Printer Friendly

The Prevalence and Risk Factors of Gastric Polyp in Asymptomatic Patients Receiving Health Examination.

1. Introduction

The rate of diagnosis, mostly incidental, of gastric mucosal lesion is increasing because of the growing adoption of endoscopy in clinical practice. Gastric polyps exhibit varied and diverse pathologies; most cases are asymptomatic, but such symptoms as abdomen pain, anemia, bleeding, and gastric outlet obstruction may accompany large polyps. Some types of polyps can be identified through endoscopy given their typical appearance, but a histology study is essential to detect dysplasia. Hence, all cases of gastric polyps should be appropriately assessed to evaluate the premalignant risk. Polyps may be an indicator of both a genetic disease and a high malignancy risk [1, 2]. Thus, identifying the risk factors of gastric polyps would likely lead to the stratification of the risks as well as to the development of risk amelioration strategies.

Studies have reported that gastric polyps exhibit ethnic, geographic, and other variabilities. For example, approximately 3-5% of patients subjected to upper endoscopy have been found to have benign gastric polyps [3, 4]. With relative prevalence of nearly 70%, hyper-plastic polyps are the most prevalent type of polyps [5, 6]. Since the early 2000s, reports especially from Western countries have been revealing sharp increase in the occurrence of fundic gland polyps [4, 7]. Furthermore, a recent nationwide study in the United States examined the occurrence of gastric polyps during 2007-2008 and found the following distributions: fundic gland polyps, 77%; hyper-plastic polyps, 17%; and adenoma, 0.69% [4].

The risk factors of gastric polyps are unclear at present, and the underlying pathologies for gastric polyps among Asian population are rather inconsistent [8, 9]. Given the relatively higher background prevalence of Helicobacter pylori infection in Taiwan [10, 11] and because some individuals in Taiwan undertake health examinations, inclusive of upper GI endoscopy (and pay for it themselves), we performed this cross-sectional study to determine the risk factors and prevalence of gastric polyps in Taiwan.

2. Methods

2.1. Subjects. From October 2015 to March 2016, consecutive asymptomatic individuals of age 20 years or older completing an upper GI endoscopy as part of a health examination were enrolled in the present study. The exclusion criterion was the presence of symptoms of upper gastrointestinal tract disease such as symptoms of reflux and dyspepsia (e.g., dysphagia, epigastric fullness or pain, heartburn, nausea, regurgitation, and vomiting) in the preceding 2 weeks that would typically require medical evaluation. Written informed consent was obtained from all enrolled participants. The study protocol was approved by the Institutional Review Board of Kaohsiung Veterans General Hospital.

2.2. Study Design. Each individual completing the health examination was subjected to complete history taking, a physical examination, and a comprehensive review to detect any abdominal symptoms presenting in the preceding 2 weeks. Individuals who satisfied the aforementioned inclusion criteria were categorized as asymptomatic participants and enrolled in the study. All included participants were administered anthropometric tests. In addition, after the participants had fasted overnight, they were examined for gastric mucosa lesions through total upper GI endoscopy (Olympus GIF-Q290 and GIF-H290Z, Olympus Corp., Tokyo, Japan) under the guidance of four experienced endoscopists, namely, Chen YH, Hsu PI, Lin KH, and Yu HC. In this study, any instance of protuberance into the lumen from the gastric mucosa, which is typically flat, was considered a gastric polyp. All visible polyps were either biopsied or removed and thus identified and studied them histologically by the pathologist and classified them as adenomatous polyps, hyper-plastic polyps, fundic gland polyps, and other polyps.

The following data of the participants were collected and categorized for analysis: age; body mass index (BMI); consumption statuses of alcohol, cigarettes, betel nut, coffee, spicy food, and tea; consumption status of meat (i.e., vegetarian diet or not); educational level; exercise habits; family history of gastric cancer; gender; long-term use of non-steroidal anti-inflammatory drug (NSAID); waist circumference; and Helicobacter pylori infection.

2.3. Statistical Analysis. The associations between the aforementioned clinical characteristics and the development of gastric polyps were assessed through either the chi-square test or Fisher's exact test. These following variables were included in the analysis (categorization shown within parentheses): age (<39, 40-49, 50-59, 60-69, and >70 years); betel nut habit (yes and no); BMI (25, 25-30, and 30); consumption of alcohol, coffee, tea, or spicy food (0, [less than or equal to] 3, and >3 times per week); education level (<10, 10-12, and >12 years); exercise habit (0, [less than or equal to]3, and 3 times per week); family history of gastric cancer (yes and no); gender (male and female); regular NSAID use for at least 1 year (yes and no); smoking status (no, former, and current); type of gastric polyps (hyper-plastic, fundic gland, adenomatous, and others); vegetarian diet (yes and no); waist circumference (<80, 80-90, and >90 cm); and Helicobacter pylori infection (yes, no, and not done). To determine the clinical factors that can independently predict gastric polyp development, the variables identified as significant through univariate analysis were assessed through stepwise logistic regression. A p value <0.05 was considered significant, and all analyses were computed on SPSS version 20.0 (SPSS Inc. Chicago, II, USA).

3. Results

3.1. Participant Demographics and Upper GI Endoscopic Characteristics. In the period October 2015-March 2016, 317 men and 163 women (480 in total) who were asymptomatic participants (of mean age, 52.6 [+ or -] 11.3 years; age range, 20-86 years) were enrolled in this study. Of these participants, 143 (29.8%) were diagnosed as having gastric polyps (Table 1). The prevalences of fundic gland, hyperplastic, and adenomatous polyps were 59.4%, 18.2%, and 3.5%, respectively. The pathology of the five adenomatous polyps were all tubular adenoma with low-grade dysplasia. The other types of gastric polyps included 3 carcinoids, 2 inflammatory polys, 2 xanthomas, and others. The prevalences of single polyp and multiple polyps were 53.8% and 46.2%, respectively. The distributions of dimension within the stomach of the polyps were [less than or equal to] 1 cm (97.2%) and > 1 cm (2.8%). The prevalence of Helicobacter pylori infection in the biopsied subjects was 19.8%. The age distribution of the participants with gastric polyps is illustrated in Figure 1.

3.2. Risk Factors of Gastric Polyp Development. Table 2 summarizes the univariate analysis performed to identify the risk factors of gastric polyps. Age range of 45-60 years, current smoking habit, and lack of regular exercise were significantly associated with the development of gastric polyps (p = 0.016,0.009, and 0.045, respectively). The following data were comparable between participants with and without gastric polyps: BMI; consumption status of alcohol, coffee, spicy food, and tea; consumption status of betel nut; education level; family history of gastric cancer; gender distribution; NSAID use; vegetarian diet; waist circumference; and Helicobacter pylori infection. Age range of 45-60 years (relative risk [RR], 1.59; 95% confidence interval [CI], 1.06-2.40) and current smoking (RR, 1.63; 95% CI, 1.04-2.55) were identified as independent predictors for asymptomatic gastric polyps, as confirmed by the multivariate analysis with stepwise logistic regression (Table 3).

4. Discussion

To the best of our knowledge, the present study is the first upper GI endoscopy-based study to investigate the risk factors and prevalence of gastric polyps in asymptomatic Taiwanese. In this study, gastric polyp prevalence in the asymptomatic Taiwanese population was 29.8%, and middle age and current smoking were identified as the relevant risk factors.

Our results differ significantly from those reported in populations in the United States and elsewhere, with the prevalence of gastric polyps being the most salient difference (29.8% in this study vs. 6.35% in the United States [4], 1% in China [8], 0.6% in Brazil [3], and 3-5% in various other countries [12].) These large differences can be ascribed to various intangible and tangible biases, such as differences in the accuracy of the endoscopy as well as its consistency with the pathological diagnosis; in the degree of litigiousness of the studied region; in the demographic, genetic, and socioeconomic characteristics of the study population; and in the study methods.

This finding of the present study provides the latest information about the prevalence of the different polyp types detected in private endoscopy practices in Taiwan and the associations of these polyps with the clinical and demographic characteristics. Fundic gland polyps, which were previously believed to be hamartomatous, accounted for 59.4% of all polyps in this study, which is similar to reports from other countries: 77% in a 2007-2008 nationwide US population-based study [4], 66.1% in a 2010 Chinese study [8], and 47% in a 1994 German study [6]. By contrast, much lower relative prevalence of fundic gland polyps has been reported in other countries, for example, 3.3% in a 1998 Italian study [13] and 16.3% in a 2007 Brazilian study [3]. Individuals with Helicobacter pylori-free stomachs receiving chronic proton-pump inhibitor (PPI) treatment tend to have fundic gland polyps [14-16]. The relative high prevalence of these polyps in our study population may mostly be due to the high PPI use in Taiwan; a likely supporting factor is that endoscopists in Taiwan tend to subject all identified lesions to histopathological analysis. Jalving et al. identified a relationship between long-term PPI (>1 year) therapy and an increased risk of the development of fundic gland polyps; they attributed this relationship to parietal cell hyperplasia as well as protrusions due to acid suppression [17]. In addition, in a retrospective cohort [18], PPI therapy for >48 months was the sole independent predictor of the development of fundic gland polyps; this finding fails to completely account for our findings as PPI therapy for >48 months is rather rare in Taiwan, where 2-3 months is the typical treatment duration that is covered by the National Health Insurance Program, the mandatory national insurance program in Taiwan. Thus, the relationship between PPI use and fundic gland polyp development in Taiwan remains controversial.

Hyperplastic polyps, which have been associated with Helicobacter pylori infection as well as atrophic gastritis [19,20], represented 18.2% of all polyps in this study. A high (>70%) relative prevalence of hyperplastic polyps was recorded in Greece in 1996 [21] and Brazil in 2007 [3]; a much higher relative prevalence (75%) was found in the United States in 1989 [5], but Carmack et al.'s 2007-2008 study revealed a prevalence of just 17% [4]. Similarly, in China, Cao et al. revealed that hyperplastic polyps, which represented nearly 50% of all polyps in 2000, accounted for just 20.8% in 2010 [8]. This drastic reduction probably due to the fall in the rates of atrophic gastritis and Helicobacter pylori infection.

In this study, current smoking habit was identified as an independent predictor for gastric polyps in asymptomatic participants. Giulio et al. identified that patients with atrophic body gastritis who were also cigarette smokers possessed an odds ratio (OR) of 2.8 (95% CI = 1.2-6.9), relative to nonsmokers, for the development of benign epithelial gastric polyps [19]. Our finding is especially relevant considering that a recent meta-analysis of cohort studies recommended that cigarette smoking be labelled the most influential behavioral risk factor for the development of gastric cancer [22], because cigarette smoke contains numerous human carcinogens (both confirmed and suspected), for example, benzene and polycyclic amines and aromatic amines [23]. This is further substantiated by Martinez et al., who identified APC and KRAS mutations in 36% and 61% of hyperplastic polyps in smokers, respectively, where these mutations were absent in nonsmokers [24]. Moreover, smoking was recently associated with DNA hypermethylation, which in turn has been implicated in the pathogenesis of hyperplastic polyps [25]. In sum, smoking cessation may be a particularly effective form of treatment in such patients.

The following limitations must be considered when applying our findings. Firstly, all health examinations in this study were fully paid for by the participants themselves, an indicator of their higher-than-average economic status relative to the general population of Taiwan; this may have introduced a self-selection bias in our study. Secondly, this study was conducted in a tertiary care facility; thus, the participant may not be representative of patients in primary care facilities. Thirdly, interobserver variability among the pathologists, the subject of numerous investigations in the literature, is a typical source of concern histopathology-based studies. And lastly, detailed information about the description of the localization within the stomach of the polyps and the mucosal status around the polyps, such as mucosal inflammation, atrophy, or intestinal metaplasia, is lacking, which may restrict the outcome.

5. Conclusion

This cross-sectional study of asymptomatic individuals revealed a gastric polyp prevalence of 29.8% in Taiwan, with fundic gland polyps accounting for the largest proportion. Middle age and current smoking habit were identified as risk factors of gastric polyp development. Hence, lifestyle modification, such as smoking cessation, may decrease the risk of gastric polyps. Additional studies are necessary to investigate the molecular pathogenesis of gastric polyps and to accordingly determine the appropriate management strategies for the Taiwanese population.

BMI:     Body mass index
CI:      Confidence interval
DNA:     Deoxyribonucleic acid
NSAID:   Nonsteroidal anti-inflammatory drug
PPI:     Proton-pump inhibitor
RR:      Relative risk.

Data Availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Ethical Approval

All experiments in this study conformed to the ethical standards established by the institutional and national committees on human experimentation as well as with the 1964 (and later versions) Helsinki declaration. The institutional review board and the ethics committees of Kaohsiung Veterans General Hospital approved this study.


Written informed consent to undergo upper GI endoscopy and to participate in the study was obtained from each participant.

Conflicts of Interest

The authors have no conflict interests to declare.


The authors appreciate their colleagues at the Kaohsiung

Veterans General Hospital. The authors also thank the participant for their cooperation. This manuscript was edited by Wallace Academic Editing.


[1] Y. Bai, Z. S. Li, D. W. Zou et al., "Alarm features and age for predicting upper gastrointestinal malignancy in Chinese patients with dyspepsia with high background prevalence of Helicobacter pylori infection and upper gastrointestinal malignancy: an endoscopic database review of 102,665 patients from 1996 to 2006," Gut, vol. 59, no. 6, pp. 722-728, 2010.

[2] S. M. Muehldorfer, M. Stolte, P. Martus, E. G. Hahn, C. Ell, and Multicenter Study Group "Gastric Polyps"., "Diagnostic accuracy of forceps biopsy versus polypectomy for gastric polyps: a prospective multicentre study," Gut, vol. 50, no. 4, pp. 465470, 2002.

[3] D. J. Morais, A. Yamanaka, J. M. R. Zeitune, and N. A. Andreollo, "Gastric polyps: a retrospective analysis of 26,000 digestive endoscopies," Arquivos de Gastroenterologia, vol. 44, no. 1, pp. 14-17, 2007.

[4] S. W. Carmack, R. M. Genta, C. M. Schuler, and M. H. Saboorian, "The current spectrum of gastric polyps: a 1-year national study of over 120,000 patients," American Journal of Gastroenterology, vol. 104, no. 6, pp. 1524-1532, 2009.

[5] L. M. Deppisch and V. T. Rona, "Gastric epithelial polyps. A 10-year study," Journal of Clinical Gastroenterology, vol. 11, no. 1, pp. 110-115, 1989.

[6] M. Stolte, T. Sticht, S. Eidt, D. Ebert, and G. Finkenzeller, "Frequency, location, and age and sex distribution of various types of gastric polyp," Endoscopy, vol. 26, no. 8, pp. 659-665, 1994.

[7] S. W. Carmack, R. M. Genta, D. Y. Graham, and G. Y. Lauwers, "Management of gastric polyps: a pathology-based guide for gastroenterologists," Nature Reviews Gastroenterology & Hepatology, vol. 6, no. 6, pp. 331-341, 2009.

[8] H. Cao, B. Wang, Z. Zhang, H. Zhang, and R. Qu, "Distribution trends of gastric polyps: an endoscopy database analysis of 24 121 northern Chinese patients," Journal of Gastroenterology and Hepatology, vol. 27, no. 7, pp. 1175-1180, 2012.

[9] K. Takechi, J. Endo, K. Furuhashi et al., "Endoscopic characteristics of gastric polyps and their background mucosa on the gastric body," Digestive Endoscopy, vol. 4, no. 2, pp. 134-138, 1992.

[10] P. I. Hsu, P. C. Lin, and D. Y. Graham, "Hybrid therapy for Helicobacter pylori infection: a systemic review and metaanalysis," World Journal of Gastroenterology, vol. 21, no. 45, pp. 12954-12962, 2015.

[11] P. I. Hsu, K. H. Lai, P. N. Hsu et al., "Helicobacter pylori infection and the risk of gastric malignancy," American Journal of Gastroenterology, vol. 102, no. 4, pp. 725-730, 2007.

[12] J. R. Turner and R. D. Odze, "Polyps of the stomach," in Surgical Pathology of the GI Tract, Biliary Tract, and Pancreas, pp. 267-294, Saunders-Elsevier, Philadelphia, 1st edition, 2004.

[13] A. Papa, G. Cammarota, A. Tursi et al., "Histologic types and surveillance of gastric polyps: a seven year clinicopathological study," Hepato-Gastroenterology, vol. 45, no. 20, pp. 579-582, 1998.

[14] H. J. Freeman, "Proton pump inhibitors and an emerging epidemic of gastric fundic gland polyposis," World Journal of Gastroenterology, vol. 14, no. 9, pp. 1318-1320, 2008.

[15] H. M. Ef-Zimaity, F. W. Jackson, and D. Y. Graham, "Fundic gland polyps developing during omeprazole therapy," American Journal of Gastroenterology, vol. 92, no. 10, pp. 1858-1860, 1997.

[16] A. S. Raghunath, C. O'morain, and R. C. Mcloughlin, "Review article the long-term use of proton-pump inhibitors," Alimentary Pharmacology & Therapeutics, vol. 22, pp. 55-63, 2005.

[17] M. Jalving, J. J. Koornstra, J. Wesseling, H. M. Boezen, S. de Jong, and J. H. Kleibeuker, "Increased risk of fundic gland polyps during long-term proton pump inhibitor therapy," Alimentary Pharmacology & Therapeutics, vol. 24, no. 9, pp. 1341-1348, 2006.

[18] M. R. Ally, G. R. Veerappan, C. L. Maydonovitch et al., "Chronic proton pump inhibitor therapy associated with increased development of fundic gland polyps," Digestive Diseases and Sciences, vol. 54, no. 12, pp. 2617-2622, 2009.

[19] E. Di Giulio, E. Lahner, A. Micheletti et al., "Occurrence and risk factors for benign epithelial gastric polyps in atrophic body gastritis on diagnosis and follow-up," Alimentary Pharmacology & Therapeutics, vol. 21, no. 5, pp. 567-574, 2005.

[20] K. Dirschmid, C. Platz-Baudin, and M. Stolte, "Why is the hyperplastic polyp a marker for the precancerous condition of the gastric mucosa?," Virchows Archiv, vol. 448, no. 1, pp. 80-84, 2006.

[21] A. Archimandritis, C. Spiliadis, M. Tzivras et al., "Gastric epithelial polyps: a retrospective endoscopic study of 12974 symptomatic patients," The Italian Journal of Gastroenterology, vol. 28, no. 7, pp. 387-390, 1996.

[22] R. Ladeiras-Lopes, A. K. Pereira, A. Nogueira et al., "Smoking and gastric cancer: systematic review and meta-analysis of cohort studies," Cancer Causes & Control, vol. 19, no. 7, pp. 689-701, 2008.

[23] R. Talhout, T. Schulz, E. Florek, J. V. Benthem, P. Wester, and A. Opperhuizen, "Hazardous compounds in tobacco smoke," International Journal of Environmental Research and Public Health, vol. 8, no. 2, pp. 613-628, 2011.

[24] F. Martinez, C. Fernandez-Martos, M. J. Quintana et al., "APC and KRAS mutations in distal colorectal polyps are related to smoking habits in men: results of a cross-sectional study," Clinical and Translational Oncology, vol. 13, no. 9, pp. 664-671, 2011.

[25] M. C. Stern, K. D. Siegmund, D. V. Conti, R. Corral, and R. W. Haile, "XRCC1, XRCC3, and XPD polymorphisms as modifiers of the effect of smoking and alcohol on colorectal adenoma risk," Cancer Epidemiology, Biomarkers & Prevention, vol. 15, no. 12, pp. 2384-2390, 2006.

Fu-Wei Wang (iD), (1, 2, 3) Su-Chi Young, (1) Ru-Yih Chen, (1) Kung-Hung Lin, (4) Yan-Hua Chen, (4) Ping-I Hsu (iD), (4) and Hsien-Chung Yu (iD) (4)

(1) Department of Family Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City 81362, Taiwan

(2) Department of Nursing, Meiho University, Pingtung City 912, Taiwan

(3) Center for Geriatrics and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung City 81362, Taiwan

(4) Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City 81362, Taiwan

Correspondence should be addressed to Hsien-Chung Yu;

Received 23 July 2018; Revised 22 October 2018; Accepted 8 November 2018; Published 10 December 2018

Academic Editor: Chiara Ricci
Table 1: Demographic data and endoscopic findings of the
asymptomatic participants (n = 480).

Clinical characteristics

Age, n (%)
  Mean (SD) (years)          52.6 (11.3)
    <39                       57 (11.9)
    40-49                    128 (26.7)
    50-59                    167 (34.8)
    60-69                     94 (19.6)
    >70                       34 (7.1)
Height (cm) (SD)             166.3 (8.4)
Weight (kg) (SD)             66.7 (12.7)
Gender, n (%)
  Men                        317 (66.0)
  Women                      163 (34.0)
Body mass index, n (%)
  Mean (SD)                  24.0 (3.2)
    <25                      314 (65.4)
    25-30                    147 (30.6)
    >30                       19 (4.0)
Education level, n (%)
  Middle school               53 (11.0)
  High school                121 (25.2)
  University                 239 (49.8)
   Graduate school            67 (14.0)
Endoscopic findings, n (%)
  Normal                     337 (70.2)
  Gastric polyps             143 (29.8)
    Pathological type
      Fundus                  85 (59.4)
      Hyperplastic            26 (18.2)
      Adenoma                  5 (3.5)
      Others                  27 (18.9)
      Single                  77 (53.8)
      Multiple                66 (46.2)
     [less than or
     equal to] 1 cm          139 (97.2)
      >1 cm                    4 (2.8)
Helicobacter pylori
  (+)                         95 (19.8)
  (-)                        307 (64.0)
  Not done                    78 (16.2)

Table 2: Univariate analysis of the risk factors of gastric polyp
development (n = 480).

Principal parameter               G polyps (-)   G polyps (+)   p value

Sex, n (%)                                                       0.117
  Men                              230 (68.2)     87 (60.8)
  Women                            107 (31.8)     56 (39.2)
Age (yr.), n (%)                                                 0.315
  [less than or equal to]45        73 (21.7)      37 (25.9)
  >45                              264 (78.3)     106 (74.1)
Age (yr.), n (%)                                                0.016 *
  Between 45-60                    155 (46.0)     81 (57.0)
  Not between 45-60                182 (54.0)     62 (43.0)
Education (yr.), n (%)                                           0.318
  Middle school                     33 (9.8)      20 (14.0)
  High school                      90 (26.7)      31 (21.7)
  University                       164 (48.7)     75 (52.4)
  Graduate school                  50 (14.8)      17 (11.9)
BMI, n (%)                                                       0.577
  [less than or equal to]25        225 (66.8)     89 (62.2)
  25-30                            100 (29.7)     47 (32.9)
  >30                               12 (3.6)       7 (4.9)
Waist circumference (%)                                          0.990
  [less than or equal to] 80 cm    109 (32.3)     45 (31.7)
  80-90 cm                         153 (45.4)     65 (45.8)
  >90 cm                           75 (22.3)      332 (22.5)
NSAID use, n (%)                                                 0.788
  No                               324 (96.1)     139 (97.2)
  Yes                               13 (3.9)       4 (2.8)
Family history of                                                0.523
gastric cancer, n (%)
  No                               327 (97.0)     141 (98.6)
  Yes                               10 (3.0)       2 (1.4)
Smoking status, n (%)                                           0.009 *
  Never smoking                    204 (60.5)     68 (47.3)
  Former smoking                   53 (15.7)      22 (15.4)
  Current smoking                  80 (23.7)      53 (37.3)
Alcohol drinking, n (%)                                          0.725
  No                               214 (63.7)     96 (67.1)
  [less than or equal to] 3        99 (29.5)      37 (25.9)
    times per week
  >3 times per week                 23 (6.8)       10 (7.0)
Coffee drinking, n (%)                                           0.358
  No                               107 (31.8)     55 (38.5)
  [less than or equal to] 3        73 (21.7)      27 (18.9)
    times per week
  >3 times per week                157 (46.6)     61 (42.7)
Tea drinking, n (%)                                              0.688
  No                               125 (37.1)     56 (39.2)
  [less than or equal to] 3        78 (23.1)      28 (19.6)
    times per week
  >3 times per week                134 (39.8)     59 (41.3)
Spicy food consumption,                                          0.223
n (%)
  No                               181 (53.7)     90 (62.9)
  [less than or equal to] 3        94 (27.9)      32 (22.4)
    times per week
  >3 times per week                62 (18.4)      21 (14.7)
Betel nut use, n (%)                                             0.186
  No                               330 (98.2)      141 (99)
  Yes                                6(1.8)        2 (1.0)
Exercise habit, n (%)                                           0.045 *
  No                               129 (38.3)     68 (47.3)
  [less than or equal              119 (35.3)     49 (34.2)
    to] 3 times per week
  >3 times per week                89 (26.4)      26 (18.5)
Vegetarian, n (%)                                                0.233
  No                               319 (97.3)     139 (97.9)
  Yes                               9 (2.7)        4 (2.1)
Helicobacter pylori, n (%)                                       0.218
  Not done                         53 (15.9)      25 (17.5)
  (-)                              215 (63.7)     92 (64.3)
  (+)                              69 (23.4)      26 (18.2)

BMI = body mass index; NSAID = nonsteroidal anti-inflammatory drug.
* p < 0.05.

Table 3: Independent risk factors of gastric polyp development.

Clinical          Coefficient    SE             OR              p
variable                                (95% CI ([dagger]))    value

Age 45-60 y/o        0.464      0.209    1.59 (1.06-2.40)     0.027 *
Current smoking      0.486      0.229    1.63 (1.04-2.55)     0.034 *

([dagger]) CI = confidence interval. * p < 0.05.

Figure 1: Prevalence of gastric polyps stratified by age group.

Age group   Percent of gastric polyp (%)

<39                      2.9
40-49                    9.0
50-59                    8.3
60-69                    6.9
>70                      2.7

Note: Table made from bar graph.
COPYRIGHT 2018 Hindawi Limited
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2018 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Research Article
Author:Wang, Fu-Wei; Young, Su-Chi; Chen, Ru-Yih; Lin, Kung-Hung; Chen, Yan-Hua; Hsu, Ping-I; Yu, Hsien-Chu
Publication:Gastroenterology Research and Practice
Article Type:Clinical report
Date:Jan 1, 2018
Previous Article:What Roles Do Probiotics Play in the Eradication of Helicobacter pylori? Current Knowledge and Ongoing Research.
Next Article:Staffing at Ambulatory Endoscopy Centers in the United States: Practice, Trends, and Rationale.

Terms of use | Privacy policy | Copyright © 2021 Farlex, Inc. | Feedback | For webmasters |