Printer Friendly

Sows' parity and coconut oil postnatal supplement on piglets performance/Numero de partos y la suplementacion de aceite de coco para lechones recien nacidos.


Sows genetic development is intended for breeding, and to obtain prolific sows. Changes in management allowed the increase in a large number of weaned piglets per sow per year, from an average of 21-23 piglets (1) to near 28-30 weaned piglets per female per year (2). Consequently, there was an increase of problems related to birth weight, a large variability in weight between piglets (3), and competition for colostrum between pigs, increasing the challenge of the pig farmers in relation to management practices adopted after the farrowing. Besides this, sows of different age and different parities tend to have different litter size and weight at birth and weaning (4).

The piglet body energy stored at birth is present in the form of glycogen and fat. However, the available energy from glycogen and fat derivatives for newborn piglets is particularly low. Carbohydrates are the first source of energy used by newborn pig, and its absorption is significantly accelerated during the exposure to cold (5) leading to rapid depletion of glycogen. The amount of body fat is also particularly low at birth, and most of them are not available for oxidation. Thus, large litter with low weight neonatal piglets may result in high mortality rates in the first three days of life, mainly during cold weather (6). One way to overcome this issue may be to supply energy-rich supplements from sources of fast digestion and absorption to the piglets in their first days of life.

Triglycerides of medium chain fatty acids have 6 to 12 carbon atoms which are more easily digestible and metabolized than those of the long chain. The best response of lipids from coconut oil is related to its high number of medium chain fatty acids, which provides higher and faster absorption by the lymphatic system. This peculiarity distinguishes it from fatty acids of the other animal or vegetable fats. Thus, studies were carried out to assess the feasibility of using supplements such as coconut oil on blood homeostasis and improvement of the energy status of newborns piglets (7) obtaining conflicting results about to its benefits.

The present study aimed to evaluate the effects of parity and coconut oil supplement on the development of piglets after the farrowing.


Animals and husbandry. The study was carried out in a commercial pig farm located at latitude 22[degrees]18'50" S and longitude 53[degrees]49'3" W, and an altitude of 360 m in Midwestern Brazil. The regional climate is Aw (according to Kopper classification), which means tropical climate with rain during the summer and dry season during winter. The farm had a total of 2300 sows genetically bred for prolific results. A total of 51 sows from different parity and their litter (624 piglets) were used in the trial. Sows were selected according to their integrity (locomotion, udder morphology, body score- 3 or 4 in a 5 scale). Primiparous sows were identified and analyzed separately. All females were kept under the same housing conditions, handling and feeding, and parturient sows had full assistance. After birth, the piglets were dried with paper towels and the umbilical cord cut and disinfected with iodine solution. Approximately 12 hours after the end of each birth piglets were individually weighed and identified with earrings numbered in sequential order. After identification, all of the piglets in the room the litters were equalized.

Experimental procedure. The piglets were distributed in a completely randomized design in two treatments (CG- control group and TG-test group). Each litter was present in the two treatments (50% of piglets in each group). Piglets from the test group received 3.0 ml of coconut oil 12 hours after birth and a second dose (3.0 ml) was provided 36 hours after the first. The coconut oil was administrated via oral. Piglets were weighed again individually at 21 days of age.

For evaluating the results of the coconut oil in the piglets weight gain, they were grouped according to their weight range 0.600 to 0.900 kg; 1.000 to 1.499 kg; 1.500 to 1.999 kg; and 2.000 to 2.4999 kg.

To determine the effect of the sows' parity on the litter size and neonatal piglets' weight sows parity sequence (1st to 7th) were considered the treatments. Analysis of variance was applied to data on weight of neonatal piglets and at 21 days of age, and F test was used for comparing the mean values. To evaluate the effects of parity the number of piglets and their neonatal weight data analysis of variance was applied, and Turkey's test was used at a 95% level of confidence. To assess the correlations between parity, size and litter weight Pearson correlation analysis was applied. SAS (8) statistical program was used for computing data.


Effect of parity on the number and weight of neonatal piglets and at 21 days of age. In general, both variable's size of litter (SL) and neonatal piglet weight (NPW) were influenced by parity. Smaller variations of both size of litter and weight of neonatal piglets were observed for 3rd and 4th parity. For the sows in 1st, 2nd, 5th, 6th and 7th parity a variation was found in the range of 15.36% to 26.86% for SL, and from 13.76 to 19.96% to NPW. Results suggest greater homogeneity in terms of both the size of litter and weight of neonatal piglets for sows between the 3rd and 4th gestation. There was an effect of parity in SL and NPW (Table 1).

Females of 4th, 5th, and 7th parity had larger litters than those from 2nd parity. Other sequence of parity did not differ. These results are in agreement with Bortolozzo and Wentz (9) who claim to have reduced the number of piglets born on the second parity in relation to the first, in several Brazilian farms.

Sows from 1st and 2nd parity presented longer time to return to estrus than sows from the 3rd parity (10). Sows from 1st and 2nd parity often eat less fodder during lactation (11) and, therefore, present stronger association between body weight loss during lactation and the weaning-to-estrus interval (12). Low ingestion of energy combined with high demand of energy for maintenance, milk production and body growth enhance the negative energy balance and catabolic stage in primiparous sows. This worsens the secretion of LH, the follicles maturation, and the occurrence of post weaning estrous. Sows which returned to estrus 7 to 10 days after weaning present decrease in farrowing rate and litter size, when compared to sow which return to estrous in 5 to 6 days (13). This may explain the reduction in size litter found in the present study, in sows, during 2nd parity.

Sows from 2nd and 3rd parity sequence had heavier piglets in litter, when compared to others, which is probably due to the fact that the litter had fewer piglets with higher individual weight. This could be confirmed by the correlations between the factors of order of birth, weight and litter size at birth. Higher parity increased the size of litter (0.2665; p<0.01), but decreased piglet's weight at birth (-0.3144; p<0.01). And higher the birth order and the number of piglets per litter, the smaller the individual weight of neonatal piglets (-0.4334; p<0.01; Figure 1).

The piglets from the sows of 2nd, 3rd, and 4th sequence of parity were found within the ideal range of mean birth weight (14). However, those born from sows of 1st, 5th, and especially 7th parity presented neonatal weight considered low to critical. The age of sows interfere directly on the size of litter. Holanda et al (4) found quadratic effect of the age of sows on the size of litter, and the age in which this effect is maximized is 3.12 years. Higher size litters were found in sows aging 2.84 to 3.84 years, in the 5th and 6th parity, respectively. Quesnel et al (15) found an increase in the number of neonatal born alive piglets up to the 6th parity, and for the total size of litter up to the 7th parity. It should be expected an increase in the size of litter after the 2nd parity, and this occurs due to the increase in the ovulation rate and/or the survival of neonatal piglets. However, Vonnahme et al (16) found that parity sequence (2nd to 14th) did not affect ovulation rate and number of viable embryos and length of uterine horns sows at 25, 36 and 44 days of gestation, suggesting that the increase in embryos survival is responsible for the increase in litter size as the number of reproductive cycles increases.

The increase of prolificacy with increasing age of the sow has an indirect influence on individual neonatal piglet weight, assuming substantial value on the characteristics of variability of litter (4). The results found in the present study differ from those of Holanda et al (4) whose findings show a positive and linear effect of sows' age at parity on the weight of neonatal piglets showing that the aging of sows led to heavier born piglets. In a study using sows in 1st to 10th parity sequence. Borges et al (17) found that parity affects the mean neonatal piglet weight, and the best findings were shown in sows, in the 3rd parity. However, the authors did not find a difference in relation to the number of born-alive piglets, dead neonatal piglets, or mummified embryos. Other researches also show an association between the size of litter and the weight of neonatal piglets, indicating a reduction of nearly 20 g in each additional piglet (4,18). This result of the size of litter on the weight of neonatal piglets confirms the results found by Kapell et al (19) and Bianchi (20). The authors show that large litter size with low neonatal weight leads to weak and less active piglets than others, implicating in high mortality before weaning.

Effect of coconut oil supplement in the weight gain of piglets. Mean neonatal piglets weight was 1.262 and 1.254 kg for the group test and control, respectively. Of all neonatal piglet weight, the higher frequency occurred between 0.9 and 1.5 kg (Figure 2). Similar values of mean average of weight of neonatal piglets were found by Fraga et al (21). Overall, there was no effect of supplementation of coconut oil on the weight of the piglets 21 days old, which were 5.080 kg and 5.020 kg for piglets supplemented with coconut oil and non-supplemented, respectively. The highest frequency of weight of piglets 21 days old occurred between the values of 4.2 to 6.0 kg suggesting that despite the oil supplementation did not contribute to the weight gain of the piglets, most of these had normal development during farrowing, as recommended by EMBRAPA (14). In a previous study, Hollanda et al (4) found slightly higher values for neonatal piglet weight (1.35 kg) and at 21 days old (5.6 kg).

When different weight categories were evaluated no beneficial effect of coconut oil supplementation on the performance of piglets (p>0.05) was detected, indicating that the supply of energy supplement showed no advantages on piglets weight gain, even for those of low neonatal weight, which typically have low body energy reserves (Table 2).


According to Empresa Brasileira De Pesquisa Agropecuaria (EMBRAPA) (14), pig farmers must do their best to ensure that piglets obtain average daily weight gain of greater than 0.250 kg per day during farrowing. In the present study only the piglets belonging to the range of birth weight from 2.000 to 2.499 kg proven to increase this amount of weight. The body and colostrum carbohydrates are the main energy sources during the first hours, but the progressive decline of the respiratory rate during the first postnatal day provides evidence of the growing importance of lipids as an energy source during this time (22, 23). However, the low use of fatty acids as energy source during the neonatal period could be due to the limited potential for oxidation of fatty acids or other substrates of carbohydrates (24). The limited role of oxidation of fatty liver in newborn piglets acid level is low due to the mitochondrial activity and quantity of the enzyme 3-hydroxy- 3-methyl glutaryl- CoA synthase (25), which develops gradually with age. This fact could explain the findings in the present study. Thus, energy supplements to be provided in the first neonatal hours can cause some benefit when it is of digestible carbohydrates.

Parity affected the weight of piglets and the size of litter. Sows in second parity had smaller litter size, but with higher mean neonatal piglet weight. Energy diet of coconut oil in the first 48 hours did not increase piglets' performance, even for those with low neonatal weight, which typically have very low body energy reserves.


El desarrollo genetico de las cerdas esta enfocado en la reproduccion, y para obtener cerdas prolificas. Los cambios en gestion permitieron incrementar en un gran numero de lechones destetados por cerda por ano, de un promedio de 21-23 lechones (1) a casi 28-30 lechones por hembra por ano (2). Consecuentemente, hubo un incremento en los problemas relacionados con el peso al nacer, una gran variabilidad de peso entre lechones (3) y competencia por calostro entre cerdos, incrementando el reto de los granjeros de cerdos en relacion con las practicas de gestion adoptadas durante el parto. Ademas, las cerdas de diferentes edades y paridades tienden a tener camadas y pesos distintos al momento de nacer y destetar (4).

Le energia corporal de un lechon almacenada al nacer esta presenta en forma de glucogeno y grasa. Sin embargo, la energia disponible de glucogeno y derivados de la grasa es particularmente baja en lechones. Los carbohidratos son la primera fuente de energia utilizada por un cerdo neonato, y su absorcion se acelera de manera significativa durante su exposicion al frio (5) llevando a un agotamiento rapido de glucogeno. La cantidad de grasa corporal es particularmente baja al nacer, y la mayoria de ellas no esta disponible para oxidacion. Por esto, un camada grande con cerdos neonatos de bajo peso puede resultar en altas tasas de mortalidad en los primeros tres dias de vida, principalmente durante clima frio (6). Una forma de sobrellevar este problema puede ser proveer suplementos ricos en energia de fuentes de rapida digestion y absorcion para los lechones durante sus primeros dias de vida.

Los trigliceridos de acidos grasos de cadena media tienen de 6 a 12 atomos de carbono los cuales son mas facilmente digeribles y de metabolizar que los de cadena larga. La mejor respuesta a los lipidos del aceite de coco esta relacionada a este alto numero de acidos grasos de cadena media, lo cual proporciona una absorcion mayor y mas rapida en el sistema linfatico. Esta peculiaridad los distingue de acidos grasos de grasas animales o vegetales. Por ende, se llevaron a cabo estudios para evaluar la factibilidad de utilizar suplemento como el aceite de coco en homeostasis de sangre y una mejora en el estado de energia de lechones neonatos (7) obteniendo resultados conflictivos con relacion a sus beneficios.

Este estudio tiene el objetivo de evaluar los efectos de paridad y suplementos de aceite de coco en el desarrollo de lechones despues del parto.


Animales y cria. El estudio fue llevado a cabo en una granja comercial de cerdos ubicada en latitud 22[degrees]18'50" S y longitud 55[degrees]49'3" O, a una altitud de 360 m en el medio oeste de Brasil. El clima regional es Aw (de acuerdo a la clasificacion Kopper), lo cual significa un clima tropical con lluvias durante el verano y un clima seco durante el invierno. La granja tenia un total de 2300 cerdas geneticamente criadas para resultados prolificos. Un total de 51 cerdas de diferente paridad y sus camadas (624 lechones) fue utilizada para la prueba. Las cerdas fueron seleccionadas de acuerdo a su integridad (locomocion, morfologia de la ubre, puntaje de cuero- 3 o 4 en una escala de 5). Las cerdas primiparas fueron identificadas y analizadas de manera separada. Todas las hembras se mantuvieron bajo las mismas condiciones de vivienda, manejo y alimentacion, y se les dio asistencia completa a las cerdas parturientas. Luego de nacer, los lechones fueron secados con toallas de papel y su cordon umbilical cortado y desinfectada con solucion de yodo. Aproximadamente 12 horas despues del final de cada parto, los lechones fueron individualmente pesados y identificados con aretes numerados en orden secuencial. Luego de su identificacion, todos los lechones en el cuarto y las camadas fueron ecualizadas.

Procedimiento experimental. Los lechones fueron distribuidos en un diseno completamente aleatorio en dos tratamientos (CG- grupo de control y TG- grupo de prueba). Cada camada estuvo presente en dos tratamientos (50% de los lechones en cada grupo). Los lechones del grupo de prueba recibieron 3.0 ml de aceite de coco 12 horas despues de nacer, y el segundo recibio 3.0 ml de aceite de coco 36 horas despues de su primera comida. El aceite de coco fue administrado via oral. Los lechones fueron individualmente pesados a los 21 dias de nacer.

Para evaluar los resultados del aceite de coco en el incremento de peso de los lechones, fueron agrupados de acuerdo a su rango de peso (0.600 a 0.900 kg; 1.000 a 1.499 kg; 1.500 a 1.999 kg; y 2.000 a 2.499 kg).

Para determinar el efecto de la paridad de cerdas en el tamano de la camada y el peso de los lechones neonatos la secuencia de paridad (1ra a 7a) fue tomada en cuenta en los tratamientos. El analisis de varianza fue aplicado a los datos del peso de lechones neonatos y a los 21 dias de edad, y una prueba F fue utilizada para compara los valores medios. Para evaluar los efectos de la partida del numero de lechones y el analisis de datos de peso al nacer se aplico la varianza, y la prueba de Turquia fue utilizada a un nivel de confianza del 95%. Para evaluar las correlaciones entre paridad, tamano y peso de la camada se utilizo un analisis de correlacion Pearson. El programa estadistico SAS (8) fue utilizado para computar los datos.


Efectos de paridad sobre el numero y peso de lechones neonatos y a los 21 dias de edad. En general, ambas variables, tamano de camada (SL) y peso de lechon neonato (NPW) fueron influenciadas por la paridad. Se observaron menores variaciones tanto en el tamano de la camada como en el peso de los lechones neonatos para la 3ra y 4ta paridad. Para las cerdas de paridad 1a, 2da, 5ta, 6ta y 7a, la variacion se encontro en el rango entre 15.36% y 36.86% para SL, y de 13.76 a 19.96% para NPW. Los resultados sugieren una mayor homogeneidad en terminos de tamano de la camada y peso de lechones neonatos para cerdas entre la 3ra y 4ta gestacion. Hubo un efecto de la paridad en SL y NPW (Tabla 1).

Las hembras de 4ta, 5ta, y 7ta paridad tuvieron mayores camadas que aquellas de 2da paridad. Ninguna otra secuencia de paridad difirio. Los resultados estan de acuerdo con Bartolozzo y Wentz (9) quienes dicen haber reducido el numero de lechones nacidos en la segunda paridad con relacion a la primera en granjas Brasileras.

Las cerdas de 1ra y 2da paridad presentaron un mayor tiempo de regreso al estro que aquellas de 3ra paridad (10). Las cerdas de 1ra y 2da paridad a menudo consumen menos forraje durante la lactancia (11) y por ende presentan una mas fuerte asociacion entre perdida de peso corporal durante la lactacion y el intervalo destete-a-estro (12). La baja ingesta de energia combinada con una alta demanda de mantenimiento de energia, produccion de leche y crecimiento corporal aumenta el balance negativo de energia y fase catabolica de cerdas primiparas. Esto empeora la secrecion de LH, la maduracion de foliculos, y la ocurrencia de celo post-destete. Las cerdas que regresaron al estro entre 7 y 10 dias despues del destete presentaron una reduccion en la tasa de parto y el tamano de la camada, en comparacion con cerdas que regresaron al estro en 5 a 6 dias (13). Esto puede explicar la reduccion en el tamano de camada en este estudio, en cerdas, durante la 2da paridad.

Las cerdas de 2da y 3ra secuencia de paridad tuvieron lechones mas pesados en camada, en comparacion con otras, lo cual se debe probablemente al hecho de que la camada tenia menos lechones y un mayor peso individual. Esto se puede confirmar por las correlaciones entre los factores de orden de nacimiento, peso y tamano de camada al nacer. La mayor paridad incremento el tamano de la camada (0.2665;p<0.01), pero redujo el peso del lechon al nacer (-0.3144; p<0.01). Y a mayor orden de nacimiento y un mayor numero de lechones por camada, menor el peso individual de los lechones neonatos (-0.4334; p<0.01; Figura 1).

Los lechones de cerdas de 2da, 3ra y 4ta secuencia de paridad se encontraron dentro del rango medio ideal de peso al nacer (14). Sin embargo, aquellos nacidos de cerdas de 1ra, 5ta y especialmente 7ta paridad presentaron un peso neonato considerado bajo a critico. La edad de las cerdas interfiere directamente en el tamano de la camada. Holanda et al (4) encontro un efecto cuadratico de la edad de las cerdas sobre el tamano de la camada, y la edad en la cual el efecto es maximizado es 3.12 anos. Camadas de mayor tamano se encontraron en cerdas de edades entre 2.84 y 3.84 anos, de 5ta y 6ta paridad, respectivamente. Quesnel et al (15) encontraron un incremento en el numero de lechones neonatos nacidos vivos hasta las 6ta paridad, y para el tamano total de la camadas hasta la 7a paridad. Se debe esperar un incremento en el tamano de la camada luego de la 2da paridad, y esto ocurre debido al incremento en la tasa de evolucion y/o la supervivencia de lechones neonatos. Sin embargo, Vonnahme et al (16) encontraron que la secuencia de paridad (2da a 14ava) no afecta la tasa de ovulacion y el numero de embriones viables y la longitud de las trompas uterinas en cerdas a los 25, 36, y 44 dias de gestacion, sugiriendo que el incremento de embriones sobrevivientes es responsable por el incremento en el tamano de la camada a medida que el ciclo reproductivo aumenta.

El incremento de prolificidad con el aumento de la edad de la cerda tiene una influencia indirecta sobre el peso individual del lechon neonato, asumiendo un valor sustancial de las caracteristicas de variabilidad de la camada (4). Los resultados encontrados en el presente estudio difieren de aquellos de Holanda et al (4) cuyos hallazgos muestran un efecto lineal y positivo entre la edad de la cerda en paridad sobre el peso de los lechones neonatos mostrando que el envejecimiento de las cerdas llevo a lechones mas pesados al nacer. En un estudio utilizando cerdas de 1ra a 10a secuencia de paridad, Borges et al (17) encontro que la paridad afecta el peso medio del lechon neonato, y los mejores hallazgos se encontraron en cerdas de 3ra paridad. Sin embargo, los autores no encontraron una diferencia en relacion con el numero de lechones nacidos vivos, lechones neonatos muertos y embriones momificados. Otras investigaciones muestran tambien una asociacion entre el tamano de la camada y el peso de lechones neonatos, indicando una reduccion de casi 20 g por cada lechon adicional (4,18). El resultado del tamano de la camada sobre el peso de los lechones neonatos confirma los resultados encontrados por Kapell et al (19) y Bianchi (20). Los autores muestran que el tamano de la camada con peso neonato bajo lleva a lechones debiles y menos activos que los demas, implicando una alta mortalidad antes del destete.

Efecto del suplemento del aceite de coco en aumento de peso en lechones. La media de peso de lechones neonatos fue 1.252 y 1.254 para el grupo de prueba y control, respectivamente. De todos los pesos de lechones neonatos, la mayor frecuencia ocurrio entre 0.9 y 1.5 kg (Figura 2). Valores similares de media de promedio de peso en lechones neonatos se encontro por Fraga et al (21). En general, no hubo un efecto de suplementar con aceite de coco sobre el peso de lechones e 21 dias de edad, los cuales fueron lechones de 5.080 kg y 5.020 kg para lechones suplementados con aceite de coco y no suplementados, respectivamente. La mayor frecuencia de peso de lechones de 21 dias de edad ocurrio entre los valores de 4.2 y 6.0kg sugiriendo que a pesar del suplemento de aceite no contribuyo al aumento de peso en los lechones, la mayoria de los cuales tuvieron un desarrollo normal durante la cria, segun recomendaciones EMBRAPA (14). En un estudio previo, Hollanda et al (4) encontre valores ligeramente superiores del peso de lechones neonatos (1.35kg) y a los 21 dias (5.6kg).

Cuando se evaluaron distintas categorias de peso no se encontro ningun efecto beneficiosos del suplemento con aceite de coco en el desempeno de los lechones (p>0.05), indicando que el suministro de un suplemento energetico no mostro ninguna venta sobre el aumento de peso de los lechones, aun para aquellos de bajo peso al nacer, los cuales tipicamente muestran reservas bajas de energia corporal (Tabla 2).


Segun la Empresa Brasileira De Pesquisa Agropecuaria (EMBRAPA) (14), los granjeros de cerdos deben hacer su mejor esfuerzo para asegurar que obtengan una ganancia de peso diaria promedio mayor a 0.250 kg por dia durante la cria. En este estudio solo los lechones que pertenecian al rango de peso al nacer entre 2.000 y 2.499 kg mostraron ganar esta cantidad de peso. Los carbohidratos del cuerpo y calostro son las principales fuentes de energia durante las primeras horas, pero el declive progresivo de la frecuencia respiratoria durante el primer dia posparto ofrece evidencia de la creciente importancia de lipidos como fuente de energia durante este periodo (22,23). Sin embargo, el bajo uso de acidos grasos como fuente de energia durante el periodo neonato podria deberse al potencial limitado de oxidacion de acidos grasos y otros sustratos de carbohidratos (24). El papel limitado de la oxidacion de acido graso en el nivel de acido en lechones neonatos es bajo debido a la actividad mitocondrial y la cantidad de enzima 3-hidroxi-3metil glutaril- CoA sintasa (25), la cual se desarrolla gradualmente con la edad. Este hecho podria explicar los hallazgos del presente estudio. Entonces, los suplementos de energia a ser provistos durante las primeras horas neonatas puede causar un beneficio cuando se trata de carbohidratos digeribles.

La paridad afecto el peso de los lechones y el tamano de la camada. La 2da paridad de cerdas tuvo un menor tamano de camada, pero con un peso promedio del lechon neonato. La energia de la dieta de aceite de coco durante las primeras 48 horas no incremento el desempeno de los lechones, aun para aquellos con bajo peso neonatal, que tipicamente tienen reservas bajas de energia corporal.


(1.) Tanghe S, Missotten J, Raes K, Vangeyte J, De Smet S. Diverse effects of linseed oil and fish oil in diets for sows on reproductive performance and pre-weaning growth of piglets. Livest Sci 2014, 164:109-118.

(2.) Antunes RC. Planejando a reposicao de reprodutores (macho e femea) e impacto sobre a eficiencia reprodutiva da granja. Rev Bras Reprod Anim 2007; 31: 41-46.

(3.) Fix JS, Cassady JP., Holl JW., Herring WO., Culbertson MS., See MT. Effect of piglet birth weight on survival and quality of commercial market swine. Livest Sci 2010, 132(1):98-106.

(4.) Holanda MCR, Barbosa SBP, Sampaio IBM, Santos ES, Santoro KR. Tamanho da leitegada e pesos medios, ao nascer e aos 21 dias de idade, de leitoes da raca Large White. Arq Bras Med Vet Zoot 2005; 57: 539-544.

(5.) Hauptli L, Berto DA, Augusto RMN, Lo Tierzo V, Moraes KMCMT, Lucchesi L. Niveis de maltodextrina na dieta de leitoes desmamados aos 21 dias. Acta Sci 2012; 34(3): 273-278.

(6.) Vasdal G, 0stensen I, Melisova M, Bozdechova B, Illmann G, Andersen IL. Management routines at the time of farrowing-effects on teat success and postnatal piglet mortality from loose housed sows. Livest Sci 2011, 136(2):225-231.

(7.) Gebhart, K, Jensen D, Kitt S, Sonderman J, Hostetler C. Effect of split-suckling feeding coconut oil on piglet performance and survival. J Anim Sci 2011; 89:161.

(8.) SAS. Statistical Analysis System [CD-ROM]. Version 9.0. Cary, NC, USA: SAS Inst, Inc; 2001.

(9.) Bortolozzo FP, Wentz I. Suinocultura em acao. A femea suina gestante. Porto Alegre: Grafica da UFRGS, 2007.

(10.) Vargas AJ, Bernardi ML, Bortolozzo FP. Factors associated with return to estrus in first service swine females. Prev Vet Med 2009; 89: 75-80.

(11.) Kruse S, Traulsen I, Krieter J. Analysis of water, feed intake and performance of lactating sows. Livest Sci 2011; 135:177-183.

(12.) Thaker MYC, Bilkei G. Lactation weight loss influences subsequent reproductive performance of sows. Anim Reprod Sci 2005; 88:309-318

(13.) Poleze E, Bernardi ML, Amaral Filha WS, Wentz I, Bortolozzo FP. Consequences of variation in weaning-to-estrus interval on reproductive performance of swine females. Livest Sci 2006. 103:124-130.

(14.) Empresa Brasileira De Pesquisa Agropecuaria(BR). Producao Suinos [Internet]. Concordia (SC). EMBRAPA; 2000. [Accessed 2013 September 16]. URL Avaiable in: FontesHTML/Suinos/SPSuinos/manejoprodu. html

(15.) Quesnel H, Brossard L, Valancogne A, Quiniou N. Influence of some sow characteristics on withinlitter variation of piglet birth weight. Animal 2008; 2(12):1842-1849.

(16.) Vonnahme KA, Wilson ME, Foxcroft GR, Ford SP. Impacts of conceptus survival in a commercial swine herd. J Anim Sci 2002; 80:553-559.

(17.) Borges VF, Bernardi ML, Bortolozzo FP, Wentz I. Perfil de natimortalidade de acordo com ordem de nascimento, peso e sexo de leitoes. Arq Bras Med Vet Zootec 2008; 60(5):1234-1240

(18.) Pardo CE, Muller S, Berard J, Kreuzer M, Bee G. Importance of average litter weight and individual birth weight for early postnatal performance and myofiber characteristics of progeny. Livest Sci 2013; 157(1):330-338.

(19.) Kapell DN, Ashworth CJ, Knap PW, Roehe R. Genetic parameters for piglet survival, litter size and birth weight or its variation within litter in sire and dam lines using Bayesian analysis. Livest Sci 2011; 135(2):215-224.

(20.) Bianchi I, Junior TL., Deschamps JC., Schneider A., Rabassa VR., Correa MN. Indicadores de desempenho relacionado ao parto de femeas suinas de primeiro e segundo partos. R Bras Zootec 2010; 39(6):1359-1362.

(21.) Fraga AB, Araujo Filho JT, Azevedo AP, Silva FL, Santana RS, Machado DFBP, Costa PPS. Peso medio do leitao, peso e tamanho de leitegada, natimortalidade e mortalidade em suinos no Estado de Alagoas. Rev Bras S Prod 2007; 8:354-363.

(22.) Yun J, Swan KM, Vienola K, Kim YY, Oliviero C, Peltoniemi OAT, Valros A. Farrowing environment has an impact on sow metabolic status and piglet colostrum intake in early lactation. Livest Sci 2014; 163:120-125.

(23.) Morise A, Louveau I, Le Huerou-Luron I. Growth and development of adipose tissue and gut and related endocrine status during early growth in the pig: impact of low birth weight. Animal 2008; 2:73-83.

(24.) Lalles JP, Bosi P, Smidt H, Stokes CR. Nutritional management of gut health in pigs around weaning. P Nutr Soc 2007; 66:260-268.

(25.) Duee PH, Pegorier JP, Quant PA, Herbin C, Kohl C, Girard J. Hepatic ketogenesis in newborn pigs is limited by low mitochondrial 3-hydroxy-3methylglutaryl-CoA synthase activity. Biochem J 1994; 298:207-212.

Luan S Santos, [1] M.Sc, Fabiana R Caldara, [2] * Ph.D, Sivanilza T Machado, [2] M.Sc, Irenilza A Naas, [2] Ph.D, Luciana Foppa, [2] M.Sc, Rodrigo G Garcia, [2] Ph.D, Rafael Moura, [2] M.Sc, Simone P Machado, [2] M.Sc.

[1] Universidade Estadual Paulista, Faculdade de Medicina Veterinaria e Zootecnia, Botucatu, SP, Brazil. [2] Universidade Federal da Grande Dourados, Faculdade de Ciencias Agrarias, Dourados, MS, Brazil. * Correspondence:

Received: August 2014; Accepted: December 2014.

Table 1. Mean values of size of litter, and weight of
neonatal piglet for each treatment.

Parity     n (1)         SL (2) *                NPW (3) *

1           16     13.62 [+ or -] 2.09ab   1.29 [+ or -] 0.21abc
2            4     10.25 [+ or -] 4.74b     1.63 [+ or -] 0.74a
3            4     12.25 [+ or -] 5.51ab   1.53 [+ or -] 0.68ab
4            1      15.0 [+ or -] 3.75a    1.38 [+ or -] 0.34abc
5            4      15.0 [+ or -] 6.8a     1.26 [+ or -] 0.58bc
6            6     13.5 [+ or -] 6.96ab    1.30 [+ or -] 0.65abc
7           16     14.70 [+ or -] 2.72a     1.17 [+ or -] 0.16c
CV%                        16.97                   15.63

* Mean followed by the same letter do differ by Tukey test, p<0.05. (1)
Number of sows per treatment. (2) Size of litter. (3) Weight of neonatal

Table 2. Relative frequency (%), neonatal weight
(NPW), weight at 21 days of age (PW21) and
daily weight gain (DWG) of piglets with (TG)
or without (CG) coconut oil supplementation,
as a function of various range of neonatal

Range of        Group   N     Frequency (%)   NPW
PWB (kg)                      /Range NPW      (kg)

0.600 a 0.999   GT      72    46.75           0.835
(n=154) *                                     [+ or -] 0.12

                GC      82    53.25           0.843
                                              [+ or -] 0.09

1.000 a 1.499   GT      178   55.63           1.240
(n=320)                                       [+ or -] 0.13

                GC      142   44.38           1.238
                                              [+ or -] 0.13

1.500 a 1.999   GT      66    50.38           1.652
(n=131)                                       [+ or -] 0.12

                GC      65    49.62           1.679
                                              [+ or -] 0.13

2.000 a 2.499   GT      10    52.63           2.157
(n=19)                                        [+ or -] 0.13

                GC      9     47.37           2.136
                                              [+ or -] 0.09

Range of        Group   PW21            DWG
PWB (kg)                (kg)            (kg)

0.600 a 0.999   GT      4.319           0.166
(n=154) *               [+ or -] 0.78   [+ or -] 0.03

                GC      4.108           0.155
                        [+ or -] 0.77   [+ or -] 0.04

1.000 a 1.499   GT      5.042           0.181
(n=320)                 [+ or -] 0.9    [+ or -] 0.04

                GC      4.987           0.178
                        [+ or -] 0.9    [+ or -] 0.03

1.500 a 1.999   GT      5.654           0.191
(n=131)                 [+ or -] 0.96   [+ or -] 0.02

                GC      5.833           0.198
                        [+ or -] 0.95   [+ or -] 0.02

2.000 a 2.499   GT      7.448           0.252
(n=19)                  [+ or -] 1.84   [+ or -] 0.03

                GC      7.88            0.274
                        [+ or -] 1.43   [+ or -] 0.03

* Values inside parenthesis mean the size of the sample
for each weight range.
COPYRIGHT 2015 Universidad de Cordoba
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2015 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:ORIGINAL
Author:Santos, Luan S.; Caldara, Fabiana R.; Machado, Sivanilza T.; Naas, Irenilza A.; Foppa, Luciana; Garc
Publication:Revista MVZ (Medicina Veterinaria y Zootecnia)
Date:May 1, 2015
Previous Article:Now is the time for the Zika virus/El turno ahora es para el virus Zika.
Next Article:Evaluation of digestible lysine levels in diets with high energy density for finishing pigs/Evaluacion de niveles de lisina digestible en dietas con...

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters