Printer Friendly

Synthesis of branch fluorinated cationic surfactant and surface properties.

1. Introduction

A surfactant is an amphiphilic molecule bearing both hydrophobic and hydrophilic parts. The fluorinated surfactants have generated much interest for high surface activity, chemical resistance, thermal stabilization, and low critical micelle concentration. Cationic fluorinated surfactants were generally used in coatings [1-3], paints [4], inks [5, 6], waxes, additives for etching, leather, firefighting foams [7, 8], and other applications [9-16].

The most known are perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) (Scheme 1). However they are persistent in the chemosphere, toxic, bioaccumulable pollutants and can be transferred into the environment such as soil and water as well as in the animal body through the food chain [17]. The US Environmental Protection Agency launched the PFOA Stewardship Program to decrease the production of PFOA and PFOS. However, decomposition of perfluorooctanoic acid photocatalyzed by TiO2 was reported recently [18]. Hexafluoropropylene oligomers are an important class of compounds which can be used to prepare useful PFOA and PFOS replacements fluorinated anionic, cationic, nonionic, and amphoteric surfactants [19, 20].

In this paper, we describe a new fluorinated quaternary ammonium salt cationic surfactant N,N,N-trimethyl2-[[4-[[3,4,4,4-tetrafluoro-2-[1,2,2,2-tetrafluoro-1-(trifluoro- methyl)ethyl]-1,3-bis(tri-fluoromethyl)-1-buten-1-yl]oxy] benzoyl]amino]-iodide(4, FQAS) using the 4-[[3,4,4,4-Tetra fluoro-2-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]-1,3-bis (trifluoromethyl)-1-buten-1-yl]oxy]-benzoyl chloride (1) (Scheme 2). The surface activity of FQAS, such as surface tension and critical micelle concentrations (cmc), the effect of temperature and electrolyte on the surface activity of FQAS, and the surface activity of FQAS mixed with nonionic hydrocarbon surfactant polyethylene glycol 400 (PEG400) were investigated in detail.

2. Results and Discussion

2.1. Surface Tension. Unlike many fluorinated surfactants, the branch fluorinated cationic surfactant (4) (FQAS) exhibits excellent solubility in water at room temperature; thus, it could be employed to reduce the surface tension of water. The curve of surface tension was obtained by Wihemlmy (Figure 1). It can be seen in Figure 1 that the cmc value of FQAS in water is 6.0 x [10.sup.-5] mol x [L.sup.-1] at 293 K and the surface tension of the aqueous solution is 21.1 mN x [m.sup.-1] at the cmc. However, the value of cmc for hexadecyl trimethyl ammonium chloride (HTAC) is 1.6 x [10.sup.3] mol x [L.sup.-1], and the surface tension is 42.3 mN/m at the same temperature (in the literature Applied Surfactants, John Wiley & Sons Inc.). The cmc value of branch fluorinated cationic surfactant FQAS is remarkably lower than that of the hydrocarbon surfactants HTAC for the C-F group introduced [21, 22]. We infer that the decrease results from the formation of a closely packed film of fluorinated cationic surfactant caused by further adsorption of the surfactant to the air/aqueous solution interface.



2.2. Effect of Temperature on FQAS Surface Tension. Temperature is a significant effect factor for the surface tension of ionic fluorinated surfactant.

At 1.2 x [10.sup.-5] mol x [L.sup.-1], the surface tension of FQAS decreased from 67.0 mN x [m.sup.-1] to 54.8 mN x [m.sup.-1], when the temperature was increased from 293 K to 313 K (Figure 2). The present data shows that the effect of temperature was small when the concentration of FQAS is high ([??] 1.3 x [10.sup.-4] mol x [L.sup.-1]). This phenomenon can be explained by the following facts. The fluorinated surfactant tends to be adsorbed at the interface, driving the system to a thermodynamically more stable state. The effect of adsorption form both sides at the vapor/liquid interface was considered simultaneously. The result is a reduction in Gibbs energy, thereby a decrease in surface tension [23-25].

2.3. Effect of Electrolyte on the Surface Tension of FQAS. The FQAS exhibited lower surface tension at different electrolyte concentrations of NaCl (1.0 g x [L.sup.-1] and 5.0 g x [L.sup.-1]) aqueous solution (Figure 3). It can be seen in Figure 3 that the effect of electrolyte on the surface tension of FQAS is small. That shows FQAS has good salt resistance. The electrolyte remains in many aspects enigmatic. Although the phase at which the solution is at equilibrium does neither attract nor repel electrolytes, the solutes absorb either positively or negatively depending on their nature. It has strong attraction with just one water molecule under ions free. In double-layer terminology, they should be classified as "indifferent." Rather, their hydration with more water molecules keeps them out of the surface region. The observed ionic specificities are relatively minor and do not exhibit a clear ionic trend. According to general expectation, bigger ions would dehydrate more easily than the smaller ones and hence are more inclined to enrich the surface [26, 27]. However, the [Ca.sup.2+] and [Mg.sup.2+] may vary dramatically with changes in the solubility of FQAS, which can make the surface activity poor.

2.4. Combination with Hydrocarbon Surfactant. The different mass ratio nonionic surfactant PEG600 was mixed with FQAS. Surface tension was measured for mixed surfactant solution of different concentrations at 293 K (Figure 4). The surface tension was decreased with the increase in the total concentration and the mass ratio of FQAS of combined surfactants. This suggests that when micelles begin to from at the critical micelle concentration, the impurity becomes soluble in the micelles because of its hydrophobic character. The concentration in bulk and surface concentration have been reduced. Therefore, the interaction between the combined surfactants is strengthened [28-32].

3. Conclusion

The novel branch fluorinated cationic surfactant N,N,N-trimethyl-2-[[4-[[3,4,4,4-tetrafluoro-2-[1,2,2,2-tetrafluoro- 1-(trifluoromethyl)ethyl]-1,3-bis(tri-fluoromethyl)-1-buten-1-yl]oxy]-benzoyl]amino]-iodide (FQAS) was synthesized successfully. The structure was characterized by FTIR, [sup.1]H-NMR, [sup.19]F-NMR, and MS. The surface activities of FQAS, the effect of temperature, electrolyte, and combination with hydrocarbon surfactant were investigated. The results showed that FQAS exhibited excellent surface activity and combined properties.

4. Experimental

4.1. Materials and Instruments. 4-Perfluoro-(1,3-dimethyl-2isopropyl)-but-1-enyloxy]-benzoic acid was purchased from Juhua Group Corporation, Quzhou, China. Sulphoxide chloride, N, N-dimethylethylenediamine, and iodomethane, which were analytical grade, were purchased from Shuanglin Chemical Reagent Company, Hangzhou, China. Melting points were determined using an X-4 apparatus and uncorrected. FTIR were recorded of Nicolet Avata 370 Fourier transform infrared spectrometer from KBr pellets. NMR spectra were measured on a Bruker AV500 instrument using TMS as an internal standard and CD[Cl.sub.3] as solvent. Mass spectra were performed on a Thermo Finnigan LCQ Advantage LC/mass detector instrument. The characterization of the surface tension was carried out on DCA-315 equipped with a Wilhelmy plate made of platinum.

4.2. Synthesis of FQAS

4.2.1. 4-[[3,4,4,4-Tetrafluoro-2-[1,2,2,2-tetrafluoro-1-(trifluoro methyl)ethyl]-1,3-bis(trifluoromethyl)-1-buten-1-yl]oxy]-benzoyl chloride (2). To a solution of 4-[[3,4,4,4-tetrafluoro2-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]-1,3-bis(triflu- oro-methyl)-1-buten-1-yl]oxy]-benzoic acid (1) (28.4 g, 0.05 mol) in C[Cl.sub.4] (50 mL) and sulphoxide chloride (11.90 g, 0.10 mol) was added stepwise slowly at room temperature [33-35]. After refluxing for 3h, the solvent and excess of sulphoxide chloride were evaporated to give the viscous liquid.

4.2.2. N-(2-Dimethylamino-ethyl)-4-[3,4,4,4-tetrafluoro-2-(1, 2,2,2-tetrafluoro -1-trifluoromethyl-ethyl)-1,3-bis-trifluoromethyl-buten-1-enyloxy]-benzamide (3). To a solution of compound (2) (2.93 g, 0.005 mol) and [K.sub.2]C[O.sub.3] (0.69 g, 0.005 mol) in C[H.sub.3]CN (40 mL), N,N-dimethylethylenediamine (0.58 g, 0.006 mol) was added dropwise at room temperature [36-38]. After refluxing for 5 h, it was quenched with water (50 mL). Then the resultant solution was extracted by ethyl acetate (3 x 50 mL). The combined organic phase was dried by [Na.sub.2]S[O.sub.4]. The solvent was evaporated to give a white residue, which was recrystallized in ethyl acetate and petroleum ether to afford a light yellow solid (3) (2.71 g, 85%). IR ([cm.sup.-1]): [upsilon](N-H) 3255, [upsilon](C=O) 1655, [upsilon](C=C) 1601,1502, [upsilon](C-F) 1185,1134; [sup.1]H-NMR (C[D.sub.3]Cl) [delta]: 7 .81 (d, J = 9.80 Hz, 2H, ArH), 6.95 (d, 8.75, 2H, ArH), 3.56-3.58 (m, 2H, C[H.sub.2]), 2.50-2.51 (m, 2H, C[H.sub.2]), 2.30 (s, 6H, C[H.sub.3]); and MS (EI) m/z 638.09 (M-1).

4.2.3. N,N,N-Trimethyl-2-[[4-[[3,4,4,4-tetrafluoro-2-[1,2,2,2tetrafluoro -1-( trifluoromethyl)ethyl]-1,3- bis(trifluoromethyl)1-buten-1-yl]oxy]benzoyl]amino]-iodide (4). Compound (3) (3.19 g, 0.005 mol) and iodomethane (1.42 g, 0.01 mol) were refluxed in MeCN (50 mL) for 5h under the atmosphere of [N.sub.2], and then the resultant mixture was cooled to room temperature. After the solution was evaporated under reduced pressure, the residue was recrystallized in acetic ether and petroleum ether. The resulting white solid (4) (3.52 g, 90%) was dried under reduced pressure. IR ([cm.sup.-1]: [upsilon](N-H) 3446, [upsilon](C=C) 1626,1590,1491, [upsilon](C-O) 1242, [upsilon](S=O) 1014, [upsilon](C-F) 1240,979,742. [sup.1]H-NMR (CD[Cl.sub.3]) [delta] = 8.15 (d, J = 8.85 Hz, 2H, ArH), 6.95 (d, / = 8.70 Hz, 2H, ArH), 3.87-3.85 (m, 2H, C[H.sub.2]), 3.63-3.65 (m, 2H, C[H.sub.2]), 2.67 (s, 9H, C[H.sub.3]); [sup.19]F-NMR (CD[Cl.sub.3]): -188.5 ppm (1F, F), -186.5 (1F, F), -91.3 (6F, C[F.sub.3]), -90.2 (6F, C[F.sub.3]), -75.0 (3F, C[F.sub.3]); MS (EI) m/z 654.1 (M-I).

4.3. Measurements. The static surface tension was measured using Thermo Cahn surface tension requirements (DCA-315) with platinum plate. The measurement were performed under 293 K after equilibration for 8 h. The solution preparation of FQAS used distilled water.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.


The authors thank the Project of Education Department of Zhejiang Province under Grant no. Y201224772.


[1] G. Para, A. Hamerska-Dudra, K. A. Wilk, and P. Warszynski, "Mechanism of cationic surfactant adsorption--effect of molecular structure and multiple charge," Colloids and Surfaces A, vol. 383, no. 1-3, pp. 67-72, 2011.

[2] L. J. Chen, H. X. Shi, H. K. Wu, and J. Xiang, "Preparation and characterization of a novel fluorinated acrylate resin," Journal of Fluorine Chemistry, vol. 131, no. 6, pp. 731-737, 2010.

[3] K. Ghosh, H.-J. Lehmler, S. E. Rankin, and B. L. Knutson, "Supercritical carbon dioxide swelling of fluorinated and hydrocarbon surfactant templates in mesoporous silica thin films," Journal of Colloid and Interface Science, vol. 367, no. 1, pp. 183-192, 2012.

[4] A. J. Kessman, E. E. Defusco, A. W. Hoover, K. A. Sierros, and D. R. Cairns, "Structural, mechanical, and tribological properties of fluorinated mesoporous silica films: effect of functional moiety and surfactant template concentrations," Thin Solid Films, vol. 520, no. 11, pp. 3896-3903, 2012.

[5] V. C. Malshe, S. Elango, S. S. Bhagwat, and S. S. Maghrabi, "Fluorinated acrylic copolymers: part II: polymeric surfactants," Progress in Organic Coatings, vol. 53, no. 3, pp. 212-216, 2005.

[6] L. Chen, H. Shi, H. Wu, and J. Xiang, "Influence of the reactive emulsifier-HPMA on the properties of the acrylate emulsion," Journal of Dispersion Science and Technology, vol. 32, no. 2, pp. 235-240, 2011.

[7] P. M. Karlsson, A. Baeza, A. E. C. Palmqvist, and K. Holmberg, "Surfactant inhibition of aluminium pigments for waterborne printing inks," Corrosion Science, vol. 50, no. 8, pp. 2282-2287, 2008.

[8] M. Pabon and J. M. Corpart, "Fluorinated surfactants: synthesis, properties, effluent treatment," Journal of Fluorine Chemistry, vol. 114, no. 2, pp. 149-156, 2002.

[9] W. Shen, L.-M. Wang, and H. Tian, "Quaternary ammonium salt gemini surfactants containing perfluoroalkyl tails catalyzed one-pot Mannich reactions in aqueous media," Journal of Fluorine Chemistry, vol. 129, no. 4, pp. 267-273, 2008.

[10] D. J. Holt, R. J. Payne, and C. Abell, "Synthesis of novel fluorous surfactants for microdroplet stabilisation in fluorous oil streams," Journal of Fluorine Chemistry, vol. 131, no. 3, pp. 398407, 2010.

[11] D. Rana and T. Matsuura, "Surface modifications for antifouling membranes," Chemical Reviews, vol. 110, no. 4, pp. 2448-2471, 2010.

[12] J. Tan, D. Ma, and S. Feng, "Effect of headgroups on the aggregation behavior of cationic silicone surfactants in aqueous solution," Journal of Colloid and Interface Science, vol. 417, pp. 146-153, 2013.

[13] K. Sakai, M. Kaji, Y. Takamatsu et al., "Fluorocarbon-hydrocarbon gemini surfactant mixtures in aqueous solution," Colloids and Surfaces A, vol. 333, no. 1-3, pp. 26-31, 2009.

[14] S. C. Sharma, D. P. Acharya, Y. Itami, M. Garcia-Roman, and H. Kunieda, "Phase behavior and surface tensions of amphiphilic fluorinated random copolymer aqueous solutions," Colloids and Surfaces A, vol. 280, no. 1-3, pp. 140-145, 2006.

[15] P. Thebault, E. T. D. Givenchy, S. Garibaldi, R. Levy, Y. Vandenberghe, and F. Guittard, "Surface and antimicrobial properties of semi-fluorinated quaternary ammonium thiol surfactants potentially usable for Self-Assembled Monolayers," Journal of Fluorine Chemistry, vol. 131, no. 5, pp. 592-596, 2010.

[16] H. Wu, J. Zhong, and H. Shi, "Synthesis of a novel branch fluorinated cationic surfactant and its surface activity," Journal of Fluorine Chemistry, vol. 156, pp. 5-8, 2013.

[17] P. M. Murphy, C. S. Baldwin, and R. C. Buck, "Syntheses utilizing n-perfluoroalkyl iodides [RFI, CnF2n+1-I] 2000-2010," Journal of Fluorine Chemistry, vol. 138, pp. 3-23, 2012.

[18] M. Sansotera, F. Persico, C. Pirola, W. Navarrini, A. di Michele, and C. L. Bianchi, "Decomposition of perfluorooctanoic acid: chemical modification of the catalyst surface induced by fluoride ions," Applied Catalysis B, vol. 148-149, pp. 29-35, 2014.

[19] L. Chen, H. Shi, H. Wu, and J. Xiang, "Synthesis and combined properties of novel fluorinated anionic surfactant," Colloids and Surfaces A, vol. 384, no. 1-3, pp. 331-336, 2011.

[20] L. Chen, H. Shi, H. Wu, and J. Xiang, "Study on the double fluorinated modification of the acrylate latex," Colloids and Surfaces A, vol. 368, no. 1-3, pp. 148-153, 2010.

[21] T. Yoshimura, A. Ohno, and K. Esumi, "Equilibrium and dynamic surface tension properties of partially fluorinated quaternary ammonium salt gemini surfactants," Langmuir, vol. 22, no. 10, pp. 4643-4648, 2006.

[22] N. Bongartz, S. Patil, and D. Blunka, "A new fluorinated inositol-based surfactant," Colloids and Surfaces A, vol. 414, pp. 320-326, 2012.

[23] K. Lunkenheimer, A. Lind, and M. Jost, "Surface tension of surfactant solutions," Journal of Physical Chemistry B, vol. 107, no. 31, pp. 7527-7531, 2003.

[24] S. Azizian and N. Bashavard, "Surface tension of dilute solutions of alkanes in cyclohexanol at different temperatures," Journal of Chemical and Engineering Data, vol. 53, no. 10, pp. 2422-2425, 2008.

[25] A. Firooz and P. Chen, "Effect of temperature on the surface tension of 1-hexanol aqueous solutions," Langmuir, vol. 27, no. 6, pp. 2446-2455, 2011.

[26] Y.-G. Li, "Reply to 'comments on 'Surface Tension Model for Concentrated Electrolyte Solutions by the Pitzer Equation"," Industrial and Engineering Chemistry Research, vol. 38, no. 10, pp. 4137-4138, 1999.

[27] J. Drzymala and J. Lyklema, "Surface Tension od Aqueous electrolyte solutions. Thermodynamics," Journal of Physical Chemistry A, vol. 116, pp. 6465-6472, 2012.

[28] M. Pisarcik, M. Polakovicova, and M. Lukac, "Molecular structure-surface property relationships for heterocyclic and dipropylamino derivatives of hexadecylphosphocholine and cetyltrimethylammonium bromide in NaBr and salt-free aqueous solutions," Colloids and Surfaces A, vol. 407, pp. 169-176, 2012.

[29] K. Sakai, M. Kaji, Y. Takamatsu et al., "Fluorocarbon-hydrocarbon gemini surfactant mixtures in aqueous solution," Colloids and Surfaces A, vol. 333, no. 1-3, pp. 26-31, 2009.

[30] E. Blanco, C. Rodriguez-Abreu, P. Schulz, and J. M. Ruso, "Effect of alkyl chain asymmetry on catanionic mixtures of hydrogenated and fluorinated surfactants," Journal of Colloid and Interface Science, vol. 341, no. 2, pp. 261-266, 2010.

[31] D. Tikariha, K. K. Ghosh, N. Barbero, P. Quagliotto, and S. Ghosh, "Micellization properties of mixed cationic gemini and cationic monomeric surfactants in aqueous-ethylene glycol mixture," Colloids and Surfaces A, vol. 381, no. 1-3, pp. 61-69, 2011.

[32] S. C. Sharma, D. P. Acharya, M. Garcia-Roman, Y. Itami, and H. Kunieda, "Phase behavior and surface tensions of amphiphilic fluorinated random copolymer aqueous solutions," Colloids and Surfaces A, vol. 280, no. 1-3, pp. 140-145, 2006.

[33] H.-J. Liu, J.-Q. Weng, C.-X. Tan, and X.-H. Liu, "1-Cyano-N-(2,4,5-trichlorophenyl)cyclo-propane-1-carboxamide," Acta Crystallographica Section E, vol. 67, no. 8, article o1940, 2011.

[34] X.-H. Liu, C.-X. Tan, J.-Q. Weng, and H.-J. Liu, "(E)-(4-Bromobenzylidene)amino cyclopropanecarboxylate," Acta Crystallographica Section E, vol. 68, no. 2, article o493, 2012.

[35] Y. L. Xue, Y. G. Zhang, and X. H. Liu, "Synthesis, crystal structure and biological activity of 1-cyano-N-(2, 4dichlorophenyl)cyclopropanecarboxamide," Asian Journal of Chemistry, vol. 24, pp. 5087-5089, 2012.

[36] R. Wu, C. Zhu, X. J. Du et al., "Synthesis, crystal structure and larvicidal activity of novel diamide derivatives against Culex pipiens," Chemistry Central Journal, vol. 6, no. 99, 2012.

[37] G. X. Sun, Z. H. Sun, M. Y. Yang, X. H. Liu, Y. Ma, and Y. Y. Wei, "Design, synthesis, biological activities and 3D-QSAR of new N, N'-diacylhydrazines containing 2, 4-dichlorophenoxy moieties," Molecules, vol. 18, pp. 14876-14891, 2013.

[38] C. Cui, Z. P. Wang, X. J. Du et al., "Synthesis and antiviral activity of hydrogenated ferulic acid derivatives," Journal of Chemistry, vol. 2013, Article ID 269434, 5 pages, 2013.

Hongke Wu, Jiaqi Zhong, Haimin Shen, and Hongxin Shi

State Key Laboratory Breeding Base of Green Chemistry Synthesis-Technology, Zhejiang University of Technology,

Hangzhou 310032, China

Correspondence should be addressed to Hongke Wu; and Hongxin Shi;

Received 24 September 2013; Revised 27 December 2013; Accepted 7 January 2014; Published 13 February 2014

Academic Editor: Alessandro Volonterio
COPYRIGHT 2014 Hindawi Limited
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2014 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Research Article
Author:Wu, Hongke; Zhong, Jiaqi; Shen, Haimin; Shi, Hongxin
Publication:Journal of Chemistry
Article Type:Report
Date:Jan 1, 2014
Previous Article:Synthesis, single crystal X-ray structure, and antimicrobial activity of...
Next Article:Design and synthesis of an indole-estrogen derivative.

Terms of use | Privacy policy | Copyright © 2020 Farlex, Inc. | Feedback | For webmasters