Printer Friendly

Snakebite antivenom can cause severe adverse effects.

We publish this prospective study by Wood, Webb and DeMeyer (3) on the management of severe snakebites in northern KwaZulu-Natal as evidence of the high quality of care that can be achieved by dedicated practitioners in outlying nonacademic settings, and as a demonstration of how meticulous documentation in these settings can add up to useful research. This study presents the snakebite management experience at Ngwelezane Hospital, located in largely rural north-western KZN, and provides a useful model of how this condition can best be managed in resource-constrained locations. KZN and Mpumalanga have the highest incidence of snakebites in South Africa, at 24 - 34 victims per 100 000 people. The most commonly reported serious cases result from envenomation by the Mozambique spitting cobra and the puff adder. Less than 10% of snakes in southern Africa are poisonous, and these include the Egyptian cobra, black and green mamba, boomslang and vine snake.

Snakebite complications include rapid progressive swelling, compartment syndrome, haematological disorder (thrombocytopenia) and neurotoxicity. The administration of polyvalent antivenom is indicated in the event of progressive complications. But it should be kept in mind that the antivenom can also provoke adverse reactions ranging from an allergic reaction (pruritus, urticaria) to anaphylactic shock (hypotension, bronchospasm). Antihistamine, hydrocortisone and adrenaline are often administered beforehand as prophylaxis based on theoretical considerations rather than empirically proven effectiveness. Antivenom is dosed the same for children as for adults, based on the type of snakebite and the amount of venom injected. It is administered intravenously over 10 minutes in diluted form, and titrated against progression in the clinical condition. Snakebite treatment may eventually include fasciotomy or amputation for deteriorating compartment syndrome.

(1.) Hoek KGP, Schaaf HS, Grey NC, et al. Resistance to pyrazinamide and ethambutol compromises MDR/XDR-TB treatment. S Afr Med J 2009; 99: 785-787.

(2.) Moonasar D, Goga AE, Kruger PS, et al. Field evaluation of a malaria rapid diagnostic test (ICT Pf). S Afr Med J 2009; 99: 810-813.

(3.) Wood D, Webb C, DeMeyer J. Severe snakebites in northern KwaZulu-Natal: Treatment modalities and outcomes. S Afr Med J 2009; 99: 814-818.
COPYRIGHT 2009 South African Medical Association
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2009 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Ncayiyana, Daniel J.
Publication:South African Medical Journal
Article Type:Editorial
Geographic Code:6SOUT
Date:Nov 1, 2009
Previous Article:The ICT malaria Pf card test is reliable for use in primary care settings.
Next Article:Resistance to pyrazinamide and ethambutol compromises MDR/XDR-TB treatment.

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters