Printer Friendly

Strength & potency: do you know the difference? The constituent percent of botanical extracts should be referred to as strength, with potency measurements left to define the biological impact.

The first two columns of this "Botanical Basics" series provided tools to 1) understand how a single name can refer to a variety of botanical materials, such as the plant itself, the ingredient, finished product, etc. and 2) understand extract types with regard to complexity, solvents and herb to-extract ratios. Last time (June issue) I preempted exploring the connection between strength and potency, and how it relates to standardization of botanical ingredients, for in-depth coverage of botanical ingredient identification. Now I return to strength and potency.

The botanical ingredients used by industry are generally identified by three elements: name, price and a percent of something, as if these ingredients were tine chemicals of a specified purity. Herb X, constituent Y and Z percent are presented as if that, and price, is all one needs to know in order to make a wise purchasing decision. I'd like to take a deeper look at this Z percent-constituent Y designation and determine what it means, and doesn't mean, with regard to strength and potency. Perhaps this will change your thinking on the topic, or if you haven't considered it before, then to get you thinking about it.

Botanical or Chemical?

Fine chemicals are different than botanical ingredients. The former are single, chemically defined materials to which a purity can be assigned. Vitamins and minerals are available for purchase in supplement products in different forms at different purity levels. Botanical ingredients are much more complex because they are comprised of multiple groups of multiple constituents; they cannot be accurately represented as a fine chemical, unless of course, it is essentially a fine chemical extracted from a botanical.

There are cases where it may make sense to think of a botanical more or less as a chemical, such as when its bioactivity is derived from a single constituent, or a group of constituents. This is the case when the desired effect from a botanical ingredient can be obtained from those constituents administered alone. For example, the anti-anxiety effect of kava's underground parts can be obtained from its kavalactone constituents, of which there are six that are known to occur in substantial concentrations. If those six constituents are consumed in the same ratio and amount as they occur in a crude kava extract, their pharmacological effects are virtually the same as those from the extract.

When the bioactivity of an extract can be accounted for by an individual or group of constituents, it is most like a drug in the sense that the identified chemicals account for the activity of that extract. This is true only when the bioactivity is fully accounted for by those constituents. In such cases, the source of the chemical hardly matters. Caffeine is stimulating whether it is found in coffee, tea, guarana or verba mate, and whether isolated, synthesized or purified. Herbal substances and herbal preparations containing such constituents with known therapeutic activity are defined as "standardized" by the European Medicines Agency and adjustment of these constituent concentrations by the mixing of production batches or with excipients is allowed. It is their potency, as well as their chemistry, that is standardized.

Measuring Potency

Although the term "potency" has other powerful connotations, I'm using it to refer to pharmacological activity: the capacity to produce a physiological effect. This is, after all, what drugs do; they produce physiological effects. Their potency is assumed to be in direct relationship to the amount of drug substance present. This is true for nutrients too, and how we buy supplements. Twice the amount of vitamin C is, well, just that. However, different forms of vitamins and minerals can be absorbed differently and have varying levels of pharmacological activity. In these cases their potency differs while the amount of source nutrient may remain the same.

However, the measured amount of a botanical constituent doesn't always equate to the amount of its biological activity. For example, the percent of an identified botanical constituent is rarely a direct measure of the bioactivity of the source botanical. By bioactivity I mean the size, magnitude of pharmacological activity, or biological response, which must be measured in a biological system, not a purely analytical chemical one. There are chemical assays to measure the amount of chemical, and biological assays to measure the amount of biological response.

Biological assays are not new. When digitalis and its extracts were used to treat congestive heart failure, biological assays were suited to measure the potency of the drug, because chemical assays were not. An official drug was made from the leaves of Digitalis purpurea (foxglove) and sold in powder form, after adjusting to a standard pharmacological strength, along with tablets, tinctures and injections. Related drugs were made from D. lanata, (Grecian or woolly foxglove), D. In tea (straw foxglove), and D. thapsi (Spanish foxglove) said to be 2-3 times more potent than D. purpurea (Pharmacognosy, SB Gokhale, Pragati Books Pvt. Ltd. 2008).

The therapeutic dose of digitalis is not a whole lot less than the toxic dose, so a measure of its potency was critically important for doctors and their human patients, and quite unfortunate for the frogs and pigeons it was tested on. The use of another bioassay, a rather curious one, is mentioned in a 1972 paper from the Journal of Pharmaceutical Sciences titled "Biological and chemical evaluation of a 43-year-old sample of Cannabis fluidextract" authored by Kubena RK, Barry H, Segelman AB, Theiner M, and Farnsworth NR (Jan;61(l): 144-5) in which not only did the chemical constituents of a 43-year-old cannabis liquid extract hold up after room temperature storage over that time, but it also produced the "characteristic ataxia in dogs" after oral administration! Indeed, among the biological assays present in the Pharmacopoeia of the United Slates of America, Ninth Decennial Revision, of 1916 (pages 605-606) is a description of the assay used, in which a standard cannabis tincture is defined as producing incoordination in dogs when administered in a dose of 0.3 milliliters for each kilogram (2.2 pounds) of the weight of the dog. Fox terriers are noted as serving very well for the purpose. 1 wonder if that's true for Jack Russell terriers too.

Biological Standardization

A decade or two ago there was a move to not only identify botanical ingredients and to profile them chemically, but also to assign a biological standard to their activity to "biologically standardize" them. Biological standardization requires measuring bioactivity in a biological system of some kind. However, the bioassays tended to be in vitro--test tube ones, not frogs, pigeons or dogs. Since that time, other assays have been proffered as indicators of biological activity. Most notable among these has been antioxidant values, with ORAC (oxygen radical absorbance capacity) the most famous of them.

While ORAC isn't a biological system, I mention it because it was assumed to be a proxy for one. The theory was that if certain plant constituents could quench free radicals in a test tube, then they would do the same thing in the human body, thereby preventing the nasty effects of free radical induced chronic disease. Nice theory, but it's wrong. Plant constituents that have antioxidant activity in a test tube probably do have beneficial effects, but not through direct antioxidant activity in the body. Other, more subtle mechanisms are likely at work.

While there is good reason to believe that dark colored fruits and vegetables are good for us, there is insufficient evidence to support the concept that a higher ORAC value means a necessarily healthier ingredient. In fact, the U.S. Department of Agriculture's concern about the misperception (and misuse) of their published ORAC values led to their removal from the USDA website. (Problems with the reproducibility of the method have also been noted.) The unfortunate result is that while ORAC values do measure something, it may not be directly relevant to human health, which is too bad. If the antioxidant value of blood was a validated biomarker for health and eating foods high in ORAC values raised it, wouldn't life be easier? Or at least picking which colors of foods and how much of them to eat might be.

Getting back to the basics now, herbal preparations in the form of extracts with identified marker constituents are widespread commodities. Most often these extracts are incompletely defined by marker compounds; the marker compounds don't fully account for the bioactivity of the source extract and therefore aren't a measure of potency. Because of this, two different extracts can have the same amount of an identified constituent but produce different levels of biological effect. Let's call the level of constituent marker a determination of strength and leave potency measurements to the pharmacologists, shall we?

By Steven Dentali, PhD

Steven Dentali, PhD, vice president, Botanical Sciences, Herbalife International of America, Inc., studied herbal medicine in the Pacific Northwest, finding a disconnect between the herbal and academic communities. He subsequently earned his doctorate in Pharmaceutical Sciences with a specialization in Natural Products Chemistry from the University of Arizona, Tucson. An American Foundation for Pharmaceutical Education Fellow, Dr. Dentali is recognized as a foremost expert in the natural products industry. He is a member of the United States Pharmacopoeia 2010-2015 Convention, Editorial Board Chair of AOAC International, and is an advisory board member of the American Botanical Council and the American Herbal Pharmacopeia. A frequent lecturer he also serves as a reviewer for the National Center for Complementary and Alternative Medicine at NTH. He can be reached at stevend@herbalife.com; Website: www.herbalife.com.
COPYRIGHT 2013 Rodman Publishing
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2013 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Botanical Basics
Author:Dentali, Steven
Publication:Nutraceuticals World
Geographic Code:1USA
Date:Sep 1, 2013
Words:1584
Previous Article:European health claim regulation: unifying the EU? Absence of guidance regarding the regulatory status of botanicals continues to leave industry...
Next Article:The omega 3 market: essentially innovative: as Big Pharma gets in the game, will dietary supplement companies be swimming upstream?
Topics:

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters