Printer Friendly



The Dense Ombrophilous Forest, also known as Atlantic Rain Forest, is one of the main phytogeographic units of the Brazilian Atlantic Forest hotspot. It is located in the east portion of Brazil and of Parana State from 0 to 1,650 m a.s.l., including the Serra do Mar mountain range. This forest type is directly influenced by the warm and humid air mass from the Atlantic Ocean and by the evenly distributed rainfall throughout the year, which provides a climate with thermal stability (Maack,1968; Leite, 2002; Roderjan et al., 2002). The Subtropical Atlantic Forest (or Araucaria Forest), integrating the Brazilian Atlantic Forest hotspot, is characterized by the coexistence of the tropical and temperate flora and by the components Araucaria angustifolia (Bertol.) Kuntze, Podocarpus lambertii Klotzsch ex Endl., Lauraceae and Myrtaceae. It is distributed on highlands (750 - 1,300 m a.s.l) westwards from the Serra do Mar (Maack,1968; Roderjan et al., 2002). The climate is always humid with low temperatures and frosts are common in winter (Leite, 2002).

Environmental factors are usually considered the main causes of the large diversity of plant communities, either for canopy and for understory (Pereira et al., 2007). Some of these factors are: edges (Pereira et al., 2007; Silva et al., 2008), light gradients (Poulsen, 1996; Zachia & Waechter, 2011; Enoki & Abe, 2004; Inacio & Jarenkow, 2008), soil moisture (Zachia & Waechter, 2011; Cardoso & Schiavini, 2002; Enoki & Abe, 2004), soil properties (Beatty, 1984; Roderjan, 1994; Zachia & Waechter, 2011), litter thickness (Beatty, 1984; Poulsen, 1996), temperature (Roderjan, 1994), and also topography (Poulsen & Balslev, 1991; Zachia & Waechter, 2011; Enoki & Abe, 2004; Pereira et al., 2007; Silva et al., 2008).

In order to understand the local flora and the participation of each environmental factor within the richness and structure of the community is of utmost importance to embrace distinct growth forms in phytosociological studies (Moro & Martins, 2011). In tropical forests, the lower stratum is an important element, both on diversity and ecology (Cestaro et al., 1986; Andrade, 1992; Kozera et al., 2009). Specific studies on the understory layer, such as the herbaceous and shrubby components, are significantly scarcer than those on the arboreal layer (Gentry & Dodson, 1987; Munhoz & Araujo, 2011). However, research on the non-woody understory component (herbs, shrubs and climbers) had increased substantially in recent years (Andrade, 1992; Silva et al., 2008; Polisel et al., 2014), mainly in the South of Brazil (Cestaro et al., 1986; Kozera, 2001; Muller & Waechter, 2001; Kozera & Rodrigues, 2005; Silva & Britez, 2005; Inacio & Jarenkow, 2008; Kozera et al., 2009; Blum, 2010; Zachia & Waechter, 2011). Fine-scale heterogeneity is still ignored in the study of community response to gradients and available data remain insufficient for the understanding of abundance, distribution, richness, and diversity of species.

Studies on the flora of the mountain regions and at different geographical scales become interesting due to the gradual phytophysiognomy change over the altitudinal gradient. Variations in topography result in differences in the physiognomy and structure of interior habitats (Grytnes & Vetaas, 2002; Carvalho et al., 2007; Silva et al., 2008). Considering a smaller scale, the microrelief can lead to a mosaic of soil and to a vegetation pattern in the understory (Beatty, 1984). Specific researches on the relationship between the topography and the understory community are very scarce (Poulsen, 1996; Zachia & Waechter, 2011). Some studies have analyzed the arboreal and shrubby community (Blum, 2006) and the herbaceous group (Blum, 2010) along the altitudinal gradient in a Mountain range in Parana State; slope however was just mentioned on descriptions but never taken in consideration by researchers. On the other hand, the studies of Enoki & Abe (2004), Pereira et al. (2007), Silva et al. (2008) and Zachia & Waechter (2011) analyzed the topography as a variable within the ecosystem. Thus, there are no studies emphasizing the role of the microrelief on the lower stratum community in forests of the mountain regions of Brazil.

Therefore, the hypotheses of this study are: a) the understory community is influenced by microrelief and show distinct structure, composition and diversity on different slope classes and b) the spatial distributions of plant species are related to particular topographic features.


The "Serra do Mar" region is the elevation of the crystalline complex which predominates rocky outcrops from Pre-Cambrian period and slopes strongly dissected by the drainage that forms different sizes of valleys (Maack, 1968). The relief is mountainous with steep slopes, rocky shallow soils (Entisoils Orthend, Histosoils and Inceptisoils - Soil Survey Staff, 1999), rich in organic matter and with heterogeneous litter thickness (Roderjan, 1994; Portes et al., 2001; Blum, 2010).

The study was conducted on the western hillside of Anhangava Mountain (1,432 m), the summit of the "Parque Estadual da Serra da Baitaca" on the "Serra do Mar" mountain range, Parana State, Brazil. The studied area is restricted to the middle third hillside of the mountain and presents a dissected microrelief (Figs. 1 and 2). The vertices of the area are point A (25[degrees]23'18.9''S; 49[degrees]00'36.8''W), B (25[degrees]23'20.3''S; 49[degrees]00'37.1''W), C (25[degrees]23'20.5''S; 49[degrees]00'37.7''W) and D (25[degrees]23'18.8''S; 49[degrees]00'39.6''W), totaling 3,350 [m.sup.2] and varying from 1,086 m a.s.l. at point D to 1,108 m a.s.l. at point B (Fig. 1). The studied area has two convergent drainage canals, one of which is a long and deep seasonal waterway (section A1 and point D in Fig. 1, 2 and 3). Close to the area there is a perennial stream. The points A and B are placed in a 1.5 m wide path towards the mountain peak with closed canopy (Fig. 1). Longitudinal sections of relief profile can be seen in figure Fig. 3.

The climate is classified as Cfb (Koeppen's classification) (Roderjan, 1994). The mean annual temperatures of the coldest month vary between -3[degrees]C and 18[degrees]C and in the hottest month from 10[degrees]C to 22[degrees]C, with high rates of evenly distributed annual rainfall (Roderjan, 1994).

The vegetation is classified as Montane Atlantic Rain Forest (Montane Dense Ombrophilous Forest) (Roderjan et al., 2002). However, considering the short distance and the altitude, the environment is directly influenced by the Araucaria Forest (which extends until 1,000 m), and therefore the area should be considered an ecotone (Roderjan, 1994; Portes et al., 2001). The area is in the interior of an extensive forest fragment, in advanced regeneration stage and has no evidence of recent deforestation or selective logging (Figs. 1 and 3).

The following plant life forms were considered components of the understory: herbs, shrubs, juvenile trees and climbers (not connected to the phorophyte). The species were classified into two ecological groups (residents and transients) according to their typical stratum of permanence. Juvenile individuals which have temporary permanence in the lower stratum and occupy higher stratum when mature (trees and climbers) were classified as transients. Otherwise, species that normally complete their cycle in this stratum (herbs or small shrubs) were classified as residents (Gilliam et al., 1994). Both groups are typical of the lower stratum, although the transients are not exclusive to it (Gilliam & Roberts, 2003).

For each species the following characteristics were determined: physical habitat (terrestrial or epipetric), ecological habit (transient or resident) and the biological forms: herbaceous (erect, rhizomatous, creeping, rosulate, and caespitose), shrubby (erect, scandent and rosulate), arboreal, climber, and accidental herbaceous (rosulate), according to Mueller-Dombois & Ellenberg (1974). Accidental herbs are components of the lower stratum because they use the soil in some parts of their life cycle (which is commonly epiphytical) and can also be classified as facultative terrestrial herbs (Poulsen & Balslev, 1991).

Fertile individuals were collected, preserved and herborized according to usual methods and deposited in the Municipal Botanical Museum of Curitiba (MBM) herbarium. Specimens were identified to the lowest taxonomical level (when possible), using specialized literature, specialist assistance and consultancy from MBM's collection. Indeterminate taxa were treated as distinct morpho-species. The scientific names, authors and classification system followed BFG (2015) and Prado et al. (2015).

In order to analyze the influence of the slope on the structure and composition of species, we delimited three classes of slope: 0-25%, 40-60% and > 80%. We did not perform analyses on slopes outside of these classes' intervals. The slope rate was determined through a levelling rod, a wood stick and a level. Each plot comprised 1 [m.sup.2] of area (Munhoz & Araujo, 2011) and the measurements were within this area. As the plots had a fixed length (100cm), the height of the declivity (in cm) is equal to the percentage of the slope. We sampled 21 plots in each class of slope, with a total area of 63 [m.sup.2].

The multiple plots system (Mueller-Dombois & Ellemberg, 1974) was used. The 1[m.sup.2] quadrats were placed randomly and directly on the ground of the forest, following the relief topography and were positioned with at least 2 m between each other. Due to the constant shift on microrelief and the small length of the considered slopes it was not possible to follow any systematic sampling scheme. All individuals between 20 cm and 2 m height and with perimeter at breast height (1.3 m) less than 5 cm were included; for tree ferns the only criterion was stature. Woody individuals below 20 cm were treated as seedlings and ignored by the analysis due to their uncertain identification. The relative plant cover (%) was estimated by each species' vertical projection of occupation including those individuals non-rooted inside the plot, but with cover projection inside of it.

The phytosociological parameters collected for each species were frequency, leaf cover and dominance. The importance value (IV) was calculated based on the relatives' frequency and dominance (Mueller-Dombois & Ellenberg, 1974). The community diversity was calculated through the indices of Evenness (J), Shannon (H') and Simpson (1/D and 1-D) (Magurran, 2011) and the richness was calculated by the Margalef (D[alpha]) and Chao-1 indices (Chao, 1984). Those calculations were made using PAST 3.0-ORD (Hammer et al 2001) when software allowed and graphs with error bars were displayed. In order to compare diversities, we applied the diversity profiles method using the on-line version of the iNext R-package (Chao et al, 2016). To understand diversity through a single index is to project multidimensional complexity onto a one-dimensional ordinal scale. One way to surpass this problem is to quantify diversity by means of diversity profiles which is a curve showing the simultaneous values of a large collection of diversity indices. (Patil, 2014)

Considering species abundance on the plots, we performed an ordination analysis using Detrended Correspondence Analysis (DCA) downweighting rare species (Hill & Gauch, 1980). We used MRPP and PerMANOVA as an "a posteriori test" for all slopes classes, and for making the paired (two-by-two) comparisons (Anderson, 2005). Species with single occurrences (singletons) were excluded in both cases. The calculations were made using the PC-ORD program, version 6.0 (McCune & Mefford, 2011). We also compared floristic composition similarity using the Jaccard Index (IJ) (Mueller-Dombois & Ellenberg, 1974) and a modified version of this index, excluding the singletons.


Floristic composition

We recorded 354 individuals belonging to 93 species, 63 genera and 42 families (Tab. 1). Three taxa were identified to family level (Myrtaceae) and four taxa to genus level due to their sterile state. From the total, 75 species, 48 genera and 33 families were Angiosperms and 18 species, 15 genera and 9 families were ferns. Lycophytes and Gymnosperms were not found. The richest families were Myrtaceae (15 species), Lauraceae (7), Dryopteridaceae (6) and Rubiaceae (5) and their sum represents 35% of the total richness (Tab. 1). Myrtaceae, Lauraceae and Rubiaceae were the most representative families on the Araucaria Forest (Kozera et al., 2006; Scheer & Blum 2011; Lima et al.,2012; Ribeiro et al., 2013) and also on a transitional area between Dense Ombrophilous Forest and Araucaria Forest (Reginato & Goldenberg, 2007).

The richest herbaceous family was Dryopteridaceae, as observed by Kozera & Rodrigues (2005), Kozera et al. (2006), Inacio & Jarenkow (2008), Paciencia (2008), Kozera et al. (2009), Blum (2010) and Lima et al. (2012). The most representative genera were Ocotea (6 species) and Eugenia (5), as observed by Ribeiro et al. (2013) in a fragment of Araucaria Forest.

The arboreal and shrubby strata were composed of taxa of both Araucaria and Dense Ombrophilous Forest (Roderjan et al., 2002; Blum, 2006; Scheer & Blum, 2011). While Cinnamodendron dinisii, Casearia decandra and Eugenia uniflora are typical of Araucaria Forest, Pouteria bullata, Myrsine umbellata, Guatteria australis and Cyathea phalerata represent the Dense Ombrophilous Forest type (Scheer & Blum, 2011).

Habitats and biological forms

Considering physical habitats, 85 species were exclusively terrestrial, four were exclusively epipetric and four used both substrates (Tab. 1). Regarding the biological forms, the arboreal type was represented by 43 species (46%), followed by herbaceous (including herbaceous/climber) with 24 species (25.8%), shrubby with 11 species (11.8%), arboreal/shrubby with 10 species (10.7%), exclusively climber with four species (4%) and only one accidental herbaceous epiphyte (1%) (Tab. 1). A similar proportion of biological forms was found by Gentry & Dodson (1987) in a tropical wet forest in Ecuador and by Andrade (1992), Kozera et al. (2006) and Lima et al. (2012) in the Atlantic Forest hotspot, excluding epiphytic species (Kozera et al., 2006; Lima et al., 2012). The low contribution of climbers was an evidence of a forest with a perennial and continuous canopy, as observed by Polisel et al., 2014 in an Araucaria Forest.

The most common habit of herbs was rhizomatous (11 species), followed by rosulate habit (7) (Tab. 1) as observed by Kozera & Rodrigues (2005) and Zachia & Waechter (2011) in different Atlantic Forest physiognomies. Among the obligatory herbs, 67% were composed of ferns and only 36% were angiosperms, in contrast to the proportion of ferns and flowering plants found by Kozera et al. (2009) and Blum (2010) on Dense Ombrophilous Forest and Zachia & Waechter (2011) in a coastal Atlantic Forest. Within the woody species, the erect biological form represented most records not only for trees (43), but also for shrubs (7) and trees/shrubs (10), as observed by Kozera & Rodrigues (2005) in a coastal Atlantic Forest.

Among the five species with the highest Importance Value (IV), four were herbs and sum 33.1% of the IV. Within the 20 species with highest IV, nine were herbs and sum 45.6% of the IV, whereas ten species are trees and shrubs and sum 25.5% of the IV (Tab. 1 and 2). It is possible to notice a gradual increase in the richness and in the IV of herbs from the flat (class 1) towards the slope (class 3) slope (Tab. 1 and 2). Zachia & Waechter (2011) observed this same pattern in a coastal forest.

Fifty-eight species (62%) were classified as transients and 35 (37%) as residents (Tab. 1). According to Kozera et al. (2006), in Ombrophilous Forests, the arboreal stratum (transient habit) is the most representative component of the community. Gomes-Westphalen et al. (2012) studying the Atlantic Forest understory, have also found a considerable amount of transient species (regenerative strata). However, among the 20 species with the highest IV, 13 were resident and seven were transient (Tab. 2), showing that the most significant species are resident, while the transient component is still rich, yet less expressive. The four most important species in class 3 (>80%) were resident (Tab. 2).

