Printer Friendly

The activation of RAGE and NF-[KAPPA]B in nerve biopsies of patients with axonal and vasculitic neuropathy.

INTRODUCTION

Advanced glycation end products (AGE) are nonenzymatic additions of glucose or other saccharides to proteins, lipids and nucleotides (1,2). The receptor for AGE, named receptor of advanced glycation end products (RAGE), is a pattern recognition receptor (PRR) such as Toll-like receptors (TLR), which is expressed in tissues and cells that are critical for immune surveillance such as lung, liver endothelium, monocytes, dendritic cells and neurons (2). The binding of AGE to RAGE leads to the translocation of nuclear factor kappa B (NF-[kappa]B) to the nucleus. It regulates target genes such as cytokines (Tumor necrosis factor-[alpha], interleukin-1[beta] and 6), adhesion molecules (ICAM and VCAM-1), prothrombotic and vasoconstructive gene products and RAGE and its inhibitor 1[kappa]B[alpha] (3).

The RAGE pathway plays a key role in diabetic complications including diabetic neuropathy (4,5). The activation of this pathway has been demonstrated in inflammatory neuropathies such as vasculitic neuropathy (6,7). AGE, RAGE and NF-[kappa]B have been detected in lymphocytes and macrophages, particularly near the vessels both in vasculitic and diabetic neuropathy However, the role of this pathway in axonal degeneration and demyelination remains to be well determined.

In this immunohistochemical study we aimed to investigate the role of the RAGE pathway in different neuropathies. We used nerve biopsy specimens of patients with axonal neuropathy (AN), systemic and nonsystemic vasculitic neuropathy (NSVN) and hereditary neuropathy with liability to pressure palsy (HNPP) (as a control group).

METHODS

Patients

Nerve biopsies performed in our university Neurology Department Neuromuscular Disease Laboratory between 1999 and 2010 were analyzed. We included 17 axonal neuropathy (AN) patients, 11 vasculitic neuropathy (VN) patients and 12 hereditary neuropathy with liability to pressure palsy (HNPP) who had undergone sural and superficial peroneal nerve biopsy as part of the diagnostic work-up of their neuropathy and whose nerve biopsy specimens were suitable for the immunohistochemical analysis.

Axonal neuropathy was diagnosed by electrophysiology and nerve biopsy findings with active axonal degeneration, mild fiber loss and without inflammation. Diabetes mellitus or other endocrinopathies, hereditary neuropathies (HSMN types II and IV), mitochondrial neuropathies, chronic alcohol abuse, vitamin deficiencies, neoplasia, bacterial or viral infections, drugs, intoxication, vasculitic neuropathies and metabolic causes such as a-beta lipoproteinemia, Fabry disease and uremic neuropathy were excluded. VN was diagnosed according to published criteria (8). Systemic vasculitis was diagnosed by the Chapel Hill consensus criteria (9). Patients with HNPP were diagnosed by clinical, electrophysiological and nerve biopsy findings.

Twelve sural nerve biopsies with hereditary neuropathy with liability to pressure palsy (HNPP) were included in the study

Approval of the Hacettepe University Ethics Committee was granted and patients participated after providing their written informed consent (01.07.2010; B.30.2.HAC.020.05.04/352).

Nerve Biopsies

The biopsies were all performed for diagnostic purposes. Seven of 11 VN patients had superficial peroneal nerve biopsy with peroneus brevis muscle biopsy whereas four patients had sural nerve biopsy All biopsies were snap-frozen within 5 min of surgical intervention and stored at -80[degrees]C until analysis. All frozen sections were stained with hematoxylin/eosin and modified Gomori trichrome stains. Semithin (1 [micro]m) plastic sections from nerve tissue were also prepared. Frozen sections (10 [micro]m) were taken from each tissue for immunohistochemistry.

Immunohistochemistry

Air-dried serial 10-pm frozen sections were blocked with Histostatin-plus kit (Zymed Laboratories Inc., San Francisco, CA, USA) for 20 min. Furthermore, the sections were incubated with rabbit polyclonal anti-NF[kappa]B (1:50; Santa Cruz Biotechnology Inc, Santa Cruz, CA, sc-109) or with rabbit polyclonal anti-RAGE (1:50; Santa Cruz Biotechnology Inc, Santa Cruz, CA, sc-5563) antibodies for 1 h at 37[degrees]C. Thereafter, a biotinylated secondary antibody against mouse IgG and an avidin-biotinylated peroxidase complex were used. The peroxidase reaction product was developed with diaminobenzidine [H.sub.2][O.sub.2] (6 mg diaminobenzidine, 10 [cm.sup.3] PBS and 0.01 [cm.sup.3] 3% [H.sub.2][O.sub.2]).

Semiquantitative Analysis

Semiquantitative analysis was used to evaluate RAGE and NF[kappa]B positive cells. The sections were independently analyzed by two authors. For each specimen, the mean value of the two authors' assessment was calculated. The values of semiquantitative assessment were defined as follows: negative 0 (without cell), scattered positive cells + (1-2 positive cells), few positive cells ++ (3-5 positive cells), many positive cells +++ (6-10) and dense positive cells ++++ (more than 10 positive cells).

Colocalization Studies

To determine the immunoreactive cells, we performed double staining with the immunofluorescence methods. Three samples from each group were randomly selected. The samples were staining with rabbit polyclonal anti-NFKB or with rabbit polyclonal anti-RAGE and with mouse monoclonal anti-CD4 (1/50; Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA, Sc-65544) for CD4 (+) T cells, mouse monoclonal anti-CD8 (1/50; Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA, Sc-70794) for CD8 (+) T cells, mouse monoclonal anti-CD68 (1/50; Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA, Sc-20060) for macrophages, or mouse monoclonal anti-SI00 (1/50; Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA, Sc-71993) for Schwann cells. The sections were analyzed with confocal microscope (Zeiss, Oberkochen, Germany). First T cells, macrophages and Schwann cells were counted, then NF[kappa]B and RAGE positive T cells, macrophages and Schwann cells were determined and the ratio was calculated for each section staining.

RESULTS

Patients

The group of AN consisted of II men and six women with a median age of 62 years (range 21-83). The group of VN consisted of four men and seven women with a median age of 56 years (range 7-78). The group of HNPP consisted of six men and six women with a median age of 26 years (range 17-40). The mean age was 56 (7-78) in patients with VN, 59 (21-83) in patients with AN and 26 (16-62) in patients with HNPP The median age of HNPP patients was lower than VN and AN patients (p<0.05).

Six of the VN patients had NSVN, whereas five had systemic vasculitis. Among the systemic VN patients, two had polyarteritis nodosa (PAN), two had rheumatoid arthritis (RA) and one had Churg-Straus Syndrome (CSS).

Immunohistochemistry

The staining patterns of NF[kappa]B and RAGE were similar to each other Nf[kappa]B and RAGE immunoreactivities were observed in the perivascular cuff in epineurial vessels in all nerve biopsies from patients with VN except one patient. There was no difference in staining patterns between systemic and nonsystemic vasculitic neuropathy patients. NF[kappa]B and RAGE immunoreactivities were higher in patients with VN than in those with AN and HNPP (p<0.05) (Table I) (Figure I).

NF[kappa]B and RAGE immunoreactive endoneurial cells were more than 10 in each fascicule in 40% of patients with VN and endoneurial immunoreactivities to NF[kappa]B and RAGE were higher in VN patients than in AN and HNPP patients. Although there is no significant difference between the groups, nerve biopsies from patients with AN showed higher NF[kappa]B and RAGE immunoreactivities than those with HNPP (Table 1) (Figure 2).

Colocalization Studies

In VN patients, 70% of NF[kappa]B and RAGE positive cells were CD8 (+) T lymphocytes, whereas 30% of positive cells were macrophages (Figure 3a).

In AN patients, all NF[kappa]B and RAGE positive cells were macrophages, whereas all NF[kappa]B and RAGE positive cells were Schwann cells in HNPP patients (Figure 3b, c).

DISCUSSION

The receptor of advanced glycation end products pathway has been extensively studied in the context of diabetic complications and has been shown to constitute a link between hyperglycemia and microvascular damage (5). Furthermore, RAGE serves as an important proinflammatory receptor in vasculitis (10). The RAGE pathway has been demonstrated as a mediator in the pathogenesis of a number of inflammatory neuropathies (3,4,6,7). Thus, RAGE may be a therapeutic target and its activation may have a prognostic value (II). Therefore, it is important to know more about the expression of NF[kappa]B and RAGE in different neuropathies.

In this study we aimed to compare vasculitic neuropathy and axonal neuropathy without an identifiable cause because both groups show axonal degeneration in their pathology and a demyelinating hereditary neuropathy HNPP as a control group.

We observed that NF[kappa]B and RAGE immunoreactivities were higher around epineurial vessels and endoneurial cells in nerve biopsies from patients with VN than from those with AN and HNPP and immunoreactive cells were usually CD8 (+) T cells. Previously Kissel et al. (12) showed that 70% of epineurial inflammatory cells were T cells and 2/3 of them were CD8 (+) T cells in 22 VN patients. The increased NF[kappa]B and RAGE immunoreactivities in CD8 (+) T cells confirm the prominent role of CD8 (+) T cells. Similarly we recently showed that AGE and RAGE were increased in dermal endothelial cells and T-cells of NSVN and DN patients compared with controls (13). Haslbeck et al. (7) reported increased NF[kappa]B and RAGE immunopositivity in 70-100% macrophages, whereas 40-70% in CD8 (+) T cells in VN patients. Although we observed NF[kappa]B and RAGE immunoreactive macrophages, they were fewer thanCD8 (+) T cells. This difference could be related to the interaction of NF[kappa]B with several transcription factors, such as CBP300, which hide NF[kappa]B from immunohistochemical studies (14). The downregulation of RAGE because of high AGE concentration may cause decreased RAGE immunoreactivity in macrophages.

We also observed that although there is no significant difference between the groups, nerve biopsies from patients with AN showed higher endoneurial NF[kappa]B and RAGE immunoreactivities than HNPP patients and the immunoreactive cells were macrophages in AN patients. The hematoxylin-eosin sections of the nerve samples with AN did not show inflammation; however, macrophages, which are responsible for the axonal degeneration, showed NF[kappa]B and RAGE activity. This observation is not sufficient to speculate a prominent role of the RAGE pathway in axonal degeneration but supports the fact that the RAGE pathway is one of the activated pathway in macrophages without need of inflammatory milieu.

Previous studies on inflammatory neuropathies and RAGE pathway used the nerve samples of patients with Charcot-Marie-Tooth neuropathies (6,7). In our study we selected the nerve samples of HNPP patients because of reversible clinical symptoms and distinct pathological findings with the focal enlargement of myelin sheath called "tomaculas" and scattered onion bulb structures and Schwann cells proliferation (15). We observed that NF[kappa]B and RAGE immunoreactivities were low in HNPP patients than in VN and AN patients and the immunoreactive cells were Schwann cells. The RAGE pathway activation could be related with remyelination and Schwann cell proliferation in HNPP patients. In Schwann cells, the increase of cAMP and phosphorylation of Ser 276 of p65 subunit of NF[kappa]B by protein kinase A start the myelin formation (16). Moreover the suppression of peripheral nerve regeneration with sRAGE (an inhibitor of RAGE) has been shown in mice with sciatic nerve injury (17). Our study confirms these findings because the activation of RAGE pathway has been shown in Schwann cells of HNPP patients.

Our study has some limitations. The number of subjects was small and the immunoreactivity in patients could not be correlated with the treatment response. This is because the samples were obtained from our tissue archive and the clinical follow-up data of some patients are missing because they were only evaluated for biopsy

Our findings underscore the role of the RAGE pathway in vasculitic neuropathy and show its activation in axonal degeneration and provide the idea for new treatment studies.

DOI:10.5152/npa.2015.8801

Acknowledgements: The authors thank to Nuhan Purali for analysis with confocal microscope and to Bulent Cakir for his technical support. C.E Bekircan-Kurt was awarded Investigator Award in 2010 by European Federation of Neurological Societies with the preliminary findings of this study.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study has received no financial support.

REFERENCES

(1.) Bucciarelli LG, Wendt T Rong L, Lalla E, Hofmann MA, Goova MT Taguchi A, Yan SF Yan SD, Stern DM, Schmidt AM. RAGE is a multiligand receptor of the immunglobulin superfamily: implication for homeostasis and chronic disease. Cell Mol Life Sci 2002; 59:1117-1128. [CrossRef]

(2.) Lin L, Park S, Lakatta EG. RAGE signaling and arterial aging. Front Biosci 2009; 14:1403-1413. [CrossRef]

(3.) Andorfer B, Kieseier BC, Mathey E, Armati P Pollard J, Oka N, Hartung HP Expression and distribution of transcription factor NF-kappaB and inhibitor IkappaBin the inflamed peripheral nervous system. J Neuroimmunol 2001; 116:226-232. [CrossRef]

(4.) Lukic IK, Humpert PM, Nawroth PP Bierhaus A. The RAGE pathway: activation and perpetuation in the pathogenesis of diabetic neuropathy. Ann N Y Acad Sci 2008; 1126:76-80. [CrossRef]

(5.) Ramasamy R, Yan SF Schmidt AM. Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications. Ann N Y Acad Sci 2011; 1243:88-102. [CrossRef]

(6.) Haslbeck KM, Neundorfer B, Schlotzer-Schrehardtt U, Bierhaus A, Schleicher E, Pauli E, Haslbeck M, Hecht M, Nawroth P, Heuss D. Activation of the RAGE pathway: a general mechanism in the pathogenesis of polyneuropathies? Neurol Res 2007; 29:103-110. [CrossRef]

(7.) Haslbeck KM, Bierhaus A, Erwin S, Kirchner A, Nawroth P Schlotzer U, Neundorfer B, Heuss D. Receptor for advanced glycation end product (RAGE)-mediated nuclear factor-kappaB activation in vasculitic neuropathy. Muscle Nerve 2004; 29:853-860. [CrossRef]

(8.) Collins MP Dyck PJ, Gronseth GS, Guillevin L, Hadden RD, Heuss D, Leger JM, Notermans NC, Pollard JD, Said G, Sobue G, Vrancken AF Kissel JT Peripheral Nerve Society. Peripheral Nerve Society Guideline on the classification, diagnosis, investigation, and immunosuppressive therapy of non-systemic vasculitic neuropathy: executive summary. J Peripher Nerv Syst 2010; 15:176-184. [CrossRef]

(9.) Jennette JCI, Falk RJ, Bacon PA, Basu N, Cid MC, Ferrario F Flores-Suarez LF Gross WL, Guillevin L, Hagen EC, Hoffman GS, Jayne DR, Kallenberg CG, Lamprecht P Langford CA, Luqmani RA, Mahr AD, Matteson EL, Merkel PA, Ozen S, Pusey CD, Rasmussen N, Rees AJ, Scott DG, Specks U, Stone JH, Takahashi K, Watts RA. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum 2013; 65:1-11. [CrossRef]

(10.) Sun W, Jiao Y Cui B, Gao X, Xia Y Zhao Y Immune complexes activate human endothelium involving the cell-signaling HMGBI-RAGE axis in the pathogenesis of lupus vasculitis. Lab Invest 2013; 93:626-638. [CrossRef]

(11.) Ramasamy R, Yan SF? Schmidt AM. RAGE: therapeutic target and biomarker of the inflammatory response-the evidence mounts. J Leukoc Biol 2009; 86:505-512. [CrossRef]

(12.) Kissel JT Riethman JL Omerza J, Rammohan KW Mendell JR. Peripheral nerve vasculitis: immune characterization of the vascular lesions. Ann Neurol 1989; 25:291-297. [CrossRef]

(13.) Bekircan-Kurt CE, Ugeyler N, Sommer C. Cutaneous activation of rage in non-systemic vasculitic and diabetic neuropathy. Muscle Nerve 2014; 50:377-383. [CrossRef]

(14.) Hayden MS, Ghosh S. Shared Principles in NF-kappaB signaling. Cell 2008; 132:344-362. [CrossRef]

(15.) Madrid R, Bradley WG. The pathology of neuropathies with thickening of the myelin sheath (Tomaculous neuropathy). J Neurol Sci 1975; 25:415-448. [CrossRef]

(16.) Yoon C, Korade Z, Carter BD. Protein Kinase A-Induced Phosphorylation of the p65 Subunit of Nuclear Factor - B promotes schwann cell differentiation into a myelinating phenotype. J Neurosci 2008; 28:3738-3746. [CrossRef]

(17.) Rong LL, Trojaborg W, Qu W, Kostov K, Yan SD, Gooch C, Szabolcs M, Hays AP Schmidt AM. Antagonism of RAGE suppresses peripheral nerve regeneration. FASEB J 2004; 18:1812-1817. [CrossRef]

Can Ebru BEKIRCAN-KURT, Ersin TAN, Sevim ERDEM OZDAMAR

Department of Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey

Correspondence Address: Dr Can Ebru Bekircan-Kurt, Department of Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey

E-mail: canebru@yahoo.co.uk

Received: 23.05.2014 Accepted: 28.06.2014 Available Online Date: 07.07.2015

Table 1. NF[kappa]B and RAGE immunoreactivities in patients

                                     AN (n= 17)

Localization                     Staining intensity

Epineural      RAGE                  ++ (n=3) *
  vessels

               NF-[kappa]B            + (n=1)
                             ++ (n=4) ([doub1e dagger])
Endoneurial    RAGE                   + (n=1)
  cells                              ++ (n=12)
                               +++ (n=4) ([section])
               NF-[kappa]B            + (n=3)
                                      ++ (n=6)
                                     +++ (n=7)
                                   ++++ (n=1) **

                                      VN (n=11)

Localization                     Staining intensity

Epineural      RAGE                    + (n=1)
  vessels                             ++ (n=1)
                                     +++ (n=9) *
               NF-[kappa]B            ++ (n=2)
                             +++ (n=8) ([doub1e dagger])
Endoneurial    RAGE                   +++ (n=7)
  cells                        ++++ (n=4) ([section])

               NF-[kappa]B             + (n=1)
                                      +++ (n=5)
                                    ++++ (n=5) **

                                 HNPP (n=12)

Localization                  Staining intensity

Epineural      RAGE                  0 *
  vessels

               NF-[kappa]B           0 *

Endoneurial    RAGE                + (n=1),
  cells                           ++ (n=10),
                             +++ (n=1) ([section])
               NF-[kappa]B         + (n=2),
                                 ++ (n=10) **

* RAGE immunoreactivity in epineurial vessels was higher in
VN patients than with AN and HNPP patients (p<0.05).

([double dagger]) NF-[kappa]B immunoreactivity in epineurial
vessels was higher in VN patients than with AN and HNPP
patients (p<0.05).

([section]) RAGE immunoreactivity in endoneural cells was
higher in VN patients than with AN and HNPP
patients (p<0.05)

** NF-[kappa]B immunoreactivity in endoneurial cells was
higher in VN patients than with AN and HNPP patients
(p<0.05)

AN: axonal neuropathy; HNPP: hereditary neuropathy with
liability to pressure palsy; NF-[kappa]B: nuclear factor
kappa B; RAGE: receptor advanced glycation end products;
VN: vasculitic neuropathy
COPYRIGHT 2015 AVES
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2015 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Research Article; receptor of advanced glycation end products and nuclear factor kappa B
Author:Bekircan-Kurt, Can Ebru; Tan, Ersin; Ozdamar, Sevim Erdem
Publication:Archives of Neuropsychiatry
Article Type:Report
Date:Sep 1, 2015
Words:2853
Previous Article:Exploring the role of social Anhedonia in the positive and negative dimensions of schizotypy in a non-clinical sample.
Next Article:Relationship of suicidal ideation and behavior to attachment style in patients with major depression.
Topics:

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters