Printer Friendly

Tailored DNA sequences can sort and separate carbon nanotubes.

Byline: ANI

London, July 9 (ANI): A team of researchers from DuPont and Lehigh University have achived a breakthrough in the campaign to sort and separate carbon nanotubes (CNTs) that are suitable for use in electronics, medicine, and other applications.

The researchers say that they have developed a DNA-based method that sorts and separates specific types of CNTs from a mixture.

CNTs are long, narrow cylinders of graphite with a broad range of electronic, thermal and structural properties that vary according to the tubes' shape and structure. This versatility gives CNTs great promise in electronics,

lasers, sensors and biomedicine, and as strengthening elements in composite materials.

Current methods of producing CNTs yield mixtures of tubes with different diameters and symmetry, or "chirality".

However, before the tubes could be used, they must be disentangled from a mixture and "purified" into separate species of CNTs of the same electronic type.

"A systematic method of purifying every single-chirality species of the same electronic type from a synthetic mixture of single-walled nanotubes is highly desirable, but the task has proven to be insurmountable to date," Nature magazine quoted the DuPont-Lehigh group as having written in their report.

The research article has been authored by Ming Zheng, Xiaomin Tu, Anand Jagota and Suresh Manohar.

In 2003, a team of scientists from DuPont, MIT and the University of Illinois at Urbana-Champaign developed a new method of separating metallic CNTs from semiconducting CNTs using single-stranded DNA and anion-exchange chromatography.

The new results improve on the 2003 results by identifying more than 20 DNA short sequences that can recognize individual types, or species, of carbon nanotubes and purify them from a mixture.

The researchers have revealed that their new method utilizes tailored DNA sequences, and "allows the purification of all 12 major single-chirality semiconducting species from a synthetic mixture, with sufficient yield for both fundamental studies and application development."

"The interesting discovery made by Tu and Zheng is that if you choose the DNA sequence correctly, it recognizes a particular type of CNT and enables us to sort that variety cleanly. This kind of practical improvement brings us closer to manufacturing possibility," says Jagota.

As to how does DNA recognize and sort types of CNTs, the DuPont-Lehigh team says that this could be related to DNA's ability to form a structure different from its usual double helix by wrapping around the CNTs.

An alpha helix, like scotch tape wrapped around a pencil to form a tube, is a common shape seen in proteins, one of the main classes of biological molecules. Another common structure seen in proteins is the beta sheet.

If you take a long strand in your palm, stretch it out to the tip of your index finger, loop it to your middle finger, then back to your palm, then out to your ring finger, back to your palm and out to your little finger, you form a type of beta sheet.

"Such a structure is not known for DNA, but we've shown that it is possible as long as you allow the DNA to adsorb on a surface. If the surface is cylindrical, like a CNT, you get a variant called the beta-barrel," says Jagota.

While the researchers do not have absolute proof, they say circumstantial evidence strongly supports their hypothesis that the DNA is forming this well-organized structure and that it recognizes a specific CNT in the same way that biological molecules recognize each other by structure.

Jagota, who directs Lehigh's bioengineering program, says that the biomedical ramifications of the researchers' discovery are particularly exciting.

One potential application for CNTs, for example, is to place them on substrates that can be delivered to cells in the body.

"We are very interested in the biomedical applications of this work. What does this say about how DNA interacts with nanomaterials? Will they be harmful inside the body? Can we take advantage of the interaction for therapeutic applications? It's a big open field," says Jagota. (ANI)

Copyright 2009 Asian News International (ANI) - All Rights Reserved.

Provided by an company
COPYRIGHT 2009 Al Bawaba (Middle East) Ltd.
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2009 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Publication:Asian News International
Date:Jul 9, 2009
Previous Article:No cash to meet Arsenal's Premier League dream.
Next Article:New formula may improve ability to predict drinking water needs.

Related Articles
Mitsui mines for Nanotech gold: Japan seeks to lead the way in nanotube production.
No assembly required: DNA brings carbon nanotube circuits in line.
Nice threads: the golden secret behind spinning carbon-nanotube fibers.
UA researchers garner DNA grants.
Carbon nanotubes get nosy.
Teasing apart nanotubes: fast-spun carbon fibers may feed an industry.
FE modelling of multi-walled carbon nanotubes/Mitmeseinalise susiniku nanotoru modelleerimine loplike elementide meetodil.
Sorting carbon nanotubes with DNA.
Nanotubes, nanowires, nanobelts and nanocoils--promise, expectations and status; proceedings.

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters