Printer Friendly

Synthesis, structural and optical investigations of (Pb, Bi)Ti[O.sub.3] borosilicate glasses.

1. Introduction

Glass and glass ceramics are very important materials for their device making applications such as cryogenic temperature sensors which include a capacitance thermometer, a dielectric bolometer, and capacitive energy storage capacitors. The application of Aurivillius family of bismuth based ferroelectric compounds with a layered structure in capacitors, sensors, and piezoelectric and electrooptic devices is strongly influenced by the method of preparation [1-4]. The melt-quench method gives possibility of doping with different cations to enhance their optical and electrical properties. Apart from this, these glasses were known to exhibit large third-order nonlinear optical properties [5]. Heavy metal containing glasses are the most suitable for the nonlinear applications because of their cubic nonlinearity. Particularly, Bi and Pb based glasses show higher refractive index, due to their higher hyperpolarizable nature. Since these glasses exhibit nonlinear phenomenon, they are useful in optical fibers and in optical switches [6-10]. The demonstration of electrooptic effect in transparent glasses containing ferroelectric crystalline phases has enhanced the prospects of using electrooptic glasses and glass ceramics for various nonlinear optical (NLO) applications [11-13]. The Pb based glasses are popular as commercial, low temperature, and sinterable glasses due to their desirable application properties such as low softening temperature, low dielectric constant (< 15), and high reflectivity [14]. The structural properties of borosilicate glasses can be modified within a wide range by the introduction of oxides of bivalent or monovalent metals that modify the network structure of the boron [15]. Glasses based on [Bi.sub.2][O.sub.3] and PbO were intensely investigated in the last decade because of their interesting technological applications such as thermal and mechanical sensors, waveguides in nonlinear optics, scintillation detectors in high-energy physics, optoelectronic circuits as ultrafast switches, infrared windows, and optical isolators and also in advanced computer [16, 17]. More recently, (Pb, Sr)Ti[O.sub.3] and (Ba, Sr)Ti[O.sub.3] borosilicate-glasses were prepared successfully by Gautam et al. to explore the optical and electrical properties of these glasses [18, 19]. Such type glasses are used for shielding of X-rays radiation.

The optical properties of (Pb, Bi)Ti[O.sub.3] (lead bismuth titanate) doped with 1 mole percent [La.sub.2][O.sub.3] (lanthanum oxide) glasses are presented in this work. This is, to our knowledge, the first time that this host is doped with rare-earth oxides. Now, the focuses are on the structural and optical properties evaluation of the glasses and these properties are correlated with their compositions.

2. Experimental Methods

The AR grade chemicals, PbO (Fisher Scientific 99%), [Bi.sub.2][O.sub.3](Himedia 99.99%), Ti[O.sub.2] (Himedia 99%), Si[O.sub.2] (Himedia 99.5%), [H.sub.3]B[O.sub.3] (Himedia 99.8%), and [La.sub.2][O.sub.3] (Himedia 99.9%), were mixed for 3.0 hours in acetone media using agate mortar and pestle to obtain desired homoginity of the powder. The well mixed and dried powders were kept in a platinum crucible and then crucible is placed inside the high temperature SiC programmable electric furnace in the temperature range from 1200 to 1300[degrees]C. The melt was poured into an aluminum mould and pressed by a thick aluminum plate and then immediately transferred into a preheated programmable muffle furnace for annealing at temperature 450[degrees]C up to 4 hours. The XRD of powder glass samples was carried out using a Rigaku Miniflex-II X-ray diffractometer using Cu-[K.sub.[alpha]] radiation to check the amorphous state of the prepared glass samples. The structures of the prepared glass samples were analyzed using analytical tools such as UV-Visible, IR, and Raman spectroscopy and XRD. The UV-Visible spectroscopic measurements are carried out on (Labtronics LT-2900) double beam spectrometer in the wavelength range from 200 to 1100 nm at room temperature. The powdered samples were dissolved in double distilled water; reference sample was taken as double distilled water to do the proper baseline correction before the recording of the UV spectra. To obtain IR spectra of the glass samples, powdered glass samples were mixed with KBr powder and pressed as thin pellets. These thin pellets are carried out for the recording of IR spectra using JASCO FT/IR-5300 in the wavenumber range from 450 to 4000 [cm.sup.-1] at room temperature. Raman spectra of powdered glass samples were also recorded in the wavenumber range from 1000 to 2000 [cm.sup.-1] by using Micro-Raman setup, Renishaw, equipped with a grating of 1800 lines/mm and Olymapus (model MX-50) A/T. The 15.4 nm Ar+ laser was used as an excitation source and GRAM-32 software for data collection. Nomenclature of glass samples and their compositional distribution is listed in Table 1.

3. Results and Discussions

3.1. X-Ray Diffraction Analysis of Glass Samples. The XRD patterns of various glass samples BT1L0.0, PBT1L0.1, PBT1L0.3, BT1L0.5, and PBT1L0.7 are shown in Figure 1(a-e). These XRD patterns exhibit a broad diffuse scattering at different angles instead of crystalline peaks and confirm a long range structural disorder characteristic of amorphous glassy network.

3.2. UV-Vis Spectroscopy. UV-visible absorption spectra of various prepared glass samples in the system 55[([Pb.sub.x][Bi.sub.1 - x])OTi[O.sub.2]] - 44[(2Si[O.sub.2][B.sub.2][O.sub.3])] - 1[L.sub.2][O.sub.3] were shown in Figures 2(a)-2(g). All UV patterns show nonlinear behavior and there is a no sharp increase in absorption peak at energies close to the band gap that manifests itself as an absorption edge in the UV-visible absorption spectra except UV spectrum of glass samples PBT1L0.3. This indicates the amorphous nature of glass samples, which is also confirmed byXRD results of the same glass samples. Figure 2(a) showed the UV spectrum of lead-free glass sample BT1L0.0 and it is found different in comparison to the rest of UV samples. This indicates only two absorption edges near wavelengths 286 and 338 nm. After this, it is found constant up to certain value of the wavelength and then gradually decreases with increasing the value of the wavelength. (Bi)Ti[O.sub.3] demonstrates an obvious photoabsorption in the visible-light region, and its absorption edge shifts to the visible-light region, which is consistent with the yellowish color of the samples [20]. The band gap absorption edge of the prepared glass sample is determined to be 286 nm, corresponding to the band gap energy value of 6.94 eV. Figure 2(b) depicts the UV pattern of the glass sample PBT1L0.1 showing two absorption bands at different wavelengths, 292 and 344 nm. The first absorption band is present due to the content of the Bi, while the second is due to lead content. The value of absorbance continuously decreases with increasing in the value of wavelength. Figures 2(c) and 2(d) show the UV pattern of glass samples PBT1L 0.3 and PBT1L 0.4; three absorption peaks were observed in these samples at different wavelengths. At higher wavelength side two absorption peaks were observed at 918 and 1012 nm, while in Figure 2(d) only a solder of an absorption peak is observed at 950 nm. Figures 2(e)-2(g) show the UV spectrum of the three different glass samples. The UV pattern of glass sample PBT1L0.5 was found to be similar to UV pattern of glass sample PBT1L0.4 (Figure 2(d)). The UV patterns of glass samples PBT1L0.7 and PBT1L0.9 are almost similar and only a single absorption peak is observed at lower wavelength side. It might be due to the increasing concentration of Pb for Bi.

3.3. Infrared Spectroscopy. The IR spectra occur due to change in the dipole moment of the molecule. It involves the twisting, bending, rotating, and vibrational motions in a molecule. IR spectra of various (PbBi)Ti[O.sub.3] borosilicate glass samples doped with [La.sub.2][O.sub.3] are shown in Figures 3(a), 3(b), 3(c), 3(d), 3(e), and 3(f). IR spectra of all glass samples consist of broad and sharp bands in different regions lying between the wavenumbers 400 and 4000 [cm.sup.-1]. These absorption bands are strongly affected due to variation of compositional changes. Wavenumbers of various absorption peaks for all glass samples are listed in Table 2. These absorption peaks have been marked as numbers 1, 2, 3, .... 12, starting from high wavenumber side to low wavenumber side. The broad bands are exhibited in the oxide spectra, most probably due to the combination of high degeneracy of the vibrational states, thermal broadening of the lattice dispersion bands, and mechanical scattering from powder samples. The absorption peaks in IR spectra can be divided into four main groups in the ranges from 3400 to 2300 [cm.sup.-1], 1600 to 1200 [cm.sup.-1], 900 to 700 [cm.sup.-1], and 700 to 400 [cm.sup.-1], respectively. It is known that boron exhibits more than one stable configuration. The addition of alkali or alkaline earth oxides to the borate network changes the boron coordination from three to four. This results in the formation of di-, tri-, tetra-, and pentaborate groupings. Due to the boron anomaly, addition of modifier oxides forms B[O.sub.4] units. The IR spectra of the present glass samples have exhibited similar spectral features of ternary borate glasses containing PbO, SrO, ZnO, [Bi.sub.2][O.sub.3], and Te[O.sub.2] reported in the literature [21-27]. The first absorption peak lies in the wavenumber range from 3325 to 3400 [cm.sup.-1] which is mainly due to hydroxyl or water groups present in the glass samples and attributed to the O-H stretching vibration [28]. Weak peaks and some shoulders are observed in Bi rich glass samples in the range from 2700 to 3000 [cm.sup.-1], while these weak peaks were found absent in the Pb rich IR patterns (Figures 3(e) and 3(f)) which are attributed to the presence of hydrogen bonding in the glass samples. The peak number 3 in between 2265 and 2343 [cm.sup.-1] is attributed to -OH group present in the glass samples [29]. Only two doublet degeneracies have been observed in all the La-doped glass samples at different wavenumbers, represented by peak numbers 4 and 5 (a and b). These peaks were present due to the asymmetric stretching relaxation of the B-O bond of trigonal B[O.sub.3] units. A very strong and sharp absorption peak number 7 is present at wavenumber 1106-1121 [cm.sup.-1] and was found due to the stretching vibration of B[O.sub.4] tetrahedra groups present in the glass system. The position of this peak remains invariant with variation of composition up to x = 0.3, while it is slightly changed with increasing the concentration of the Pb. Peak number 8 occurs at wavenumber 987 [cm.sup.-1] which is very weak and is not affected by varying concentration of the Pb for bismuth and it is attributed to stretching vibrations of B-O-Bi linkage. A weak absorption peak number 9 is observed within the wavenumber range from 750 to 756 [cm.sup.-1] in IR spectra of all glass samples. This peak was present due to the diborate linkage, B-O-B, in the borate glassy network. In this linkage, both boron atoms are tetrahedrally coordinated with triborate super structural units [30, 31]. All IR spectra show a strong peak number 11 at 612 [cm.sup.-1] and a shoulder at 656 [cm.sup.-1] (peaknumber 10) due to the combined vibrations of B[O.sub.4] and Pb[O.sub.4] groups in the glass system. The low-frequency bands (peaks 12 a and b) are observed in the IR spectra of all glass samples and can be attributed to the vibration of metal cation such as [Pb.sup.2+] ions in the glass and doubly degenerate stretching vibration of Bi[O.sub.3] groups [32].

3.4. Raman Spectroscopy. Raman spectrums of the representative (Pb, Bi)Ti[O.sub.3] borosilicate glass samples doped with [La.sub.2][O.sub.3] are shown in Figures 4(a)-4(e). Each RS spectrum indicates more than two peaks. Figure 4(a) shows the RS spectra of glass sample BT1L0.0 without lead content (x = 0.0). Band formation at lower wavenumber side range from 400 to 900 [cm.sup.-1] in all Raman spectra of the glass samples is attributed to metaborate groups and symmetric breathing vibrations of six-member rings with one or two B[O.sub.3] triangles replaced by B[O.sub.4] tetrahedra [33]. These bands also occurred due to bending vibrations of planar B[O.sub.3] triangles in random network [34]. The positions of the bands are a little bit changed with variation of the compositions. Two separate peaks were observed at different wavenumbers 2656 and 2694 [cm.sup.-1] in the Raman spectra of lead-free glass sample, while the peak positions are shifted towards the higher wavenumber side for Raman spectra of the rest of glass samples. The shifting in their peak position is due to the replacement of the PbO with BiO. The presence of these peaks due to the hydrogen/OH bonding is also confirmed by their IR results. The assignment of IR and RS bands in the spectra of different glass samples is summarized in Table 3.

4. Conclusions

Bulk transparent and homogeneous (Pb, Bi)Ti[O.sub.3] (PBT) borosilicate glasses doped with [La.sub.2][O.sub.3] were prepared by melt-quench technique. The addition of alkali or alkaline earth oxides to the borate network changes the boron coordination from three to four. UV patterns show nonlinear behavior and there is no sharp increase in absorption peak at energies close to the band gap values. The IR spectra were observed in four main groups, 3400-2300 [cm.sup.-1], 1600-1200 [cm.sup.-1], 900-700 [cm.sup.-1], and 700-400 [cm.sup.-1], respectively. This result concluded the formation of di-, tri-, tetra- and pentaborate groupings. IR spectra of PBT borosilicate glasses occur due to vibrational mode of the borate network of asymmetric stretching vibrations B-O bond of trigonal B[O.sub.3] units, molecular water,-OH bonding, and B-O-B and B-O-Si linkages. The low-frequency bands (peaks 12 a and b) are observed in all IR spectra of the glass samples and attributed to vibration of metal cation such as [Pb.sup.2+] ions in the glass and doubly degenerate stretching vibration of Bi[O.sub.3] groups. The absorption bands are present due to the contents of Bi and Pb. Raman spectra of the glass samples are attributed to metaborate groups and symmetric breathing vibrations of six-member rings with one or two B[O.sub.3] triangles replaced by B[O.sub.4] tetrahedra which give the best agreement by IR spectra. Very high value of indirect optical band gap was found to be 6.94 eV which is reported first time for PBT borosilicate glasses. These glasses maybe used for the protection of high-energy radiations such as X-rays and y-rays.

http://dx.doi.org/10.1155/2014/606709

Conflict of Interests

The author declares that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

The author gratefully acknowledged the Uttar Pradesh Council of Science and Technology, Lucknow (India), for financial support under the "Young Scientist Scheme" as major research Project no. CSTT/YSS/D-3913.

References

[1] E. S. Subbarao, "A family of ferroelectric bismuth compounds," Journal of Physics and Chemistry of Solids, vol. 23, pp. 663-676, 1962.

[2] C. Araujo, J. Cuchiaro, L. Mc Milan, M. Scott, and J. Scott, "Fatigue free-ferroelectric capacitors with platinum electrode," Nature, vol. 374, pp. 627-629, 1995.

[3] B. H. Park, B. S. Kang, S. D. Bu, T W. Noh, J. Lee, and W. Jo, "Lanthanum-substituted bismuth titanate for use in nonvolatile memories," Nature, vol. 401, pp. 682-684, 1999.

[4] T Takenaka and H. Nagata, "Current status and prospects of lead-free piezoelectric ceramics," Journal of the European Ceramic Society, vol. 25, pp. 2693-2700, 2005.

[5] S. H. Kim, T Yoko, and S. Sakka, "Linear and nonlinear optical properties of Te[O.sub.2] glass," Journal of the American Ceramic Society, vol. 76, pp. 2486-2490, 1993.

[6] L. R. P Kassab, S. H. Tatumi, C. M. S. Mendas, L. C. Courrol, and N. U. Wetter, "Optical properties of Nd doped [Bi.sub.2][O.sub.3]-PbO- [Ga.sub.2][O.sub.3] glasses," Optics Express, vol. 6, pp. 104-108, 2000.

[7] R. Balda, J. Fernandez, M. Sanz, A. De Pablos, J. M. Fde-zNavarro, and J. Mugnier, "Laser spectroscopy of [Nd.sup.3+] in bismuth-lead-germanate glasses," Physical Review B, vol. 61, pp. 3384-3390, 2000.

[8] H. Doweidar and A. H. Oraby, "Density of lead borate glasses in relation to the microstructure," Physics and Chemistry of Glasses, vol. 38, no. 2, pp. 69-73, 1997.

[9] Y. G. Choi and J. Heo, "1.3 [micro]m emission and multiphonon relaxation phenomena in PbO[Bi.sub.2][O.sub.3][Ga.sub.2][O.sub.3] doped with rare-earths," Journal of Non-Crystalline Solids, vol. 217, pp. 199-207, 1997.

[10] K. Terashima, T. H. Shimoto, and T. Yoko, "Structure and nonlin ear optical properties of PbO--[Bi.sub.2][O.sub.3]-[B.sub.2][O.sub.3] glasses," Physics and Chemistry of Glasses, vol. 38, pp. 211-217, 1997

[11] N. F Borrelli, A. Herczog, and R. D. Maurer, "Electro-optic effect of ferroelectric microcrystal in a glass matrix," Applied Physics Letters, vol. 7, no. 5, pp. 117-118, 1965.

[12] N. F. Borrelli, "Electro-optic effect in transparent niobate glassceramic system," Journal of Applied Physics, vol. 38, no. 11, pp. 4243-4247, 1967.

[13] H. Jain, "Transparent ferroelectric glass-ceramic," Ferroelectrics, vol. 306, pp. 111-127, 2004.

[14] G. H. Hwang, H. J. Jeon, and Y. S. Kim, "Physical properties of barrier ribsof plasma display panels: information of pores during sintering of lead borosilicate glass frits," Journal of the American Ceramic Society, vol. 85, pp. 2956-2960, 2002.

[15] J. S. An, J. S. Park, J. R. Kim, K. S. Hong, and H. Shin, "Effects of [Bi.sub.2][O.sub.3] and [Na.sub.2]O on the thermal and dielectric properties of zinc borosilicate glass for plasma display panels," Journal of the American Ceramic Society, vol. 89, pp. 3658-3661, 2006.

[16] S. Simon, R. Pop, V. Simon, and M. Coldea, "Structural and magnetic properties of lead-bismuthate oxide glasses containing S-state paramagnetic ions," Journal of Non-Crystalline Solids, vol. 331, pp. 1-10, 2003.

[17] A. Pan and A. Ghosh, "A new family of lead-bismuthate glass with a large transmitting window," Journal of Non-Crystalline Solids, vol. 271, pp. 157-161, 2000.

[18] C. R. Gautam, A. K. Arbind, and A. K. Yadav, "Synthesis and optical characterization of (Pb, Bi)Ti[O.sub.3] borosilicate glass system," International Journal of Applied Natural, vol. 1, no. 1, pp. 69-74, 2012.

[19] C. R. Gautam, A. K. Yadav, V. K. Mishra, and K. Vikram, "Synthesis, IR and Raman spectroscopic studies of (Ba, Sr)Ti[O.sub.3] borosilicate glasses with addition of [La.sub.2][O.sub.3]," Open Journal of Inorganic Non-Metallic Materials, vol. 2, no. 4, pp. 47-54, 2012.

[20] K. Lingdong, H. Chen, W. Hua, S. Zhang, and J. Chen, "Mesoporous bismuth titanate with visible-light photocatalytic activity," Chemical Communications, no. 40, pp. 4977-4979, 2008.

[21] C. R. Gautam, D. Kumar, and O. Parkash, "IR study of Pb-Sr titanate borosilicate glasses," Bulletin of Materials Science, vol. 33, no. 2, pp. 145-148, 2010.

[22] H. G. Kim, T. Komatsu, K. Shioya, K. Matusita, K. Tanaka, and K. Hirao, "Transparent tellurite-based glass-ceramics with second harmonic generation," Journal of Non-Crystalline Solids, vol. 208, no. 3, pp. 303-307, 1996.

[23] A. A. Alemi, H. Sedghi, A. R. Mirmohseni, and V. Golsanamlu, "Synthesis and characterization of cadmium doped lead borate glasses," Bulletin of Materials Science, vol. 29, no. 1, pp. 55-58, 2006.

[24] V.C. Veeranna Gowda and R. V. Anavekar, "Elastic properties and spectroscopic studies of lithium lead borate glasses," Ionics, vol. 10, no. 1-2, pp. 103-108, 2004.

[25] D. Singh, K. Singh, G. Singh et al., "Optical and structural properties of ZnO-PbO[B.sub.2][O.sub.3] and ZnO-PbO-[B.sub.2][O.sub.3]-Si[O.sub.2] glasses," Journal of Physics: Condensed Matter, vol. 20, no. 7, pp. 1-6, 2008.

[26] K. Gabr Mohamed, A.-A. Ali, and A. Gamal El-Din Mostafa, "Infrared analysis and physical properties studies of [B.sub.2][O.sub.3]. CaO.ZnO.Ti[O.sub.2] glass system," Turkish Journal of Physics, vol. 31, pp. 31-39, 2007

[27] B. Shasidahar, N. Srinivasa Rao, and R. Syed, "Spectroscopic studies of [Bi.sub.2][O.sub.3]-[Li.sub.2]O-ZnO-[B.sub.2][O.sub.3] glasses," Solid State Sciences, vol. 10, no. 3, pp. 326-331, 2008.

[28] B. Karthikeyan and S. Mohan, "Structural, optical and glass transition studies on [Nd.sup.3+]-doped lead bismuth borate glasses," Physica B: Condensed Matter, vol. 334, no. 3-4, pp. 298-302, 2003.

[29] S. G. Motke, S. P. Yawale, and S. S. Yawale, "Infrared spectra of zinc doped lead borate glasses," Bulletin of Materials Science, vol. 25, no. 1, pp. 75-78, 2002.

[30] H. Doweidar, M. A. A. Zeid, and G. M. El-Damrawy, "Effect of gamma radiation and thermal treatment on some physical properties of ZnOPbO[B.sub.2][O.sub.3] glasses," Journal of Physics D, vol. 24, no. 12, pp. 2222-2228, 1991.

[31] M. Pal and B. Roy, "Structural characterization of borate glasses containing zinc and manganese oxides," Journal of Modern Physics, vol. 2, pp. 1062-1066, 2011.

[32] K. El-Egili, "Infrared studies of [Na.sub.2]O-[B.sub.2][O.sub.3]- Si[O.sub.2] and [Al.sub.2][O.sub.3]-[Na.sub.2]O-[B.sub.2][O.sub.3]-Si[O.sub.2] glasses," Physica B, vol. 325, pp. 340-348, 2003.

[33] B. N. Meera and J. Ramakrishna, "Raman spectral studies of borate glasses," Journal of Non-Crystalline Solids, vol. 159, pp. 1-21, 1993.

[34] G. E. Walrafen, S. R. Samanta, and P. N. Krishnan, "Raman investigation of vitreous and molten boric oxide," The Journal of Chemical Physics, vol. 72, pp. 113-120, 1980.

Chandkiram Gautam

Advanced Glass and Glass Ceramics Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, India

Correspondence should be addressed to Chandkiram Gautam; gautamceramic@yahoo.com

Received 6 May 2014; Accepted 28 June 2014; Published 13 July 2014

Academic Editor: Israel Felner

Table 1: Nomenclature of glass samples and their
compositional distributions.

                             ([Pb.sub.x][Bi.sub.1-
                             x])Ti[O.sub.3]
                                           (2Si[O.sub.2]-
Glass sample                                 [B.sub.2]
code            Composition x   Weight %     [O.sub.3])

BT1L0.0              0.0           55            44
PBT1L0.1             0.1           55            44
PBT1L0.3             0.3           55            44
PBT1L0.5             0.5           55            44
PBT1L0.7             0.7           55            44
PBT1L0.9             0.9           55            44

                             Glass transition
                               temperature,
Glass sample    [La.sub.2]      [T.sub.g]
code            [O.sub.3]      ([degrees]C)

BT1L0.0             1              558
PBT1L0.1            1              541
PBT1L0.3            1              532
PBT1L0.5            1              530
PBT1L0.7            1              514
PBT1L0.9            1              500

Table 2: Peak position of IR spectra of different glass
samples in the system 55[([Pb.sub.x][Bi.sub.1-x])Ti[O.sub.3]]
-44[2Si[O.sub.2] x [B.sub.2][O.sub.3]]-1[[La.sub.2][O.sub.3]].

                                        Wavelength of different
                                        absorption peaks ([cm.sup.-1])

                  1        2      3          4             5

Glass code                               a      b      a      b

BT1L0.0         3396      2928   2265   1631   1596   1384   1350
PBT1L0.1      3325/3384   2928   2343   1631   1600   1384   1350
PBT1L0.3        3393      2925   2343   1631   1596   1400   1350
PBT1L0.5        3400       --     --    1631   1600   1384   1350
PBT1L0.7        3387       --     --    1631   1587   1384   1350
PBT1L0.9        3387       --     --    1631   1596   1384   1350

                                         Wavelength of different
                                         absorption peaks ([cm.sup.-1])

               6      7        8       9    10    11       12

Glass code                                               a     b

BT1L0.0       1190   1121     987     753   656   612   437   418
PBT1L0.1      1190   1121     987     756   656   612   437   418
PBT1L0.3      1190   1121     987     753   656   612   437   418
PBT1L0.5      1190   1109   987 912   753   656   612   437   418
PBT1L0.7      1190   1106     987     750   656   609   437   418
PBT1L0.9      1190   1109     987     753   656   612   437   418

Table 3: Assignment of infrared and Raman bands in the spectra
of different glass samples.

Wavenumber
([cm.sup.-1])

IR           Raman       IR assignments          Raman assignments

418-437      400-900     Vibrations of metal     Metaborate groups
                         cations such as         and symmetric
                         [Pb.sup.2+] ions and    breathing vibrations
                         doubly degenerate       of six-member rings
                         stretching vibration    with one or two
                         of Bi[O.sub.3]          B[O.sub.3] triangles
                         groups                  replaced by
                                                 B[O.sub.4]
                                                 tetrahedra

612-656      --          Combined vibrations     --
                         of B[O.sub.4] and
                         Pb[O.sub.4] groups

750-756      700-725     Bonding of B-O-B        Symmetric breathing
                         linkages (diborate      vibrations of
                         linkage)                B[O.sub.3] triangles
                                                 replaced by
                                                 B[O.sub.4]
                                                 tetrahedra

1035         820-850     Stretching vibration    Symmetric breathing
                         of B-O-Si linkage       vibrations of six-
                                                 member rings with
                                                 one or two
                                                 B[O.sub.3] triangles
                                                 replaced by
                                                 B[O.sub.4]
                                                 tetrahedra

987          --          Stretching              --
                         vibrations of B-O-
                         Bi linkage

1106-1121    --          Stretching vibration    --
                         of B[O.sub.4]
                         tetrahedra groups

1200-1635    --          Asymmetric              --
                         stretching
                         relaxation of the B-
                         O bond of trigonal
                         B[O.sub.3] units

2265-2343    --          -OH bonding             --

2700-3000    2656-2694   Hydrogen bonding        Hydrogen and-OH
                                                 bonding

3325-3400    --          Hydroxyl or water       --
                         groups and O-H
                         stretching
                         vibrations
COPYRIGHT 2014 Hindawi Limited
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2014 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Research Article
Author:Gautam, Chandkiram
Publication:Physics Research International
Date:Jan 1, 2014
Words:4259
Previous Article:Measurement in the de Broglie-Bohm interpretation: double-slit, Stern-Gerlach, and EPR-B.
Next Article:Analytical approximations of whispering gallery modes in anisotropic ellipsoidal resonators.
Topics:

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters