Printer Friendly

Systems biology approaches and tools for analysis of interactomes and multi-target drugs.

Systems biology is essentially a proteomic and epigenetic exercise because the relatively condensed information of genomes unfolds on the level of proteins. The flexibility of cellular architectures is not only mediated by a dazzling number of proteinaceous species but moreover by the kinetics of their molecular changes: The time scales of posttranslational modifications range from milliseconds to years. The genetic framework of an organism only provides the blue print of protein embodiments which are constantly shaped by external input. Indeed, posttranslational modifications of proteins represent the scope and velocity of these inputs and fulfil the requirements of integration of external spatiotemporal signal transduction inside an organism. The optimization of biochemical networks for this type of information processing and storage results in chemically extremely fine tuned molecular entities. The huge dynamic range of concentrations, the chemical diversity and the necessity of synchronisation of complex protein expression patterns pose the major challenge of systemic analysis of biological models. One further message is that many of the key reactions in living systems are essentially based on interactions of moderate affinities and moderate selectivities. This principle is responsible for the enormous flexibility and redundancy of cellular circuitries. In complex disorders such as cancer or neurodegenerative diseases, which initially appear to be rooted in relatively subtle dysfunctions of multimodal physiologic pathways, drug discovery programs based on the concept of high affinity/high specificity compounds ("one-target, one-disease"), which has been dominating the pharmaceutical industry for a long time, increasingly turn out to be unsuccessful. Despite improvements in rational drug design and high throughput screening methods, the number of novel, single-target drugs fell much behind expectations during the past decade, and the treatment of "complex diseases" remains a most pressing medical need. Currently, a change of paradigm can be observed with regard to a new interest in agents that modulate multiple targets simultaneously, essentially "dirty drugs." Targeting cellular function as a system rather than on the level of the single target, significantly increases the size of the drugable proteome and is expected to introduce novel classes of multi-target drugs with fewer adverse effects and toxicity. Multiple target approaches have recently been used to design medications against atherosclerosis, cancer, depression, psychosis and neurodegenerative diseases. A focussed approach towards "systemic" drugs will certainly require the development of novel computational and mathematical concepts for appropriate modelling of complex data. But the key is the extraction of relevant molecular information from biological systems by implementing rigid statistical procedures to differential proteomic analytics.

Methods Mol Biol. 2010;662:29-58

COPYRIGHT 2013 LE Publications, Inc.
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2013 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Tinofend
Publication:Life Extension
Geographic Code:1USA
Date:May 1, 2013
Previous Article:Systemic therapies for psoriasis: methotrexate, retinoids, and cyclosporine.
Next Article:Modulation of cytokine expression by traditional medicines: a review of herbal immunomodulators.

Terms of use | Privacy policy | Copyright © 2022 Farlex, Inc. | Feedback | For webmasters |