Community Similarity and Diversity

Pseuderanthemum riedelianum was the most important species with the highest IV within all three slope classes, due to its high frequency and dominance (Fig. 4). Parodiolyra micrantha and Ctenitis paranaensis featured between the six highest IVs; however, the species appeared in distinct orders within the slope classes (Fig. 4). Another species of Ctenitis (C. distans) also played an important role in the structure of an Araucaria Forest fragment, as seen by Rigon et al. (2011). Pseuderanthemum riedelianum and Parodiolyra micrantha have also exhibited relevant participation in the Submontane Dense Ombrophilous Forest communities in the study of Kozera & Rodrigues (2005). Poulsen & Balslev's study (1991), on the understory herbs of the Amazon Forest, showed that a Poaceae (Pariana radiciflora) had the highest cover value, indicating that grasses are important components of the lower stratum, as well as Parodiolyra micrantha's performance in this study. The tree Rudgea jasminoides was very important in this study (Tab. 2) and also presented a high IV in different Montane Araucaria Forest remnants as analyzed by Ribeiro et al. (2013). Were recorded 47 singletons species (50%) (found only once on the survey) and 10 doubletons. Rubiaceae was the most frequent family in the lower stratum for both Araucaria Forest and Dense Ombrophilous Forest, agreeing with a forestry survey by Roderjan et al. (2002).

In steep slopes (>80% slope), the fern Megalastrum abundans accomplished the highest dominance (15%) (Tab. 2), possibly due to its large fronds, which increase cover value. The ferns were among the species with the highest cover values (Tab. 2), due to their compound and large leaves, when compared with most of angiosperms leaves. The class > 80% of slope showed high leaf cover index by herbs and especially by ferns, probably due to its short and narrow roots that establish well on slopes, as observed by Zachia & Waechter (2011) (Tab. 2).

In general, the most frequent families were Acanthaceae (54 from 63 plots), followed by Rubiaceae (45), Dryopteridaceae (42) and Poaceae (31). Of the total, the five most important species corresponded to 38% of the Importance Value whereas 80% of the IV was achieved by the 29 main species. There were species exclusive to each class; however their IVs were not sufficiently relevant to show significant differences between the communities.

The richness was very similar among the slope classes, in spite of the fact that the Chao-1 indicated highest richness for class 3 (>80%) (Tab. 3, Fig. 5). In contrast, Silva et al. (2008) found distinct richness rates comparing three understory topographical sites. The dominances were also similar (Tab. 3). The number of sampled individuals was higher in class 40-60% (129) and lower in class 0-25% (105) (Tab. 3). The leaf cover index was lower in class >80% (31) and higher in class 40-60% (41.7) (Tab. 3).

The diversity indices showed structural similarity between the classes of slope (Tab. 3, Fig. 5). The other analyzed indices were not capable of showing differences between the community classes, however the diversity was higher in class >80%, due to its higher richness and evenness and lower dominance (Tab. 3). The Simpson's index average (1-D) was 0.95 (increasing scale from 0 to 1), emphasizing the high diversity of the sampled area, despite the similarities between the classes (Tab. 3, Fig 5). Zachia & Waechter (2011) found higher diversity in steep slopes due to the greater richness and evenness of the community in a costal environment. Silva et al. (2008), studying the edge vs. the interior understory community, reported homogeneous diversity indices in different topographical interior sites, however the lower slopes were more diverse, followed by the terraces.

The diversity profiles also indicated that the slope communities were very similar on species richness (q=0), Shannon Diversity index (q=1) and Simpson Diversity Index (q=2) (Fig. 6).

The ordination analysis (DCA) indicated that the plots were very similar despite the slope classes and that the groups were completely overlapped (Fig. 7). The low A-value on MRPP (A = 0,011) indicates that heterogeneity within groups equals expectation by chance and PerManova indicates that only 2.7% of variance is explained by slope classes variable.

The plots on class 0-25% (red triangles in Fig. 7) presented higher heterogeneity, whereas the plots on class 40-60% (green circles in Fig. 7) were more homogeneous. The analysis showed the presence of several generalist and broadly distributed species within the plots, in other words, the sampled area was considered statistically homogeneous. The great distance between the points indicates distinct structural and floristic communities.

Paciencia (2008) analyzed the ferns' and lycophytes' community in altitudinal gradients in the "Serra do Mar" Mountains in Parana. This study showed, by another correspondence analysis (NMDS), that the community was influenced by altitudinal variations among the gradients; however those localities with low altitudinal variations had similar compositions and structures.

Low floristic diference was also observed among slope classes. The Jaccard Indexes were high (0-25% - 40-60% = 0.37; 0-25% - >80% = 0.35; 40-60% - >80% = 0.39), but lower than expected due to the high number of singletons (50%). When those were excluded, the indexes were much higher (0-25% - 40-60% = 0.64; 0-25% - >80% = 0.60; 40-60% - >80% = 0.65).

Slope and abiotic factors

The relief of the Montane Dense Ombrophilous Forest involves steep slopes, contributing to shallow soils with little effective depth (Roderjan, 1994; Roderjan et al., 2002; Blum, 2006). The studied area shows a thick layer of litter, especially in flat areas, which can be related to the low temperatures of the region that slow down the organic matter decomposition in forest environments (Beatty, 1984; Blum, 2006). The relief heterogeneity creates distinct microenvironments for the understory community (Whitmore, 1990 apud Blum 2010); however, the small size of our sampled area did not capture this feature. Forest shallow and poor developed soils ("Entisols") and high organic matter combined with homogeneous shading and a regular 22 m-high canopy can provide undifferentiation within the understory community (Beatty, 1984; Roderjan, 1994; Portes et al., 2001; Scheer & Blum, 2011).

The effect of this homogeneous and dense canopy (Figs. 1 and 2) is understory protection against high solar radiation, wind and air masses exposure and rain impact, preventing abrupt variation in soil humidity and temperature (Roderjan, 1994), thus contributing to less niche diversification and herb biodiversity (Blum, 2010; Polisel et al., 2014). In addition, the understory environment and the light availability strongly affect the herbaceous layer (Beatty, 1984; Poulsen & Balslev,1991; Gilliam & Roberts, 2003; Silva et al., 2008; Blum 2010) and the regenerative stratum (Enoki & Abe, 2004). The inconspicuous difference among diversity indices are evidence of this environmental homogeneity (Tab. 3) (Pereira et al., 2007; Inacio & Jarenkow, 2008; Silva et al., 2008). The meaningless variation in the herbaceous layer structure is a result of the perennial canopy of the forest, since the low solar incidence in the understory doesn't cause differentiation on the structure and composition of the lower stratum (Enoki & Abe, 2004; Inacio & Jarenkow, 2008; Blum, 2010). Furthermore, the invariable climatic factors such as air humidity, temperature and rainfall are responsible for the climatic stability of the Anhangava Mountain region as analyzed by Roderjan (1994).

However, Poulsen & Balslev (1991) found correlation between the relief and the composition of the understory herbaceous layer in a tropical forest and Zachia & Waechter (2011) successfully associated the understory community and the topography in a coastal Atlantic Forest in South of Brazil; both studies analyzed small scale topography (variations between 8 to 19 m). Zachia & Waechter (2011) evaluated different variables as luminosity and soil composition and humidity, thus reflecting distinct environmental conditions and plant communities. Silva et al. (2008) demonstrated the edge effect is more responsible for the diversification of the composition and structure of the understory community than the topographical gradient in an area of 100m elevation range. Nonetheless, Pereira et al. (2007) analyzed both edge effect and topography related to tree community and presented a correlation between tree distribution and topography, probably due to its influence on soil fertility and its properties and ground-water regime. Pereira et al. (2007) studied a mountainous area between 800 and 1,000 m.a.s.l. Daws et al. (2002) stated that the environmental heterogeneity resulting from microtopography variation could explain the high species richness in a tropical forest in Panama, by providing distinct hydrologically defined niches. These authors analyzed the correlation of the microtopographic position (at a small scale) and the water regime of a river in plateaus and slopes. However, in Anhangava sampled area the plots were not influenced by water bodies.

Although some authors had found that the distribution of understory species was influenced mainly by microtopography (Beatty, 1984) and that variations in topography result in diversification in the structure of interior habitats (Carvalho et al., 2007; Silva et al., 2008) we found no difference among the slope classes. Assuming these findings, the present study refutes the proposed hypotheses, probably due to the specific environmental characteristics found in the studied region on Anhangava Mountain.


The richness of young trees reveals the relevance of the transient component in the lower stratum and in the diversity composition of forest areas. Herbaceous individuals are less frequent, yet with great family number. Among the species with the highest Importance Value, most are resident, however the two richest families are exclusively transient.

Despite the inconspicuous higher diversity observed in the slope class >80%, the analyses of diversity, richness and DCA show the differences of structure and composition are not significative and there is no correlation between the slope and the understory plant community, thus refuting the two proposed hypotheses. Furthermore, less than 3% of the variance is explained by the slope (PerMANOVA test). This lack of correlation with the slope variable probably occurs due to the influence of the climatic and environmental homogeinity in a well-preserved fragment in the Atlantic Forest of South of Brazil.


We thank Eduardo D. Lozano, Marcelo Brotto, Vanessa Ariati, Felipe Marinero and MBM's staff for their assistance in identifying the specimens and Eduardo D. Lozano, Vanessa Ariati, Marcelo Silva and Isidoro Canestraro Filho for their help during field work. Special thanks go to Luciano Mysczak for map designing and geographical description and to Michael Stuart Rose for manuscript revision. We would like to thank PUCPR for providing a Specialization Scholarship Grant (Marcelino Champagnat Award) to the first author for her graduate studies at PUCPR.


Anderson, M. J. 2005. PERMANOVA: a FORTRAN computer program for permutational multivariate analysis of variance. Department of Statistics, University of Auckland, New Zealand.

Andrade, P. M. de. 1992. Estrutura do estrato herbaceo de trechos da Reserva Biologica Mata do Jambreiro, Nova Lima, MG. Dissertacao de Mestrado, Universidade Estadual de Campinas.

Beatty, S. W. 1984. Infuence of microtopography and canopy species on spatial patterns of forest understory plants. Ecology 65: 1406-1419.

BFG - The Brazil Flora Group. 2015. Growing knowledge: an overview of Seed Plant diversity in Brazil. Rodriguesia 66(4): 1085-1113.

Blum, C. T. 2006. A Floresta Ombrofila Densa na Serra da Prata, Parque Nacional Saint-Hilaire/Lange, PR - caracterizacao floristica, fitossociologica e ambiental de um gradientealtitudinal. Dissertacao de Mestrado em Engenharia Florestal, Universidade Federal do Parana.

Blum, C. T. 2010. Os componentes epifitico vascular e herbaceo terricola da Floresta Ombrofla Densa ao longo de um gradiente altitudinal na Serra da Prata, Parana. Tese de Doutorado em Engenharia Florestal, Universidade Federal do Parana.

Cardoso, E. & I. Schiavini. 2002. Relacao entre distribuicao de especies arboreas e topografa em um gradiente forestal na Estacao Ecologica do Panga (Uberlandia, MG). Revista Brasileira de Botanica 25: 277-289.

Carvalho, W. A. C.; A. T. Oliveira-Filho; M. A. L. Fontes & N. Curi. 2007. Variacao espacial da estrutura da comunidade arborea de um fragmento de foresta semidecidua em Piedade do Rio Grande, MG, Brasil. Revista Brasileira de Botanica 30(2): 315-335.

Cestaro, L. A.; J. L. Waechter & L. R. M. Baptista. 1986. Fitossociologia do estrato herbaceo da mata de araucaria da Estacao Ecologica de Aracuri, Esmeralda, RS. Hoehnea13: 59-72.

Chao, A. 1984. Non-parametric estimation of the number of classes in a population. Scandinavian Journal of Statistics 11: 265-270.

Chao, A.; K. H. Ma, & T. C. Hsieh. 2016. iNEXT (iNterpolation and EXTrapolation) Online: Software for Interpolation and Extrapolation of Species Diversity. Program and User's Guide published at

Daws, M. I.; C. E. Mullins; D. F. Burslem; S. R. Paton & J. W. Dalling 2002. Topographic position affects the water regime in a semideciduous tropical forest in Panama. Plant and soil, 238(1), 79-89.

Enoki, T. & A. Abe. 2004. Saplings distribution in relation to topography and canopy openness in an evergreen broad-leaved forest. Plant Ecology 173: 283-291.

Gentry, A. H. & C. H. Dodson. 1987. Contribution of nontrees to species richness of a tropical rain forest. Biotropica 19(2):149-156.

Gilliam, F. S.; N. L. Turrill; S. D. Aulick; D. K. Evans & M. B. Adams.1994. Herbaceous layer and soil response to experimental acidifcation in a central Appalachian hardwood forest. Journal of Environmental Quality 23(4): 835-844.

Gilliam, F. S. & M. R. Roberts. 2003. The dynamic nature of the herbaceous layer: synthesis and future directions for research. In: F.S. Gilliam & M.R. Roberts. The herbaceous layer in forests of Eastern North America.Oxford University Press. New York.

Gomes-Westphalen, J. S.; A. C. Borges Lins-e-Silva & F. Soares de Araujo. 2012. Who is who in the understory: the contribution of resident and transitory groups of species to plant richness in forest assemblages. Revista de Biologia Tropical 60(3), 1025-1040.

Grytnes, J. A. & O. R. Vetaas. 2002. Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. The American naturalist 159(3): 294-304.

Hill, M. O. & H. G. Gauch. 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47-58.

Hammer, O. Harper, D.A.T., Ryan, P.D. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9pp

Inacio, C. D. & J. A. Jarenkow. 2008. Relacoes entre a estrutura da sinusia herbacea terricola e a cobertura do dossel em Floresta Estacional no Sul do Brasil. Revista Brasileira de Botanica 31 (1):41-51.

Kozera, C. 2001. Composicao foristica e estrutura ftossociologica do estrato herbaceo subarbustivo em duas areas de Floresta Ombrofla Densa, Parana, Brasil. Dissertacao de Mestrado em Biologia Vegetal, Universidade Estadual de Campinas.

Kozera, C. & R. R. Rodrigues. 2005. Floresta Ombrofila Densa Submontana: foristica e estrutura do estrato inferior. In: M. C. M. Marques & R. M. Britez (Org.). Historia natural e conservacao da Ilha do Mel. Curitiba. Editora da Universidade Federal do Parana.

Kozera, C.; V. A. de O. Dittrich & S. M. Silva. 2006. Composicao foristica da Floresta Ombrofila Mista Montana do Parque Municipal do Barigui, Curitiba, PR. Floresta 36(1): 45-58.

Kozera, C.; R. R. Rodrigues & V. A. de O. Dittrich. 2009. Composicao foristica do sub-bosque de uma Floresta Ombrofla Densa Montana, Morretes, PR, Brasil. Floresta39 (2): 323-334.

Leite, P. F. 2002. Contribuicao ao conhecimento ftoecologico do sul do Brasil. Ciencia & Ambiente 24: 51-73.

Lima, R. A. F.; V. C. de Souza; V. A. de O. Dittrich & A. Salino. 2012. Composicao, diversidade e distribuicao geografica de plantas vasculares de uma Floresta Ombrofila Densa Atlantica do Sudeste do Brasil. Biota Neotropica 12(1): 241-249.

Maack, R. 1968. Geografia fisica do Estado do Parana. Curitiba, Banco do Desenvolvimento do Parana.

Magurran, A. E. 2011. Medindo a diversidade biologica. Traducao Dana Moiana Vianna. Curitiba. UFPR.

McCune, B. & M. Mefford. 2011. PC-ORD - Multivariate Analysis of Ecological Data. Version 6.0. Gleneden Beach, MjM Software.

Moro, M. F. & F. R. Martins. 2011. Metodos de Amostragem do componente arboreo-arbustivo. In: Felfili, J. M.; P. V. Eisenlohr; M. M. R. F. Melo; L. A. Andrade & J. A. A. Meira Neto (Eds). Fitossociologia no Brasil: metodos e estudos de caso. Vicosa. Editora UFV.

Mueller-Dombois, D. & H. Ellenberg. 1974. Aims and methods of vegetation ecology. New York. John Wiley & Sons.

Muller, S. C. & J. L. Waechter. 2001. Estrutura sinusialdos componentes herbaceo e arbustivo de uma foresta costeira subtropical. Revista Brasileira de Botanica 24(4): 395-406.

Munhoz, C. B. R. & G. M. Araujo. 2011. Metodos de amostragem do estrato herbaceo-subarbustivo. In: Felfili, J. M.; P. V. Eisenlohr; M. M. R. F. Melo; L. A. Andrade & J. A. A. Meira Neto (Eds). Fitossociologia no Brasil: metodos e estudos de caso. Vicosa. Editora UFV.

Paciencia, M. L. B. 2008. Diversidade de pteridofitas em gradientes de altitude na Mata Atlantica do estado do Parana, Brasil. Tese de Doutorado em Botanica, Universidade de Sao Paulo.

Patil, G. P. 2014. Diversity Profiles. Wiley StatsRef: Statistics Reference Online. John Wiley & Sons, Ltd.

Pereira, J. A. A.; A. T. Oliveira-Filho; J. P. Lemos-Filho. 2007. Environmental heterogeneity and disturbance by humans control much of the tree species diversity of Atlantic montane forest fragments in SE Brazil. Biodiversity and Conservation16: 1761-1784.

Polisel, R. T.; N. M. Ivanauskas; M. C. de Assis; G. J. Shepherd & K. Yamamoto. 2014. Structure of the understory community in four stretches of Araucaria forest in the state of Sao Paulo, Brazil. Acta Botanica Brasilica 28 (1): 86-101.

Portes, M. C.; G. O. F. Galvao & A. Koehler. 2001. Caracterizacao foristica e estrutural de uma Floresta Ombrofila Densa Altomontana do morro Anhangava, Quatro Barras, PR. Floresta 31(1/2): 22-31.

Poulsen, A. D. & H. Balslev. 1991. Abundance and cover of ground herbs in an Amazonia rain forest. Journal of Vegetation Science 2(3): 315-322.

Poulsen, A. D. 1996. Species richness and density of ground herbs within a plot of lowland rainforest in north-west Borneo. Journal of Tropical Ecology 12(2): 177-190.

Prado, J.; L. S. Sylvestre; P. H. Labiak; P. G. Windisch; A. Salino; I. C. L. Barros; R. Y. Hirai; T. E. Almeida; A. C. P. Santiago; M. A. Kieling-Rubio; A. F. N. Pereira; B. Ollgaard; C. G. Ramos; J. T. Mickel; V. A. O. Dittrich; C. M. Mynssen; P. B. Schwartsburd; J. P. S. Condack; J. B. S. Pereira & F. B. Matos. 2015. Diversity of ferns and lycophytes in Brazil. Rodriguesia 66: 1073-1083.

Reginato, M. & R. Goldenberg. 2007. Analise floristica, estrutural e fitogeografica da vegetacao em regiao de transicao entre as Florestas Ombrofilas Mista e Densa Montana, Piraquara, Parana, Brasil. Hoehnea 34(3): 349-360.

Ribeiro, T. M.; N. M. Ivanauskas; S. V. Martins; R. T. Polisel; R. L. R. dos Santos & N. A. Miranda. 2013. Mixed rain forest in southeastern Brazil: tree species regeneration and foristic relationships in a remaining stretch of forest near the city of Itabera, Brazil. Acta Botanica Brasilica 27(1), 71-86.

Rigon, J.; J. Cordeiro & D. A. Moraes. 2011. Composicao e estrutura da sinusia herbacea em um remanescente de Floresta Ombrofila Mista em Guarapuava, PR, Brasil. Pesquisas Botanicas 62: 333-346.

Roderjan, C. V. 1994. O gradiente da Floresta Ombrofila Densa Altomontana no morro Anhangava, Quatro-Barras, PR. Aspectos climaticos, pedologicos e fitossociologicos. Tese de Doutorado em Engenharia Florestal, Universidade Federal do Parana.

Roderjan, C, V.; F. Galvao; Y. S. Kuniyoshi & G. G. Hatschbach. 2002. As unidades ftogeograficas do estado do Parana. Ciencia & Ambiente 24: 75-92.

Scheer, M. B. & C. T. Blum. 2011. Arboreal diversity of the Atlantic Forest of Southern Brazil: from the beach ridges to the Parana river. In: O. Grillo & G. Venora (eds.). The dynamical processes of biodiversity - Case studies of evolution and spatial distribution. InTech.

Silva, S. M. & R. M. de Britez. 2005. A vegetacao da Planicie Costeira. In: M. C. M. Marques & R. M. Britez (Org.). Historia natural e conservacao da Ilha do Mel. Curitiba. Editora da Universidade Federal do Parana.

Silva, A. G.; I. M. M. Sa-e-Silva; M. J. N. Rodal & A. C. B. Linse-Silva. 2008. Infuence of edge and topography on canopy and sub-canopy structure of an Atlantic Forest fragment in Igarassu, Pernambuco State, Brazil. Bioremediation, Biodiversity and Bioavailability 2.1: 41-46.

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S. Department of Agriculture.

Whitmore, T. C. 1990. An introduction to the tropical rain forests. Clarendon Press, Oxford.

Zachia, R. A. & J. L. Waechter. 2011. Diferenciacao espacial de comunidades herbaceo-arbustivas em forestas costeiras do Parque Nacional da Lagoa do Peixe, Rio Grande do Sul. Pesquisas, Botanica 62: 211-238.

Bianca Kalinowski Canestraro & Rodrigo de Andrade Kersten

Pontificia Universidade Catolica do Parana (PUCPR), Escola de Ciencias da Vida, Rua Imaculada Conceicao 1155, Prado Velho, 80215-90 Curitiba, PR, Brazil; (author for correspondence).

Original recibido el 6 de julio de 2017, aceptado el 19 de abril de 2018

DOI: 10.14522/darwiniana.2018.61.762
Table 1. The understory community and its habitats and life forms in a
transitional area of Atlantic Rain Forest and Araucaria Forest in the
Serra do Mar mountain range in South of Brazil. Physical habitat:
EP--epipetric and TE--terrestrial. Growth form: ARB--arboreal,
CAH--caespitose herb, CLI--climber, CRH--creeping herb, ERH--erect
herb, ERS--erect shrub, RAH--rosulate accidental herb, RHH--rhizome
herb, ROH--rosulate herb, ROS--rosulate shrub, SCS--scandent shrub.
Ecological habitat: RE--resident, TR--transient.

FAMILY (N[degrees] of species)                            Physical
Species                                                   habitat

Pseuderanthemum riedelianum (Nees) Radlk.                 TE, EP
Anemia phyllitidis (L.) Sw.                               TE
Guatteria australis A. St.-Hil.                           TE
Peltastes peltatus (Vell.) Woodson                        TE
Ilex taubertiana Loes.                                    TE
Heteropsis sp.                                            TE, EP
Philodendron meridionale Buturi & Sakur.                  TE
Geonoma schottiana Mart.                                  TE
Dasyphyllum spinescens (Less.) Cabrera                    TE
Begonia fruticosa (Klotzsch) A.DC.                        EP
Lomaridium plumieri (Desv.) C. Presl                      TE
Neoblechnum brasiliense (Desv.)                           TE
Gasper & V.A.O. Dittrich
Aechmea aff. organensis Wawra                             TE
Cinnamodendron dinisii Schwacke                           TE
Citronella paniculata (Mart.) R.A. Howard                 TE
Dichorisandra hexandra (Aubl.) C.B. Clarke                TE
Alsophila setosa Kaulf.                                   TE
Cyathea phalerata Mart.                                   TE
Carex sp.                                                 TE
Pleurostachys gaudichaudii Brongn.                        EP
Dennstaedtia obtusifolia (Willd.) T. Moore                TE
Ctenitis paranaensis (C. Chr.) Lellinger                  TE
Lastreopsis amplissima (C. Presl) Tindale                 TE
Megalastrum abundans (Rosenst.) A.R. Sm. & R.C. Moran     TE
Mickelia scandens (Raddi) R.C. Moran, Labiak & Sundue     EP
Polybotrya cylindrica Kaulf.                              TE
Stigmatopteris heterocarpa (Fee) Rosenst.                 TE, EP
Sloanea garkeana K. Schum.                                TE
Dalbergia frutescens (Vell.) Britton                      TE
Inga virescens Benth.                                     TE
Endlicheria paniculata (Spreng.) J.F. Macbr.              TE
Ocotea catharinensis Mez                                  TE
Ocotea dispersa (Nees & Mart.) Mez                        TE
Ocotea odorifera Rohwer                                   TE
Ocotea silvestris Vattimo-Gil                             TE
Ocotea teleiandra (Meisn.) Mez                            TE
Ocotea sp.                                                TE
Lindsaea virescens Sw.                                    TE
Leandra acutifora (Naudin) Cogn.                          TE
Miconia cinerascens Miq.                                  TE
Miconia latecrenata (DC.) Naudin                          TE
Miconia sellowiana Naudin                                 TE
Mollinedia elegans Tul.                                   TE
Mollinedia schottiana (Spreng.) Perkins                   TE
Mollinedia uleana Perkins                                 TE
Sorocea bonplandii (Baill.) W.C. Burger et al.            TE
Curitiba cf. prismatica (D. Legrand) Salywon & Landrum    TE
Eugenia cf. handroana D. Legrand                          TE
Eugenia cf. prasina O.Berg                                TE
Eugenia cf. ramboi D. Legrand                             TE
Eugenia cf. repanda O. Berg                               TE
Eugenia cf. unifora L.                                    TE
Myrceugenia cf. acutifora (Kiaersk.) D. Legrand & Kausel  TE
Myrceugenia cf. miersiana (Gardner) D. Legrand & Kausel   TE
Myrceugenia myrcioides (Cambess.) O. Berg                 TE
Myrcia hatschbachii D. Legrand                            TE
Myrcia splendens (Sw.) DC.                                TE
Myrcia sp                                                 TE
Myrtaceae sp1                                             TE
Myrtaceae sp2                                             TE
Myrtaceae sp3                                             TE
Guapira opposita (Vell.) Reitz.                           TE
Ouratea parvifolia (A.DC.) Baill.                         TE
Sauroglossum elatum Lindl.                                TE
Chusquea cf. oligophylla Rupr.                            TE
Parodiolyra micrantha (Kunth) Davidse & Zuloaga           TE, EP
Campyloneurum minus Fee                                   EP
Myrsine gardneriana A.DC.                                 TE
Myrsine umbellata Mart.                                   TE
Roupala meisneri Sleumer                                  TE
Pteris decurrens C. Presl                                 TE
Pteris splendens Kaulf                                    TE
Coussarea contracta (Walp.) Mull. Arg.                    TE
Psychotria carthagenensis Jacq.                           TE
Psychotria leiocarpa Cham. & Schltdl.                     TE
Psychotria suterella Mull. Arg.                           TE
Rudgea jasminoides (Cham.) Mull. Arg.                     TE
Esenbeckia grandiflora Mart.                              TE
Zanthoxylum rhoifolium Lam.                               TE
Casearia decandra Jacq.                                   TE
Casearia obliqua Spreng.                                  TE
Casearia sylvestris Sw.                                   TE
Cupania vernalis Cambess.                                 TE
Paullinia trigonia Vell.                                  TE
Serjania laruotteana Cambess.                             TE
Chrysophyllum gonocarpum (Mart. & Eichler ex Miq.) Engl.  TE
Pouteria bullata (S.Moore) Baehni                         TE
Solanum megalochiton Mart.                                TE
Symplocos estrellensis Casar.                             TE
Symplocos tenuifolia Brand                                TE
Symplocos tetranda Mart.                                  TE
Amauropelta araucariensis (Ponce) Salino & T.E.Almeida    TE
Thelypteris hatschbachii A.R. Sm.                         TE

FAMILY (N[degrees] of species)                            Growth
Species                                                   form

Pseuderanthemum riedelianum (Nees) Radlk.                 ERH
Anemia phyllitidis (L.) Sw.                               ROH
Guatteria australis A. St.-Hil.                           ARB
Peltastes peltatus (Vell.) Woodson                        CLI
Ilex taubertiana Loes.                                    ARB
Heteropsis sp.                                            CLI
Philodendron meridionale Buturi & Sakur.                  CRH, CLI
Geonoma schottiana Mart.                                  ROS
Dasyphyllum spinescens (Less.) Cabrera                    ARB
Begonia fruticosa (Klotzsch) A.DC.                        CRH, CLI
Lomaridium plumieri (Desv.) C. Presl                      ROH, CLI
Neoblechnum brasiliense (Desv.)                           ROH
Gasper & V.A.O. Dittrich
Aechmea aff. organensis Wawra                             RAH
Cinnamodendron dinisii Schwacke                           ARB
Citronella paniculata (Mart.) R.A. Howard                 ARB
Dichorisandra hexandra (Aubl.) C.B. Clarke                ERH
Alsophila setosa Kaulf.                                   ROS
Cyathea phalerata Mart.                                   ROS
Carex sp.                                                 CAH
Pleurostachys gaudichaudii Brongn.                        RHH
Dennstaedtia obtusifolia (Willd.) T. Moore                RHH
Ctenitis paranaensis (C. Chr.) Lellinger                  RHH
Lastreopsis amplissima (C. Presl) Tindale                 RHH
Megalastrum abundans (Rosenst.) A.R. Sm. & R.C. Moran     ROH
Mickelia scandens (Raddi) R.C. Moran, Labiak & Sundue     RHH, CLI
Polybotrya cylindrica Kaulf.                              RHH, CLI
Stigmatopteris heterocarpa (Fee) Rosenst.                 ROH
Sloanea garkeana K. Schum.                                ARB
Dalbergia frutescens (Vell.) Britton                      SCS
Inga virescens Benth.                                     ARB
Endlicheria paniculata (Spreng.) J.F. Macbr.              ARB
Ocotea catharinensis Mez                                  ARB
Ocotea dispersa (Nees & Mart.) Mez                        ARB
Ocotea odorifera Rohwer                                   ARB
Ocotea silvestris Vattimo-Gil                             ARB
Ocotea teleiandra (Meisn.) Mez                            ARB
Ocotea sp.                                                ARB
Lindsaea virescens Sw.                                    RHH
Leandra acutifora (Naudin) Cogn.                          ARB, ERS
Miconia cinerascens Miq.                                  ARB, ERS
Miconia latecrenata (DC.) Naudin                          ARB, ERS
Miconia sellowiana Naudin                                 ARB
Mollinedia elegans Tul.                                   ERS
Mollinedia schottiana (Spreng.) Perkins                   ERS
Mollinedia uleana Perkins                                 ERS
Sorocea bonplandii (Baill.) W.C. Burger et al.            ARB, ERS
Curitiba cf. prismatica (D. Legrand) Salywon & Landrum    ARB
Eugenia cf. handroana D. Legrand                          ARB
Eugenia cf. prasina O.Berg                                ARB
Eugenia cf. ramboi D. Legrand                             ARB
Eugenia cf. repanda O. Berg                               ARB
Eugenia cf. unifora L.                                    ARB
Myrceugenia cf. acutifora (Kiaersk.) D. Legrand & Kausel  ARB
Myrceugenia cf. miersiana (Gardner) D. Legrand & Kausel   ARB
Myrceugenia myrcioides (Cambess.) O. Berg                 ARB
Myrcia hatschbachii D. Legrand                            ARB
Myrcia splendens (Sw.) DC.                                ARB
Myrcia sp                                                 ARB
Myrtaceae sp1                                             ARB
Myrtaceae sp2                                             ARB
Myrtaceae sp3                                             ARB
Guapira opposita (Vell.) Reitz.                           ARB, ERS
Ouratea parvifolia (A.DC.) Baill.                         ARB, ERS
Sauroglossum elatum Lindl.                                ROH
Chusquea cf. oligophylla Rupr.                            ERS
Parodiolyra micrantha (Kunth) Davidse & Zuloaga           CAH
Campyloneurum minus Fee                                   RHH
Myrsine gardneriana A.DC.                                 ARB
Myrsine umbellata Mart.                                   ARB
Roupala meisneri Sleumer                                  ARB
Pteris decurrens C. Presl                                 RHH
Pteris splendens Kaulf                                    RHH
Coussarea contracta (Walp.) Mull. Arg.                    ARB, ERS
Psychotria carthagenensis Jacq.                           ARB
Psychotria leiocarpa Cham. & Schltdl.                     ERS
Psychotria suterella Mull. Arg.                           ERS
Rudgea jasminoides (Cham.) Mull. Arg.                     ARB
Esenbeckia grandiflora Mart.                              ARB
Zanthoxylum rhoifolium Lam.                               ARB
Casearia decandra Jacq.                                   ARB
Casearia obliqua Spreng.                                  ARB
Casearia sylvestris Sw.                                   ARB
Cupania vernalis Cambess.                                 ARB
Paullinia trigonia Vell.                                  CLI
Serjania laruotteana Cambess.                             CLI
Chrysophyllum gonocarpum (Mart. & Eichler ex Miq.) Engl.  ARB
Pouteria bullata (S.Moore) Baehni                         ARB
Solanum megalochiton Mart.                                ERS
Symplocos estrellensis Casar.                             ARB, ERS
Symplocos tenuifolia Brand                                ARB, ERS
Symplocos tetranda Mart.                                  ARB, ERS
Amauropelta araucariensis (Ponce) Salino & T.E.Almeida    ROH
Thelypteris hatschbachii A.R. Sm.                         RHH

FAMILY (N[degrees] of species)                            Ecological
Species                                                   habitat

Pseuderanthemum riedelianum (Nees) Radlk.                 RE
Anemia phyllitidis (L.) Sw.                               RE
Guatteria australis A. St.-Hil.                           TR
Peltastes peltatus (Vell.) Woodson                        TR
Ilex taubertiana Loes.                                    TR
Heteropsis sp.                                            TR
Philodendron meridionale Buturi & Sakur.                  RE
Geonoma schottiana Mart.                                  RE
Dasyphyllum spinescens (Less.) Cabrera                    TR
Begonia fruticosa (Klotzsch) A.DC.                        RE
Lomaridium plumieri (Desv.) C. Presl                      RE
Neoblechnum brasiliense (Desv.)                           RE
Gasper & V.A.O. Dittrich
Aechmea aff. organensis Wawra                             RE
Cinnamodendron dinisii Schwacke                           TR
Citronella paniculata (Mart.) R.A. Howard                 TR
Dichorisandra hexandra (Aubl.) C.B. Clarke                RE
Alsophila setosa Kaulf.                                   RE
Cyathea phalerata Mart.                                   RE
Carex sp.                                                 RE
Pleurostachys gaudichaudii Brongn.                        RE
Dennstaedtia obtusifolia (Willd.) T. Moore                RE
Ctenitis paranaensis (C. Chr.) Lellinger                  RE
Lastreopsis amplissima (C. Presl) Tindale                 RE
Megalastrum abundans (Rosenst.) A.R. Sm. & R.C. Moran     RE
Mickelia scandens (Raddi) R.C. Moran, Labiak & Sundue     RE
Polybotrya cylindrica Kaulf.                              RE
Stigmatopteris heterocarpa (Fee) Rosenst.                 RE
Sloanea garkeana K. Schum.                                TR
Dalbergia frutescens (Vell.) Britton                      TR
Inga virescens Benth.                                     TR
Endlicheria paniculata (Spreng.) J.F. Macbr.              TR
Ocotea catharinensis Mez                                  TR
Ocotea dispersa (Nees & Mart.) Mez                        TR
Ocotea odorifera Rohwer                                   TR
Ocotea silvestris Vattimo-Gil                             TR
Ocotea teleiandra (Meisn.) Mez                            TR
Ocotea sp.                                                TR
Lindsaea virescens Sw.                                    RE
Leandra acutifora (Naudin) Cogn.                          TR
Miconia cinerascens Miq.                                  TR
Miconia latecrenata (DC.) Naudin                          TR
Miconia sellowiana Naudin                                 TR
Mollinedia elegans Tul.                                   RE
Mollinedia schottiana (Spreng.) Perkins                   RE
Mollinedia uleana Perkins                                 RE
Sorocea bonplandii (Baill.) W.C. Burger et al.            TR
Curitiba cf. prismatica (D. Legrand) Salywon & Landrum    TR
Eugenia cf. handroana D. Legrand                          TR
Eugenia cf. prasina O.Berg                                TR
Eugenia cf. ramboi D. Legrand                             TR
Eugenia cf. repanda O. Berg                               TR
Eugenia cf. unifora L.                                    TR
Myrceugenia cf. acutifora (Kiaersk.) D. Legrand & Kausel  TR
Myrceugenia cf. miersiana (Gardner) D. Legrand & Kausel   TR
Myrceugenia myrcioides (Cambess.) O. Berg                 TR
Myrcia hatschbachii D. Legrand                            TR
Myrcia splendens (Sw.) DC.                                TR
Myrcia sp                                                 TR
Myrtaceae sp1                                             TR
Myrtaceae sp2                                             TR
Myrtaceae sp3                                             TR
Guapira opposita (Vell.) Reitz.                           TR
Ouratea parvifolia (A.DC.) Baill.                         TR
Sauroglossum elatum Lindl.                                RE
Chusquea cf. oligophylla Rupr.                            RE
Parodiolyra micrantha (Kunth) Davidse & Zuloaga           RE
Campyloneurum minus Fee                                   RE
Myrsine gardneriana A.DC.                                 TR
Myrsine umbellata Mart.                                   TR
Roupala meisneri Sleumer                                  TR
Pteris decurrens C. Presl                                 RE
Pteris splendens Kaulf                                    RE
Coussarea contracta (Walp.) Mull. Arg.                    TR
Psychotria carthagenensis Jacq.                           TR
Psychotria leiocarpa Cham. & Schltdl.                     RE
Psychotria suterella Mull. Arg.                           RE
Rudgea jasminoides (Cham.) Mull. Arg.                     TR
Esenbeckia grandiflora Mart.                              TR
Zanthoxylum rhoifolium Lam.                               TR
Casearia decandra Jacq.                                   TR
Casearia obliqua Spreng.                                  TR
Casearia sylvestris Sw.                                   TR
Cupania vernalis Cambess.                                 TR
Paullinia trigonia Vell.                                  TR
Serjania laruotteana Cambess.                             TR
Chrysophyllum gonocarpum (Mart. & Eichler ex Miq.) Engl.  TR
Pouteria bullata (S.Moore) Baehni                         TR
Solanum megalochiton Mart.                                RE
Symplocos estrellensis Casar.                             TR
Symplocos tenuifolia Brand                                TR
Symplocos tetranda Mart.                                  TR
Amauropelta araucariensis (Ponce) Salino & T.E.Almeida    RE
Thelypteris hatschbachii A.R. Sm.                         RE

Table 2. Phytosociological parameters of the 20 species with the
highest importance values for each class of the understory community in
a transitional area of Atlantic Rain Forest and Araucaria Forest in the
Serra do Mar mountain range in South of Brazil. ADo: absolute
dominance, RDo: relative dominance, AF: absolute frequency, RF:
relative frequency, IV: importance value.

                                         Slope 0-25%
    Species                      ADo    RDo   AF  RF    IV

 1  Pseuderanthemum riedelianum  100,4  11,5  17  16,2  13,9
 2  Parodiolyra micrantha           69   7,9   7   6,7   7,3
 3  Rudgea jasminoides              54   6,2   8   7,6   6,9
 4  Ctenitis paranaensis            45   5,2   4   3,8   4,5
 5  Megalastrum abundans            50   5,7   2   1,9   3,8
 6  Psychotria suterella            68   7,8   2   1,9   4,9
 7  Psychotria leiocarpa            50   5,7   2   1,9   3,8
 8  Pteris decurrens                28   3,2   2   1,9   2,6
 9  Lastreopsis amplissima        30,5   3,5   5   4,8   4,1
10  Mollinedia elegans              50   5,7   1   1,0   3,3
11  Endlicheria paniculata           3   0,3   1   1,0   0,6
12  Pteris splendens              17,5   2,0   2   1,9   2,0
13  Neoblechnum brasiliense         80   9,2   2   1,9   5,5
14  Pouteria buttata                31   3,6   5   4,8   4,2
15  Psychotria carthagenensis       27   3,1   3   2,9   3,0
16  Lomaridium acutum                0   0,0   0   0,0   0,0
17  Peltastes peltatus               5   0,6   1   1,0   0,8
18  Chusquea cf. oligophylla        30   3,4   1   1,0   2,2
19  Citronella paniculata            1   0,1   1   1,0   0,5
20  Caseoria decandra                2   0,2   2   1,9   1,1

                                        Slope 40-60%         Slope >80%
    Species                      ADo   RDo   AF  RF    IV    ADo  RDo

 1  Pseuderanthemum riedelianum   184  21,0  20  15,5  18,3  76   11,7
 2  Parodiolyra micrantha        58,5   6,7  14  10,9   8,8  44    6,8
 3  Rudgea jasminoides           27,5   3,1   7   5,4   4,3  42    6,5
 4  Ctenitis paranaensis         68,5   7,8   7   5,4   6,6  40    6,1
 5  Megalastrum abundans           12   1,4   3   2,3   1,8  97   14,9
 6  Psychotria suterella           71   8,1   3   2,3   5,2  14    2,2
 7  Psychotria leiocarpa           71   8,1   3   2,3   5,2   6    0,9
 8  Pteris decurrens                1   0,1   1   0,8   0,4  70   10,8
 9  Lastreopsis amplissima         46   5,3   5   3,9   4,6   2    0,3
10  Mollinedia elegans             21   2,4   2   1,6   2,0  25    3,8
11  Endlicheria paniculata         21   2,4   5   3,9   3,1  16    2,5
12  Pteris splendens               17   1,9   2   1,6   1,7  20    3,1
13  Neoblechnum brasiliense         9   1,0   1   0,8   0,9   0    0,0
14  Pouteria buttata                0   0,0   0   0,0   0,0   3    0,5
15  Psychotria carthagenensis      15   1,7   3   2,3   2,0   0    0,0
16  Lomaridium acutum              43   4,9   2   1,6   3,2   9    1,4
17  Peltastes peltatus              3   0,3   2   1,6   0,9   9    1,4
18  Chusquea cf. oligophylla        0   0,0   0   0,0   0,0  12    1,8
19  Citronella paniculata          20   2,3   3   2,3   2,3   9    1,4
20  Caseoria decandra               3   0,3   2   1,6   0,9   4    0,6

                                 Slope >80%      General
    Species                      AF  RF    IV    IV

 1  Pseuderanthemum riedelianum  17  14,2  12,9  15,0
 2  Parodiolyra micrantha         7   5,8   6,3   7,5
 3  Rudgea jasminoides            7   5,8   6,1   5,8
 4  Ctenitis paranaensis          5   4,2   5,2   5,4
 5  Megalastrum abundans          6   5,0  10,0   5,2
 6  Psychotria suterella          2   1,7   1,9   4,0
 7  Psychotria leiocarpa          4   3,3   2,1   3,7
 8  Pteris decurrens              5   4,2   7,5   3,5
 9  Lastreopsis amplissima        1   0,8   0,6   3,1
10  Mollinedia elegans            1   0,8   2,3   2,6
11  Endlicheria paniculata        5   4,2   3,3   2,4
12  Pteris splendens              4   3,3   3,2   2,3
13  Neoblechnum brasiliense       0   0,0   0,0   2,1
14  Pouteria buttata              2   1,7   1,1   1,7
15  Psychotria carthagenensis     0   0,0   0,0   1,7
16  Lomaridium acutum             1   0,8   1,1   1,4
17  Peltastes peltatus            4   3,3   2,4   1,4
18  Chusquea cf. oligophylla      2   1,7   1,8   1,3
19  Citronella paniculata         1   0,8   1,1   1,3
20  Caseoria decandra             2   1,7   1,1   1,1

Table 3. Parameters of richness and diversity for each slope class of
the understory community in a transitional area of Atlantic Rain Forest
and Araucaria Forest in the Serra do Mar mountain range in South of

Parameters                            Slope classes

                             0-25%     40-60%      >80%
Number of species           50         53           54
Number of individuals      105        129          120
Dominance (D)                0.05107    0.05282      0.04375
Simpson index (1/D)         19.58      18.93        22.86
Simpson index (1-D)          0.9489     0.9472       0.9563
Shannon index (H')           3.488      3.484        3.582
Margalef index (D[alpha])   11         11           11
Evenness (J)                 0.8916     0.8775       0.8981
Chao-1 index                99.6       89.25       116.3
Leaf cover                  41.5       41.7         31
COPYRIGHT 2018 Instituto de Botanica Darwinion
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2018 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Canestraro, Bianca Kalinowski; Kersten, Rodrigo De Andrade
Date:Jul 1, 2018

Terms of use | Privacy policy | Copyright © 2021 Farlex, Inc. | Feedback | For webmasters |