. A. 2012. Microbial life in the phyllosphere. Nature Reviews Microbiology 10: 828-840.

Wagner, G. J. 1991. Secreting glandular trichomes: More than just hairs. Plant Physiology 96: 675-679.

--, E. Wang & R. W. Shepherd. 2004. New approaches for studying and exploiting an old protuberance, the plant trichome. Annals of Botany 93: 3-11.

Walther, G.-R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J.-M. Fromentin, O. Hoegh-Guldberg & F. Bairlein. 2002. Ecological responses to recent climate change. Nature 416:389-395.

Waters, C. M. & B. L. Bassler. 2005. Quorum sensing: Cell-to-cell communication in bacteria. Annual Review of Cell and Developmental Biology 21: 319-346.

Watnick, P. & R. Kolter. 2000. Biofilm, city of microbes. Journal of Bacteriology 182: 2675-2679.

Wellman, F. L. 1968. More diseases on crops in the tropics than in the temperate zone. Ceiba 14: 17-28.

--. 1972. Tropical American Plant Disease. The Scarecrow Press Inc., Metuchen, NJ, USA.

Wenny, D. G. 2000. Seed dispersal, seed predation, and seedling recruitment of a neotropical montane tree. Ecological Monographs 70: 331-351.

Whitehead, N. A., J. T. Byers, P. Commander, M. J. Corbett, S. J. Coulhurst, L. Everson, A. K. P. Harris, C. L. Pemberton, N. J. L. Simpson, H. Slater, D. S. Smith, M. Welch, N. Williamson & G. P. C. Salmond. 2002. The regulation of virulence in phytopathogenic Erwinia species: Quorum sensing, antibiotics, and ecological considerations. Antonie van Leeuwenhoek 81: 223231.

Whitman, W. B., D. C. Coleman & W. J. Wiebe. 1998. Prokaryotes: The unseen majority. Proceedings of the National Academy of Sciences of the United States of America 95: 6578-6583.

Williams, C. G. 2013. Forest tree pollen dispersal via the water cycle. American Journal of Botany 100: 1184-1190.

Wilson, D. 1995. Endophyte--the evolution of the term, a clarification of its use and definition. Oikos 73: 274-276.

Wilson, E. O. 1987. The little things that run the world (the importance and conservation of invertebrates). Conservation Biology 1: 344-346.

Wilson, M. & S. E. Lindow. 1994. Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning. Applied and Environmental Microbiology 60: 4468^1477.

Wooldridge, K. 2009. Bacterial secreted proteins: Secretory mechanisms and role in Pathogenesis. Caister Academic Press, Norfolk, UK.

Yadav, R. K. P., K. Karamanoli & D. Vokou. 2005. Bacterial colonization of the phyllosphere of Mediterranean perennial species as influences by leaf structural and chemical features. Microbial Ecology 50: 185-196.

--, -- & --. 2011. Bacterial populations on the phyllosphere of Mediterranean plants: influence of leaf age and leaf surface. Frontiers of Agriculture in China 5: 60-63.

Yao, C. B., G. Zehnder, E. Bausle & J. Kloepper. 1996. Relationship between cucumber beetle (Coleoptera: Chrysomelidae) density and incidence of bacterial wilt of cucurbits. Journal of Economic Entomology 89: 510-514.

Yu, X., S, P. Lund, R. A. Scott, J. W. Greenwald, A. H. Records, D. Nettleton, S. E. Lindow, D. C. Gross & G. A. Beattie. 2013. Transcriptional responses of Pseudomonas syringae to growth in epiphytic versus apoplastic leaf sites. Proceedings of the National Academy of Sciences of the United States of America 110: E425-E434.

Zalamea, P.-C., C. Sarmiento, A. E. Arnold, A. S. Davis & J. W. Dalling. 2015. Do soil microbes and abrasion by soil particles influence persistence and loss of physical dormancy in seeds of tropical pioneers? Frontiers in Plant Science 5: doi: 10.3389/fpls.2014.00799.

Zechner, E. L., S. Lang & J. F. Schildbach. 2012. Assembly and mechanisms of bacterial type IV secretion machines. Philosophical Transactions of the Royal Society B. 367: 1073-1987.

Zhang, L., P. J. Murphy, A. Kerr & M. E. Tate. 1993. Agrobacterium conjugation and gene regulation. Nature 362: 446-448.

Zhao, Y., J. P. Damicone & C. L. Bender. 2002. Detection, survival, and sources of inoculum for bacterial diseases of leafy crucifers in Oklahoma. Plant Disease 86: 883-888.

--, R. Thilmony, C. L. Bender, A. Schaller, S. Y. He & G. A. Howe. 2003. Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck Disease in tomato by targeting the jasmonate signaling pathway. The Plant Journal 36: 485-499.

Zheng, X., N. W. Spivey, W. Zeng, P.-P. Liu, Z. Q. Fu, D. F. Klessig, S. Y. He & X. Dong; 2012. Coronatine promotes Pseudomonas syringae virulence in plans by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host & Microbe 11: 587-596.

Appendix
Table 4 The scientific names associated with common
names of plant species used in this manuscript

Common name              Scientific name

Alfalfa                  Medicago sativa
Banana and plantain      Musa spp.
Bean                     Phaseolus vulgaris
Cacao                    Theobroma cacao
Cassava                  Manihot esculenta
Cherry laurel            Prunus laurocerasus
Citrus                   Citrus spp.
Clover                   Trifolium spp.
Coffee                   Coffea spp.
Cotton                   Gossypium hirsutum
Cranberry                Vaccinium macrocarpon
Creeping bentgrass       Agrostis stolonifera
Cucumber                 Cucumis sativus
Grand fir                Albies grandis
Grape vine               Vitis spp.
Grapefruit               Citrus * paradisi
Groundnut                Arachis hypogaea
Ivy                      Hedera helix
Black mangrove           Bruguiera gymnorrhiza
Norway spruce            Picea abies L. Karst
Potato                   Solanum tuberosum
Rapeseed                 Brassica napus
Rice                     Oryza spp.
Soybean                  Glycine max
Strawberry               Fragaria ananassa
Sugar beet               Beta vulgaris
Sugar cane               Saccharum spp.
Tomato                   Solanum lycopersicum (formerly Lycopersieum
                           esculentum)
Walnut (common walnut)   Juglans regia
Wheat                    Triticum spp.


Eric A. Griffin (1,2) * Walter P. Carson (1)

(1) Department of Biological Sciences, University of Pittsburgh, A234 Langley Hall, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA

(2) Author for Correspondence; e-mail: eag46@pitt.edu

Published online: 3 March 2015
Table 1 A comparison of leaf traits between temperate and tropical
systems and their predicted effects on bacterial communities

Leaf Trait that         Temperate habitats   Tropical Habitats
improves suitability
for bacteria

Leaf lifespan           lower                higher (1, 2)

Lower deciduousness     lower                higher (2, 8)
  (wet forests)
Higher degree of leaf   lower                higher (9)
  venation
Higher hydathode        lower                higher (11)
  density
Higher SLA (evergreen   lower                higher (13) but cf. 14
  wet forests)
Higher insect damage    lower                higher (1, 2)
Higher leaf             lower                higher (18)
  wettability
Lower toughness         higher (1, 2, 21)    lower
  (fiber)

Lower chemical          higher               lower
  defenses                (1, 2, 25, 26)
Higher trichome         unknown              unknown
  density

Lower drip tip          lower                higher (32, 35)
  prevalence
Lower degree of         lower                higher in young leaves
  cuticular waxes                              and abaxial
                                               surface (28)
Higher stomatal         No difference        No difference; however,
  density                                      lower stomatal
                                               density in understory
                                               than in canopy
                                               in tropics
                                               (40 cited in 37)
Higher surface          unknown              unknown (1, 2)
  heterogeneity
Higher degree of        unknown              unknown
  dissection

Leaf Trait that         Effect on foliar bacteria
improves suitability
for bacteria

Leaf lifespan           Increases time for colonization, decrease
                          diversity (3,4,5,6,42) but cf. (7, 46, 47)
                        Cuticle erodes, greater wettability (43)
Lower deciduousness     Increases time for colonization, decrease
  (wet forests)           diversity (3,4,5,6, 42) but cf. (7)
Higher degree of leaf   Increases bacterial entry and movement (10)
  venation
Higher hydathode        Increases entry (12)
  density
Higher SLA (evergreen   Increases colonization (15)
  wet forests)
Higher insect damage    Increases colonization and entry (16, 17)
Higher leaf             Increases entry (19, 20)
  wettability
Lower toughness         Increases bacterial attachment and entry,
  (fiber)                 increases intercellular movement
                          (20, 22, 23, 24)
Lower chemical          Increases abundance (27)
  defenses
Higher trichome         Increases colonization, attachment, and
  density                 entry (29, 30, 31); increases spatial
                          heterogeneity
                          and enhances microbial diversity (39)
Lower drip tip          Increases attachment and splash dispersal
  prevalence              (32, 33, 34, 35)
Lower degree of         Increases attachment and entry and nutrient
  cuticular waxes         availability and acquisition (36, 43)

Higher stomatal         Increases entry (12) but cf. (38, 41)
  density

Higher surface          Increases species coexistence (44, 45)
  heterogeneity
Higher degree of        Decreases attachment and colonization (15)
  dissection

Sources by corresponding numbers: (1) Coley & Aide, 1991; (2) Coley
& Barone, 1996; (3) Ercolani, 1991; (4) Redford & Fierer, 2009; (5)
Friesen et al., 2011; (6) Yadav et al., 2011 ; (7) Jackson & Denney,
2011; (8) Aerts, 1995; (9) Roth-Nebelsick et al., 2001; (10) Thome
et al., 2006; (11) Tukey, 1970; (12) Beattie & Lindow, 1999; (13)
Murphy & Lugo, 1986; (14) Asner et al., 2003; (15) Delmotte et
al., 2009; (16) Stavrinides et al., 2009; (17) Nadarasah &
Stavrinides, 2011 ; (18) Aryal & Neuner, 2010; (19) Evans et al.,
1992; (20) Lindow & Brandi, 2003; (21) Hallam & Read, 2006; (22)
Choong et al., 1992; (23) Yadav et al., 2005; (24) Alfano & Collmer,
1996; (25) Levin, 1976; (26) Levin & York, 1978; (27) Joosten & van
Veen, 2011; (28)Neinhuis & Barthlott, 1997; (29) Fluang, 1986; (30)
Monier & Lindow, 2003; (31) Monier& Lindow, 2005; (32) Richards,
1996; (33) Ivey & DeSilva, 2001; (34) Burd, 2007; (35) Malhado et
al., 2012; (36) Marcell & Beattie, 2002; (37) Bazzaz & Pickett,
1980; (38) Melotto et al., 2006; (39) Vokou et al., 2012; (40)
McLean, 1919; (41) Melotto et al., 2008; (42) Kinkel, 1997; (43)
Beattie, 2002; (44) Comins & Noble, 1985; (45) Tilman, 1994; (46)
Thompson et al., 1993; (47) Penuelas et al., 2012

We (1) list leaf traits that increase habitat suitability for foliar
bacteria; (2) compare the prevalence of these traits between
temperate and tropical systems; and (3) predict how these ttaits
structure foliar bacteria. Flere we define colonization as arrival
per unit time; attachment as ability to stick to the leaf surface;
and entry as the ability to gain access to internal leaf tissue.
Though not a plant trait, we include damage in the table because it

provides conduits for bacteria to enter leaf tissue and insects can
vector bacteria among individuals

Table 2 The bacterial traits associated with survival and fitness of
bacterial pathogens on the phyllosphere

Trait                 Bacterial species      Host species

Low susceptibility    Pseudomonas            Bean, ivy, grand
  to desiccation        syringae, Pantoea      fir, walnut,
                        stewartii,             cherry laurel
                        Xanthomonas
                        campestris,
                        X. axonopodis
Low susceptibility    P syringae,            Bean
  to UV radiation       P aeruginosa,
                        Pantoea stewartii,

                        X campestris
High motility         P syringae;            Bean, In vitro
                        Xanthomonas spp.

Efflux pump           X oryzae, Erwinia      Arabidopsis, bean,
  expression            spp., Pseudomonas      in vitro
                        spp.

Resistance to heat    P syringae             Bean
  and oxidative
  stress

Coenzyme production   P aeruginosa,          Arabidopsis, com
                        Erwinia carotovora

                        (now
                        Pectobacterium
                        carotovorum)
Virulence             P syringae,            Bean, sweet com,
                        P stewartii            maize

Bacterial cell        P stewartii            In vitro
  adhesion

Biofilm formation     P stewartii,           Com; grape vine;
                        P syringae,            potato
                        Xylella
                        fastidiosa,
                        Clavibacter
                        michiganensis,
                        X campestris
Ability to transfer   Agrobacterium          In vitro, used for
  DNA                   tumefaciens            GMOs of alfalfa,
                                               corn, cotton,
                                               creeping
                                               bentgrass,
                                               rapeseed, rice,
                                               soybean, sugar
                                               beet, wheat

Trait                 Mode of action         Effect

Low susceptibility    Exopolysacch-aride     Maintains hydrated
  to desiccation        (EPS)                  level surrounding
                        production;            bacteria and
                        biosurfactant          increases survival
                        production

Low susceptibility    Pigment production     Absorbs radiation
  to UV radiation                              and quenches free
                                               radicals

High motility         Enhanced by quorum     Enables cells to
                        sensing, flagellin     locate resources
                        production,            and to gain access
                        "riding" other         to protected sites
                        motile bacteria
Efflux pump           Evade plant immune     Plant antimicrobial
  expression            system by enabling     compound
                        bacterial              resistance
                        effectors safe
                        passage into plant
                        host cells
Resistance to heat    EPS (aliginate)        Reduces
  and oxidative         production             susceptibility to
  stress                                       reactive oxygen
                                               intermediates
Coenzyme production   Facilitates quorum     Increases ability to
                        sensing                macerate plant
                                               tissue

Virulence             Controlled by vir      Enables rapid
                        genes                  invasion of
                                               internal leaf
                                               tissue; causes
                                               more host disease
                                               symptoms and
                                               dehydration
Bacterial cell        Docking an locking     Enhances biofilm
  adhesion              through a series       formation
                        of physiochemical
                        interactions
Biofilm formation     After initial          Enhances microbial
                        colonization on        resistance to
                        surface,               antibiotic
                        controlled via         compounds,
                        quorum sensing,        enhances
                        cell division, and     communication
                        recruitment            among cells
Ability to transfer   Conjugation system     Allows cells to
  DNA                   controlled by          obtain tumor-
                        quorum sensing         inducing plasmids
                        that transfers
                        plasmids from
                        donor to recipient
                        via a complex
                        secretion system

Trait                 Sources

Low susceptibility    1-3, 30-35,
  to desiccation      reviewed by 39

Low susceptibility    22-27,
  to UV radiation

High motility         3, 4, 5, 28

Efflux pump           41-47
  expression

Resistance to heat    1-3, 6
  and oxidative
  stress

Coenzyme production   7-10, 36

Virulence             3, 11

Bacterial cell        11, 37
  adhesion

Biofilm formation     Reviewed by 12-15,
                        21, 29, 40

Ability to transfer   16-18, reviewed by
  DNA                   19; 20

Sources by corresponding numbers: (1) Leigh & Coplin, 1992; (2)
Ophir & Gutnick, 1994; (3) Quinones et al., 2005; (4) Haefele &
Lindow, 1987; (5) Lindow et al., 1993; (6) Keith & Bender, 1999; (7)
Jones et al., 1993; (8) Rahme et al., 2000; (9) Whitehead et al., 2002;
(10) Von Bodman et al., 2003; (11) Koutsoudis et al., 2006; (12)
Watnick & Kolter, 2000; (13) O'Toole et al., 2000; (14) Morris &
Monier, 2003; (15) Flemming & Wingender, 2010; (16) Piper et al.,
1993; (17) Ellis et al., 1982; (18) Zhang et al., 1993; (19) Pitzschke
& Hirt, 2010; (20) FDA, 2013; (21) Mann & Wozniak, 2012; (22) Corpe
& Rheem, 1989; (23) Sundin & Murillo, 1999; (24) Kim & Sundin, 2000;
(25) Kim & Sundin, 2000; (26) Jacobs et al., 2005; (27) Gunasekera &
Sundin, 2006; (28) Hagai et al., 2014; (29) Mali & O'Toole, 2001;
(30) Schreiber, 1996; (31) Knoll & Schreiber, 1998; (32) Knoll &
Schreiber, 2000; (33) Schreiber et al., 2005; (34) Chang et al., 2007;
(35) Rigano et al., 2007; (36) Dong et al., 2000; (37) Dunne, 2002;
(38) Danhom & Fuqua, 2007; (39) Beattie, 2011 ; (40) Rudrappa et al.,
2008; (41) Goel et al., 2002; (42) Burse et al., 2004a; (43) Burse et
ah, 2004b; (44) Kang & Gross, 2005; (45) Maggiorani Valecillos et
ah, 2006; (46) Stoitsova et al., 2008; (47) Fan et al., 2011

We list the traits that enhance pathogen survival, pathogen
identity, and whether the strains resided on plant host leaves, or
if studies were conducted in vitro. Additionally, we note the
mechanisms involved for each trait as well as the effect of these
traits on pathogen survival and persistence

Table 3 A review of bacterial strains that significantly reduce the
severity of fungal and oomycete pathogens on the phyllosphere

Plant Host           Bacterium               Location

Alfalfa              Bacillus cereus         In vitro and in vivo,
                                               in laboratory

Rice                 Bacillus megaterium,    In vitro and in vivo,
                       Aspergillus niger       in laboratory and
                                               in field
Cacao                Bacillus spp.           In vitro and in vivo,
                       (endophytes)            in laboratory and
                                               in greenhouse

Banana               Bacillus subtilis,      In vitro in
                       B.                      laboratory
                       amyloliquefaciens

Black mangrove       B. amyloliquefaciens    In vitro, in pots and
                       (endophytes)            in field in China
Chickpea             B. cereus               In laboratory and in
                                               field in India

Groundnut            B. circulam/ Serratia   In vitro in the
                       marcescens              laboratory,
                       (+ colloidal            In vivo in
                       chitin)                 greenhouse and in
                                               the field in India
Grapevine            Pseudomonas spp.        In vitro in
                                               laboratory
Sugar Beet           Bacillus mycoides,      In vitro and in vivo
                       Bacillus pumilis        in glasshouse and
                                               in the field
Tomato               Bacillus spp.,          In vivo in greenhouse
                       Pantoea spp.            and field
                                               conditions

Centella asiatica    Bacillus subtilis,      In vitro, in vivo
                       Pseudomonas             with plants in
                       fluorescens             laboratory
                       (endophytes)
Various crops,       Bacillus spp.,          In vitro and in vivo,
  primarily            Pantoea                 greenhouse and
  tomato, grape        spp. Pseudomonas        field conditions
  vine, strawberry     spp., Bacillus spp.
Cucumber             B. mycodies,            In vivo in greenhouse
                       B. mojavensis

                                             Origin of biocontrol
Plant Host           Pathogen                strain

Alfalfa              Phytophthora            Cultured, but strain
                       medicaginis             source not
                                               specified
Rice                 Rhizoctonia solani      Isolated strains
                                               from the field

Cacao                Phytophthora capsici,   Isolates from sugar
                       Moniliophthora          beet, tomato, and
                       roreri,                 potato; endophytes
                       M. perniciosa           isolated from cacao
                                               in Ecuador
Banana               Mycosphaerella          Isolated from crops
                       fijiensis               in Colombia

Black mangrove       Ralstonia               Isolated from
                       solanacearum            mangrove leaves
Chickpea             Botrytis cinera         Isolated from
                                               chickpea
                                               rhizosphere in
                                               India
Groundnut            Phaeoisariopsis         Selected from
                       personata               collection of
                                               peanut-associated
                                               strains

Grapevine            B. cinerea              Cultured from
                                               rhizosphere
Sugar Beet           Cercospora beticola     Isolated from sugar
                                               beet leaves in
                                               Montana
Tomato               B. cinerea, Fulvia      Randomly selected
                       fulva, Alternaria       bacterial strains
                       solani

Centella asiatica    Colleto trichum         Isolated from inside
                                               Centella leaves
                                               from Madagascar

Various crops,       B. cinera               Review
  primarily
  tomato, grape
  vine, strawberry
Cucumber             Glomerella cingulate    Isolated from sugar
                                               beet leaves; sugar
                                               beet seed emryos

Plant Host           Proposed mechanism      Sources

Alfalfa              Antibiosis              1

Rice                 Not determined          2

Cacao                Competitive             3,4
                       exclusion,
                       suggestive of
                       induced systemic
                       resistance
Banana               >80% inhibition of      5, 12
                       ascospore
                       germination,
                       hydrolytic enzyme
                       production
Black mangrove       Antimicrobial           6
                       substances
Chickpea             Inhibited fungal        15
                       germination,
                       lysed conidia

Groundnut            Inhibited fungal        13, 14
                       germination, lysed
                       conidia, activating
                       defense enzymes

Grapevine            Elicits host systemic   16
                       resistance
Sugar Beet           Elicits host systemic   7, 8
                       resistance to
                       pathogen
Tomato               Plant hormone           9
                       production, quorum
                       sensina
                       capabilities
Centella asiatica    Allelochem-icals,       10
                       induced plant
                       defense

Various crops,       Competition,            11
  primarily            antibiosis
  tomato, grape
  vine, strawberry
Cucumber             Induced systemic        17
                       acquired resistance

Sources by corresponding numbers: (1) Silo-Suh et al., 1994; (2) De
Costa et al., 2008; (3) Melnick et al., 2008; (4) Melnick et al.,
2011 ; (5) Ceballos et al., 2012; (6) Hu et al., 2010; (7) Bargabus
et al., 2002; (8) Bargabus et al., 2004; (9) Enya et al., 2007; (10)
Rakotoniriana et al., 2013; (11) Elad, 1996; (12) Collins &
Jacobsen, 2003; (13) Kishore et al., 2005a; (14) Kishore et al.,
2005b; (15) Kishore & Pande, 2006; (16) Verhagen et al., 2010; (17)
Neher et al., 2009

While bacteria have been characterized as biocontrol agents against
other pathogens on crop fruits and other tissues (reviewed by
Janisiewicz & Korsten, 2002; Sharma et al., 2009), here we
exclusively focus on the phyllosphere. We list the mutualistic
bacterial strains and the pathogenic strains they excluded, as well
as the plant host, and whether the studies were conducted in vitro
(i.e., petri dishes) or in vivo (in plants), and in the laboratory,
greenhouse, or in the field. Last, we note the proposed mechanism
for pathogen reduction
COPYRIGHT 2015 New York Botanical Garden
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2015 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Griffin, Eric A.; Carson, Walter P.
Publication:The Botanical Review
Article Type:Report
Date:Jun 1, 2015
Words:23783
Previous Article:Towards an understanding of factors controlling seed bank composition and longevity in the alpine environment.
Next Article:Lateral meristems responsible for secondary growth of the monocotyledons: a survey of the state of the art.
Topics:

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters