Printer Friendly

Signaling Mechanisms of Selective PPAR[gamma] Modulators in Alzheimer's Disease.

1. Introduction

Alzheimer's disease (AD) is the sixth leading cause of mortality in the United States. In 2018, an estimated 5.7 million Americans of all ages are living with Alzheimer's dementia and this is projected to increase to 14 million by 2050 [1]. However, there are limited options to prevent the progression of the disease. Moreover, the continuous increase in mortality rates due to AD reinforces the critical need for identifying novel molecular targets with therapeutic potential. For example, the failure of several recent potential therapies in clinical trials for improving cognitive deficits in AD by reducing amyloid beta (A[beta]) levels, suggests a need to explore alternative approaches for AD treatment that are not focused upon altering A[beta] levels.

Pathological correlations between type 2 diabetes mellitus (DM) and AD provide direct links for the development of cognitive deficits in both diseases and suggest potential application of antidiabetic drugs for AD [2, 3]. Type 2 DM is a disorder of altered glucose regulation and is associated with cognitive decline [4]. Although there are direct links between AD and DM in the manifestation of cognitive impairment, there is an understanding that impaired insulin signaling directly alters memory in AD. Insulin signaling in the brain has a significant role in modulating neuroendocrine and neurotrophic functions including synaptic plasticity [5, 6]. Therefore, extensive investigation of these correlations between the two diseases will potentiate the identification of novel therapeutic targets for the treatment of AD.

Peroxisome proliferator-activated receptors (PPARs), a subfamily of nuclear receptors, play a crucial role in regulating insulin sensitivity and may serve as potential therapeutic targets for AD. Recently, pharmacological activation by a class of PPAR subtype, PPAR[gamma] agonists thiazolidinediones (TZDs), has been found to improve learning and memory in transgenic AD animal models [7, 8]. Furthermore, meta-analysis studies indicate that pioglitazone treatment may offer therapeutic benefits in patients with early or mild-to-moderate AD [9]. Further analysis of these studies showed a significant reduction in amyloid beta and tau pathology measured in cerebral blood flow samples from AD patients. The anti-inflammatory properties and improved glucose metabolism by TZDs have helped explain how it improves cognition in AD patients and transgenic animal models of DM and AD [10, 11]. However, the molecular signaling mechanisms mediated by central PPAR[gamma] activation resulting in improved cognition in AD have not been extensively investigated. Furthermore, the use of these drugs for cognitive deficits in diabetes and AD is limited due to their poor bioavailability in the brain and off-target effects [12,13]. Therefore, there is a critical need to develop PPAR[gamma] targeted agents that display improved tolerability. To understand the significance of these chemical and pharmacological standpoints, the molecular structure and how PPAR[gamma] modulates different cellular targets need to be more thoroughly evaluated.

Recently, the focus of PPAR[gamma] has intensified, as new ligands and novel biological roles have emerged for the receptor activity, particularly for its therapeutic potential in neurodegenerative disorders, such as AD. The present review discusses the beneficial role of PPAR[gamma] ligands on the pathologies of AD and the therapeutic potential of selective PPAR[gamma] modulators as future therapy for AD.

2. Overview of PPARs

2.1. Isoforms and Expression. The PPARs are part of a subfamily of nuclear receptors that regulate several important cellular processes by activating or repressing transcription via their ligand binding domain (LBD) and DNA-binding domains (DBD) [14]. The initial PPAR (PPAR[alpha]) was cloned as a nuclear receptor from a mouse-liver genetic (cDNA) library that was activated by several endogenous and xenobiotic compounds known as peroxisome proliferators. PPARs are named for their property of increasing both the number and activity of liver peroxisomes after administering high dose of these substances for a chronic time frame in rodents. Additionally, marked liver abnormalities progressing to liver carcinomas were noted, indicating that these substances at high doses strongly induce peroxisome proliferation [15].

The PPARs are mainly divided into PPARa, PPAR[beta]/[sigma], and PPAR[gamma]. All the PPARs consist of distinct functional domains including an N-terminal transactivation domain (AF1), a highly conserved DBD, and a C-terminal ligand binding domain (LBD) that contains a ligand transactivation function (AF2). Each subtype displays distinct effects on the body; for example, PPAR[alpha] regulates whole body energy homeostasis by reducing lipid levels, regulating glucose homeostasis, and reducing insulin resistance [16]. PPAR[beta]/[delta] regulates lipid metabolism and myelination in the brain while PPAR[gamma] regulates lipid and glucose homeostasis, mitochondrial biogenesis, and inflammation [17].

The PPAR[gamma] receptor is unique in that despite being expressed from the same gene, it has different promoters and 57-exons. Hence, it consists of three isoforms, namely, PPAR[gamma]-1, PPAR[gamma]-2, and PPAR[gamma]-3. PPAR[gamma]-1 and PPAR[gamma]-3 are similar, while PPAR[gamma]-2 differs in the ligand-independent region at the N-terminus. PPAR[gamma]-2 has an extra 30 amino acid residues in the amino end, which provides a potent transcriptional activity compared to PPAR[gamma]-1 [18]. PPAR[gamma]-1 is expressed in almost all cells while PPAR[gamma]-2 is restricted in the adipose tissue [19]. In the CNS (central nervous system), all the three subtypes of PPARs are expressed, with PPAR p/8 being the most abundant subtype [20,21]. PPARa is involved in acetylcholine metabolism, excitatory neurotransmission, and oxidative stress defense [22]. PPAR[beta]/[delta] is ubiquitously expressed in all cell types including immature oligodendrocytes and promotes differentiation and myelination in the CNS [23, 24], while PPAR[gamma] is expressed predominantly in microglia and astrocytes and regulates inflammation in the CNS [25].

2.2. PPAR Signaling. PPARs regulate the expression of various genes through a complex set of mechanisms. The homo PPAR forms a heterodimer with another class of nuclear receptors, retinoid X receptors (RXR). During unstimulated conditions, the heterodimer complex is associated with corepressors (NCoR and SMRT), which suppress gene transcription [26]. Ligand binding to the hydrophobic pocket of the PPAR receptor induces conformational changes in the LBD structure, thereby resulting in its activation. Changes in the conformation on ligand binding lead to release of corepressors NCoR/SMRT or Not1, which generally prevents gene transcription, respectively. Release of corepressor with full agonist results in the stabilization of the LBD, resulting in binding of coactivators CBP/P300, p160/SRC-1, and vitamin D receptor interacting protein (DRIP) or thyroid hormone receptor associated protein (TRAP) complexes resulting in the activation of the PPAR molecule. Once activated, the PPAR/retinoid X receptor heterodimer stimulates peroxisome proliferator response elements (PPRE) in the promoter region of target genes. This scaffold recruits histone acetyl transferases and the gene transcription machinery (RNA polymerase complex), which together initiate chromatin relaxation to permit transcription of target genes [27] as depicted in Figure 1. Coactivator PGC-1[alpha] gene expression is particularly important in mediating cognition and has shown protective effects against AD. In addition, it regulates mitochondrial biogenesis, oxidative metabolism, fatty acid oxidation, and gluconeogenesis via PPARs; these effects on mitochondria, in turn, can improve brain function [28].

Apart from the above-mentioned action of PPARs involving gene transcription in the nucleus, nongenomic actions associated with the cytoplasmic PPARs have been observed. Nongenomic regulation of PPAR[gamma] is mediated by interaction with cytosolic second messengers, including kinases and phosphatases [29]. For instance, in response to mitogen stimulation, the MAP/ERK kinase, MAPK kinase (MEK)-1, binds directly to the AF2 domain of PPAR[gamma], leading to the sequestration of PPAR[gamma] in the cytoplasm. Selective inhibition of this MEK1/PPAR interaction has been proposed to offer novel pharmacological treatments of various cancers, metabolic disorders, and inflammation [30]. Recent studies indicate that posttranslational control of PPARs occurs through phosphorylation, SUMOylation, ubiquitination, and nitration [31]. The phosphorylation of PPAR[gamma] occurs at several sites via different kinases including MAPKs. An N-terminal serine phosphorylation (Ser82 in PPAR[gamma]-1 and Ser112 in PPAR[gamma]-2), mediated by MAPKs, reduces the transcriptional activity of PPAR[gamma]-1 and PPAR[gamma]-2 (in cells activated by serum) [32, 33]. Phosphorylation as a mechanism of action of PPAR[gamma] agonists has been recently suggested linking its role to obesity, inflammation, and insulin resistance [34]. For instance, rosiglitazone was found to inhibit phosphorylation of PPAR[gamma] at Ser273 by cyclin-dependent kinase 5 (CDK5) in adipose tissue. This leads to transcription of insulin-response genes (such as adiponectin and adipsin) thereby mediating antidiabetic effects. As CDK5 is activated by inflammatory mediators, targeting CDK5/PPAR[gamma] regulation may offer new avenues in treating various disorders where inflammation is a key component. SUMOylation is a posttranslational modification that regulates the stability, nuclear/cytosolic ratio, and activity of several transcription factors. Of importance is the transcriptional repression of inflammatory genes such as inducible nitric oxide synthase (iNOS) and TNF-[alpha], which are regulated by NF-[kappa]B pathway. Additionally, SUMOylation also induces recruitment of PPAR corepressors, such as NCoR as depicted in Figure 2.

The LBD of PPAR[gamma] consisting of the transcriptional AF2 motif associated with helix 12 mediates most of the pharmacological actions of PPAR[gamma] agonists [47]. The importance of AF2 motif in regulating PPAR[gamma] targeted genes has been extensively studied, thereby allowing us to understand the mechanism of ligand-induced transcriptional activation by PPAR[gamma] [48,49]. AF2 helix is in an equilibrium state between closed (active) and open (inactive) conformations in the absence of the ligand [50]. However, binding to a full agonist leads to AF2 helix getting locked in closed (active) state, thereby allowing recruitment of coactivators for transcriptional activation [51]. Hence, developing novel PPAR[gamma] ligands that stabilize the AF2 helix in distinct states between closed and open conformations would offer therapeutic advantage which is discussed in subsequent sections.

Several studies have reported that the locking of AF2 helix in its closed conformation is responsible for the antidiabetic effects as well as several side effects noted with PPAR[gamma] agonists like TZDs [52-54]. Hence, developing novel PPAR[gamma] ligands that stabilize the AF2 helix in distinct states between the closed and open conformations will selectively recruit coactivators for newer therapeutic benefits with reduced side effects [55-57].

Recently, several natural and synthetic PPAR[gamma] agonists have been developed to treat various disorders, out of which the selective PPAR[gamma] modulators (SPPAR[gamma]Ms) have attracted considerable attention because of their ability to selectively target PPAR[gamma] activity states, thereby offering therapeutic efficacy with minimal side effects [58-61]. Currently, no SPPAR[gamma]Ms have been successfully used in clinical practice, and mechanistically it remains unclear how to achieve selective PPAR[gamma] activation. The subsequent sections discuss the role of PPAR[gamma] in modulating the pathologies of AD followed by SPPAR[gamma]Ms under development for treating AD.

3. Overview of AD

Pathological changes related to AD occur many years before clinical symptoms are present. The traditional theory for the development of AD has been the amyloid beta cascade hypothesis, which postulates that pathogenic amyloid beta is the primary cause for development of AD and leads to the hyperphosphorylation of tau protein. However, it is becoming increasingly clear that a multitude of pathological mechanisms are likely at play to promote development of clinical AD [62]. Therefore, therapeutics with multiple mechanisms of action against AD pathology may be desirable in treatment of the disorder. Some early pathological processes which are increasingly recognized to contribute to AD include neuroinflammation [63], mitochondrial dysfunction [64], and dysregulated insulin signaling [65]. Amyloid beta accumulation occurs prior to clinical symptoms and persists throughout the course of the disease. Occurrence of memory dysfunction later in the disease is correlated with the severity of synaptic deficits and severity of tau pathology [66]. Therefore, an ideal AD drug may target multiple facets of the disease including inflammatory and metabolic components occurring early in disease, along with reducing pathogenic amyloid beta, hyperphosphorylated tau, and synaptic dysfunction later in the disease. In fact, PPAR[gamma] signaling exerts several potential beneficial mechanisms in early, as well as in late, AD, as it reduces inflammation, improves metabolic processes, and may directly reduce levels of pathogenic amyloid beta and hyperphosphorylated tau. The hallmarks of AD relating to its pathologies are illustrated in Figure 3.

4. PPAR[gamma] in Alzheimer's Disease

4.1. Genetic Alterations Relating PPAR[gamma] to AD. Genome-wide association studies (GWAS) indicate a strong association between late onset Alzheimer's disease (LOAD) and over twenty genomic loci [67, 68]. One of the strongest genetic risk factors of LOAD is ApoE, and the presence of the ApoE4 allele is associated with an increased accumulation of A[beta]. Several studies have shown increased ApoE-mRNA levels in LOAD brains and that cis-genetic variability contributes to differential ApoE gene expression [69-71]. Furthermore, chromosome 19q13.32, a gene rich region consisting of TOMM40, ApoE, and APOC1 genes, is implicated in several phenotypes including AD. This region exhibits a complex regulation and is enriched in potential PPAR[gamma] binding sites. PPAR[gamma] agonists decreased the levels of the TOMM40, ApoE, and APOCl-mRNAs, with the greatest effect on ApoE-mRNA through transcriptional regulation [72]. Furthermore, a study done by Barrera et al. investigated the effect of PPAR[gamma] knockdown on expression of twenty-four late onset AD-associated genes and demonstrated that PPAR[gamma] regulates the expression of seven LOAD-associated genes. Upregulation of six genes (ABCA7, ApoE, CASS4, CELF1, PTK2B, and ZCWPW1) and downregulation of one gene (DSG2) were noted and indicate that PPAR[gamma] agonists may represent an attractive class of drugs for preventing or delaying the onset of late onset AD [73].

4.2. PPAR[gamma] in Early Stages of AD

4.2.1. PPAR[gamma] and Amyloid Beta. AD is pathologically characterized by deposition of extracellular fibrillar amyloid derived from proteolytic cleavage of amyloid precursor protein (APP) and formation of senile plaques. An imbalance between A[beta] production and its clearance leads to A[beta] accumulation, which further leads to tau hyperphosphorylation and neurodegeneration [74]. PPAR[gamma] agonists have also been observed to reduce A[beta] levels either by reducing the A[beta] production or enhancing its clearance. Several studies have demonstrated the role of PPAR[gamma] agonists in decreasing A[beta] accumulation. For instance, pioglitazone-treated APP transgenic mice showed reduced transcription and expression of [beta]-secretase enzyme that processes APP to generate A[beta] [75]. However, other studies have shown that APP processing and A[beta] production are not affected by pioglitazone suggesting that decrease in A[beta] levels by PPAR[gamma] agonists may be due to A[beta] clearance [76].

A[beta] clearance in the brain is mediated by enzymatic and nonenzymatic pathways. Some of the key enzymes include insulin-degrading enzyme (IDE), neprilysin (NEP), and matrix metalloproteinase (MMP)-9. The nonenzymatic pathway includes (1) drainage through perivascular basement membranes, (2) phagocytosis by microglia or astrocytes, and (3) clearance mediated by receptors such as low-density lipoprotein receptor-related protein 1 (LRP1) and P-glycoprotein localized predominantly on the abluminal side of the cerebral endothelium [77, 78].

LRP1 is important in mediating endocytosis of various proteins such as ApoE and A[beta].

Low-density lipoprotein (LDL) receptor-related protein 1 (LRP1) is a transmembrane receptor involved in the endocytosis of more than 40 structurally different ligands, including ApoE, and A[beta] peptide [79, 80]. Levels of LRP1 are found to be decreased in AD patients indicating its role in mediating A[beta] metabolism. PPAR[gamma] transcriptionally regulates LRP1 gene due to the presence of PPRE on the LRP1 promoter region [81]. A study by Rondon-Ortiz et al. reported that rosiglitazone transcriptionally activated LRP1 gene in a concentration dependent manner in HepG2 cells [82]. Similarly, rosiglitazone upregulated LRP1 expression at both the mRNA and protein levels, via PPAR[gamma] activation [83]. In vivo studies utilizing AD models need to be performed to validate the role of PPAR[gamma] agonists and LRP1 in AD.

Apolipoprotein E (ApoE) is a lipoprotein expressed predominantly in the brain and is known to enhance A[beta] degradation and phagocytosis in the microglia and astrocytes [74]. PPAR[gamma] agonists (rosiglitazone and pioglitazone) have also been shown to induce A[beta] degradation by increasing apolipoprotein E (ApoE) concentrations in the brain [76]. ApoE can increase the concentration of Ap degrading enzyme neprilysin and insulin in astrocytes and microglia facilitating A[beta] degradation [84]. In a recent study utilizing APP/Presenilin-1 mouse model [85], activation of PPAR[gamma] enhances the microglial uptake of A[beta] resulting in reduced cortical and hippocampal A[beta] level. This effect is mediated by scavenger receptor CD36, which is a well-known player of phagocytosis. This finding can be further confirmed by observance of reduced microglial response to fibrillar A[beta] response in CD36 null mice [86]. Additionally, pioglitazone treatment on APP/PS1 mice increased the levels of ATPbinding cassette transporter (ABCA1) and ApoE, thereby decreasing the levels of A[beta] by 50%. In addition, the expression and processing levels of APP and of A[beta]-degrading enzymes were not altered, suggesting that the changes seen in amyloid deposition were a result of A[beta] catabolism [87]. Similar results were obtained with rosiglitazone treatment in a J20 mouse model [88] and with the APP/PS1 mice [89]. These studies suggest that TZDs enhance amyloid clearance in cell lines of microglia and astrocytes treated with A[beta] and these effects are related to the activation of the ApoE pathway. Interestingly, rosiglitazone improved cognition in mild-to-moderate AD patients that did not carry ApoE4 allele. In contrast, no improvements were noted in cognitive test in ApoE4 positive patients, indicating that the amyloid clearance pathway dependent on TZDs also depends on the expression of functional ApoE4 [36]. The compelling results from animal models of Alzheimer's disease underline the beneficial effects of PPAR[gamma] agonists on attenuating A[beta] pathologies for future therapies.

4.2.2. PPAR[gamma] and Neuroinflammation. Several failures in AD clinical trials have encouraged researchers to look at treatment in the presymptomatic phase, where inflammation plays a vital role in the progression of neurodegeneration. One of the many potential beneficial effects of PPAR[gamma] is its ability to downregulate inflammatory gene expression in immune cells [90, 91]. For example, PPAR[gamma] activation has been shown to modulate the microglial response to amyloid deposition in such a way that it increases A[beta] phagocytosis and decreases cytokine release [85]. The inflammatory hypothesis of AD involves activation of glial cells (microglia and astrocytes) by A[beta], which produces proinflammatory substances as a driving factor for neurodegeneration. Interestingly, a large meta-analysis reported that use of nonsteroidal anti-inflammatory drugs (NSAIDs), many of which have been shown to directly activate PPAR[gamma], is associated with a reduced risk of developing AD [92]. NSAID medications have provided key evidence that AD progression or initiation is related to neuroinflammation and that PPAR[gamma] may mediate beneficial properties of NSAIDs in relation to AD. Commonly used NSAIDs including ibuprofen, indomethacin, and sulindac have been demonstrated to activate PPAR[gamma] [93]. Under physiological conditions, the expression of PPAR[gamma] in the brain is relatively less. However, its expression as measured by mRNA levels is elevated in AD patients, suggesting that PPAR may play a crucial role in modulating the pathology of AD [94]. Collectively, these findings led to the concept that PPAR[gamma] could be an important target for mitigating brain inflammation in AD. More specifically, the activation of PPAR[gamma] suppressed various transcription factors involved in inflammation such as nuclear factor-[kappa]B (NF-[kappa]B), Stat-1, and transcription factors activator protein-1 [95] which are important proinflammatory genes as illustrated in Figure 4.

Additionally, PPAR[gamma] also downregulates cyclooxygenase-2 (COX-2), metalloproteinase-9 (MMP-9), inducible nitric oxide synthase (iNOS), proinflammatory cytokines, chemokines, and interleukins [96-98]. Thus, a reduction in PPAR[gamma] activation may contribute to chronic inflammation, and pharmacological treatment with PPAR[gamma] agonists may diminish expression of inflammatory genes. Several PPAR[gamma] ligands, both natural (15d-PGJ2, docosahexaenoic acid) and synthetic (NSAIDs and TZDs), were shown to inhibit the expression of interleukin-6 (IL-6), TNF[alpha], and cyclooxygenase-2 (COX-2) from monocytic and microglial cell cultures stimulated with A[beta] [99]. Similarly, the anti-inflammatory effects of PPAR[gamma] agonists like rosiglitazone and pioglitazone were noted in several AD mouse models [100, 101]. For example, the treatment with pioglitazone reduced astrocytes and microglial activation in the cortex and hippocampus of the A/T mouse that expresses high levels of A[beta] and TGF-[beta]1 [87]. At the same time, injection of rosiglitazone into the brain of Wistar rats, previously treated with A[beta] oligomers, prevented the increase of inflammatory cytokines levels resulting in an improvement in cognitive decline and prevention of microglia activation [102]. Interestingly, similar effects were also observed in the AD transgenic mouse models J20 and APP/PS1 with oral administration of rosiglitazone [88]. Targeting microglia and astrocyte polarization may serve as therapeutic option. Cyclin-dependent kinase 5 (CDK5) is involved in activation of microglia and astrocytes and may serve as a potential therapeutic target for PPAR[gamma] agonist therapy. This possibility is supported in a report where pioglitazone treatment, in conditional CDK5 knockout mice, displayed significant reduction in the activation of microglia and astrocytes and neuronal loss resulting in improved survival rates [103]. Mechanistically, CDK5 is a protein kinase, whose dysregulation contributes to synaptic loss and tau hyperphosphorylation in the AT8 epitope (present in the AD brain) after stimulation of A[beta] fibrils [104,105]. Together, these findings suggest that an anti-inflammatory property by TZDs involves regulating microglia and astrocytes inflammation and may involve CDK5.

Recently, PPAR[gamma] has been implicated in macrophage polarization from M1, the classically activated phenotype, to M2, the alternatively activated phenotype, in several neurodegenerative diseases. M1 microglia have proinflammatory and neurotoxic properties through secretion of proinflammatory cytokines (interleukin IL-1[alpha], IL-1[beta], TNF, and NO) [106, 107]. Alternatively, activated M2 microglia exhibit an anti-inflammatory phenotype and neurotrophic effect and degrade toxic aggregates due to anti-inflammatory interleukin production [106, 107]. The importance of PPAR[gamma] in regulating the M1/M2 phenotypic switch has been confirmed by Amine Bouhlel et al., who demonstrated that activation of PPAR[gamma] potentiates the polarization of circulating monocytes to macrophages of the M2 phenotype [108]. Subsequent studies reported that an active PPAR[gamma] pathway is a prominent feature of alternatively activated (M2) macrophages and that M2-type responses are compromised in the absence of PPAR[gamma] expression. PPAR[gamma] expression is important for the full expression of certain genes characteristic of M2 macrophages, especially the gene encoding arginase-I, a direct PPAR target [109].

The small molecule SNU-BP was recently observed to inhibit inflammatory cytokine production and iNOS activity in LPS-stimulated microglia by PPAR[gamma] activation [110]. In addition, SNU-BP also increased IL-4 and arginase-1 expression, which are considered as M2 microglial phenotype markers; thus SNU-BP further evaluation of in vivo testing will help decipher a novel mechanism for this compound for mitigating early AD. Conversely, 12-month-old APP/PS1 mice treated with pioglitazone showed a significant reduction of the immunofluorescence intensity of microglial activator marker M1 in the surrounding area of amyloid deposits and elevated expression of M2 markers. Reduction in the levels of GFAP-immuno-reactive astrocytes surrounding amyloid plaques and internalized A[beta] peptides in astrocytes of pioglitazone-treated animals were noted. Together, these findings suggest that TZDs treatment not only reduced the inflammatory response by microglia and astrocytes but also facilitated the removal of A[beta] deposits presumably through enhancing the phagocytic activity of these cells.

Interestingly, some of the anti-inflammatory effects of PPAR[gamma] agonists appear to be independent of PPAR[gamma] activity. For instance, the rank order potency of drugs that activate PPAR[gamma] is often inconsistent with the anti-inflammatory efficacy, and expression of PPAR[gamma] does not correlate with the observed anti-inflammatory effects. Moreover, part of the anti-inflammatory effects of TZDs is unaffected in PPAR[gamma] knockout models, and secretion of both IL-6 and TNF-[alpha] is inhibited equally in both wild type and PPAR[gamma] deficient macrophages [111]. Together, these data indicate that some anti-inflammatory effects of TZDs may be due to PPAR[gamma] independent effects, thus suggesting that there exists a significant gap in understanding the mechanisms to explain how TZDs and PPARs confer their anti-inflammatory properties for AD and thus warrant further investigation.

4.2.3. PPAR[gamma] and Mitochondrial Function. Apoptosis, programmed cell death, is thought to be intimately involved in AD pathogenesis. A[beta] localized to the mitochondrial membrane can initiate the intrinsic apoptotic pathway causing neuronal cell death [112]. Dysregulated metabolism results from altered mitochondrial trafficking and enhanced mitochondrial degradation, which can lead to alteration in tau and microtubular instability [113]. Increasing evidence suggests that PPAR ligands are involved in mitochondrial regulation in adipose tissue [114,115] and other organs [116,117] indicating a potential benefit against mitochondrial dysregulation in AD. PPAR-y coactivator 1 alpha (PGC1-[alpha]) is highly expressed in the brain and acts as a critical transcriptional coactivator for mitochondrial biogenesis and cellular energy metabolism. Decreased hippocampal PGC1-[alpha] has been observed in postmortem analysis of AD patients [118]. Decreased PGC1-[alpha] expression has been reported to result in reduced mitochondrial density in various brain areas, including midbrain, cortex, and cerebellum accompanied with reduced ATP levels [119]. Both PPAR[alpha] and PPAR[gamma] agonists prevent mitochondrial size reduction by enhancing PGC1-[alpha] expression in cultured hippocampal neurons [120]. In the APP23 mouse model of AD, PGC1-[alpha] gene delivery improves spatial and recognition memory along with reduction in A[beta] level through a decrease in BACE1 activity [121]. However, excess PGC1-[alpha] can also exert deleterious effects via mitochondrial proliferation and produce toxicity in the heart [122], muscles [123], and brain, leading to cognitive impairment [124,125]. Therefore, an ideal therapeutic approach would be to increase the PGC1-[alpha] level via an indirect mechanism, i.e., through PPAR ligands. Studies on N2A cells showed that treatment with rosiglitazone increased mitochondrial mass and function through the activation of PGC1-[alpha] mediated by the PKA/CREB/AMPK pathway [126]. In another study, chronic treatment with pioglitazone attenuated oxidative damage, restored mitochondrial respiratory activity, and enhanced mitochondrial biogenesis in Wistar rats injected with A[beta] [127]. Taken together it can be stated that further research for novel therapeutic development of PPAR compounds will explore how these ligands will enhance mitochondrial function.

4.2.4. PPAR[gamma], Insulin Signaling, and Brain Insulin Resistance. Insulin signaling is known to play a crucial role in the process of memory formation as insulin receptors are densely located in key areas of the brain, namely, olfactory bulb, hypothalamus, hippocampus, cerebral cortex, striatum, and cerebellum [128-131]. Insulin is essential to maintain normal neuronal homeostasis and survival, thus promoting learning and memory specially in the hippocampus [132]. For instance, brain specific insulin receptor knockout animal model showed increased tau hyperphosphorylation with altered Akt and GSK3[beta] expression [133]. Additionally, diet induced insulin resistance in AD mice displayed increased A[beta] peptide and advanced plaque formation [134]. These studies indicate that insulin resistance serves as an underlying mechanism for the development of A[beta] production in the brain and associated sporadic memory impairment [135,136].

Postmortem studies in AD patients have shown significantly reduced levels of insulin as well as insulin like growth factor (IGF-1 and IGF2) and insulin receptor substrate-1 (IRS-1) in the brain [137]. Abnormal insulin signaling leads to impaired neuronal oxidative metabolism [138]. The increase in oxidative stress and mitochondrial dysfunction can lead to aberrant posttranslational modification of APP and accumulation of A[beta] in neurons [139]. Because of these shared features between AD and diabetes, AD has also been referred to as type III diabetes mellitus, leading to a growing interest in using insulin sensitizing agents as a potential therapy for AD [100, 140]. Rosiglitazone, a PPAR[gamma] agonist, improved neuronal insulin resistance in high fat diet rat model by increasing the phosphorylation of AKT/PKB at Ser473. Additionally, high fat diet induced brain mitochondrial dysfunction and oxidative stress were attenuated by rosiglitazone [141].

The Wnt signaling pathway is important in mediating several functions in the central nervous system, including neuroprotection and synaptic plasticity, and deregulated Wnt signaling has been shown to be associated with AD [142]. Dysfunctional Wnt signaling is associated with A[beta] deposition, tau hyperphosphorylation, and cognitive impairment as reviewed by Tapia-Rojas et al. [143]. In view of the energy dysregulation associated with AD, Wnt signaling has been shown to act as a central integrator of metabolic signals from peripheral organs to the brain, thereby promoting adequate glucose utilization in the neurons [144]. Furthermore, dysfunctional glucose utilization is also associated with several neurological disorders, indicating that Wnt signaling is important in AD pathogenesis [145, 146]. These findings suggest that pharmacological activation of Wnt pathway would be a feasible therapeutic approach for the treatment of AD.

4.3. PPAR[gamma] in Later Stages of AD

4.3.1. PPAR[gamma] and Tau. Tau proteins are microtubule associated proteins that under normal physiological conditions interact with tubulin for microtubule assembly by mediating microtubule stabilization [147]. However, under pathological conditions such as AD, tau proteins undergo hyperphosphorylation resulting in neurotoxicity. Homeostasis maintained between kinase-mediated phosphorylation and protein phosphatases-mediated dephosphorylation is important in regulating the phosphorylation state of tau protein [148]. Various important kinases regulate tau phosphorylation, including cyclin-dependent kinases (CDK2 and CDK5), GSK-3[beta], mitogen-activated protein kinase (MAPK), extracellular signal-regulated protein kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), Akt, protein kinase a (PKA), and calcium-calmodulin protein kinase 2 (CaMKII). Contrarily, PP1, PP2A, PP2B, and PP2C are important phosphatases that contribute to dephosphorylation of tau. Recent studies have shown that PPARs can also exert an effect on tau pathology. In vitro cellular studies using troglitazone and pioglitazone revealed reduced hyperphosphorylation of tau at Ser202, Ser396, and Ser404 in a tau transfected cell model involving GSK3[beta] [149]. In the 3xTg-AD mouse model, treatment with pioglitazone resulted in significantly reduced tau phosphorylated-positive neurons in the hippocampus and improved cognitive deficits [150]. These studies also revealed that treatment with pioglitazone reduced tau phosphorylation at Ser202, Ser396, Ser404, Ser422, and Thr231 in cerebral cortex and CA1 area of hippocampus. Although these findings suggest that PPAR[gamma] stimulation can reduce tau hyperphosphorylation, further mechanistic studies are needed to determine the signaling mechanism by which PPAR[gamma] offers neuroprotection against tau hyper-phosphorylation. Interestingly, the pan-PPAR agonist bezafibrate was shown to reduce tau phosphorylation in a P301 mice model by reducing iNOS and cyclooxygenase-2 in microglia [151]. Although role of PPAR[gamma] in A[beta] mediated pathogenesis is exhaustively studied, its role in tauopathy needs to be explored for potential mechanism for reducing the hyper-phosphorylation in-depth. A great variation can be noticed in the existing literature which is likely due to variation in the animal model studied and the time point of study.

4.3.2. PPAR[gamma] and Synaptic Plasticity. Moderate to severe stages of AD are characterized by synaptic failure which leads to cognitive decline and memory dysfunction. Synaptic function is dependent on specialized structures on neuronal processes called dendritic spines, and the loss of dendritic spines directly correlates with the loss of synaptic function. One of the key mediators for increasing dendritic density and synaptic plasticity is neurotrophins, including brain-derived neurotrophic factor (BDNF) [152]. Several studies have reported beneficial effects of PPAR[gamma] agonists in improving synaptic plasticity. Rosiglitazone has been shown to prevent dendritic spine loss and improve synaptic function in hippocampal neurons treated with A[beta] oligomers [126]. Decreased expression of BDNF mRNA and protein levels were noted in hippocampi of db/db mice which were restored with rosiglitazone treatment. Furthermore, PPAR[gamma] has been shown to transcriptionally regulate BDNF expression as demonstrated from promoter activity assays wherein ligand activation of PPAR[gamma] induced the BDNF promoter in a log dose-dependent manner [153]. Similarly, A[beta] injected rats treated with pioglitazone had reduced caspase-3 activation and increased BDNF levels, which was correlated with improved synaptic plasticity [127]. These observations suggest that PPAR[gamma] agonists prevent the impairment of synaptic plasticity by increasing BDNF expression and dendrite spine density.

Numerous studies have reported that kinases, such as CDK5, are also vital in the regulation of synaptic plasticity [154]. For example, a recent study showed that pioglitazone, via a proteasome-dependent manner, decreased the expression levels of p35 resulting in reduced CDK5 activity in neurons [154]. Moreover, blockage of CDK5 by pioglitazone prevented long-term potentiation (LTP) defects at CA3-CA1 synapses in APP/PS1 mice [155]. Alternatively, rosiglitazone was reported to induce an increase in the expression of neurotrophic factor-[alpha]1(NF-[alpha]1), a neuroprotective protein, which increases prosurvival protein BCL 2 expression and provides neuroprotection in hippocampus [156]. Neurotrophins, such as nerve growth factor (NGF), can also induce PPAR[gamma] activation via the tyrosine kinase (TrkA) dependent signaling pathway and promote cell survival and differentiation [157]. PGC1-[alpha] gene therapy also increases NGF and exerts neuroprotective effects in AD mouse models [158]. These observations describe the significance of TZDs towards mitigating AD via improving mitochondrial function and synapse plasticity and reducing memory loss. Overall, PPAR[gamma] activation can simultaneously promote mitochondrial functions, improve metabolic and energy regulation, modulate neuroinflammation, stimulate axonal growth and myelination, and clear toxic A[beta] from the brain [159].

5. PPAR[gamma] Agonists

5.1. Conventional PPAR[gamma] Agonists: Drawbacks and Limitations. Rosiglitazone and pioglitazone have been recognized as potential treatments for the AD through their insulin sensitizing and anti-inflammatory effects [160]. Several clinical studies have tested the efficacy of TZDs treatments in AD [161]. However, some clinical trials utilizing pioglitazone have failed to show therapeutic benefit [162, 163]. A meta-analysis study showed insufficient evidence to support use of rosiglitazone in amnestic mild cognitive impairment and AD patients. Interestingly, pioglitazone showed efficacy especially in patients with comorbid diabetes mellitus [164]. However, another meta-analysis indicated that there is no statistically significant benefit with PPAR agonists in mild-to-moderate AD patients [165]. However, as previously stated, full agonists of PPAR[gamma] mediated closed conformation of the AF2 helix is responsible for many TZDs side effects [52-54]. Some of the most common adverse effects noted with conventional PPAR agonists include edema and heart enlargement [35, 166]. Discovery and development of specific novel PPAR[gamma] ligands with improved therapeutic profiles provide a molecular framework for future developments of pharmacological PPAR[gamma] agonists with advantages over current TZDs drugs. Review of several clinical trials utilizing PPAR[gamma] agonists in the treatment of AD has been summarized in Table 1, with references and highlights of the study.

5.2. New Direction for PPAR[gamma] Agonists: Development of Selective PPAR[gamma] Modulators (SPPAR[gamma]Ms). Selective PPAR[gamma] modulators (SPPAR[gamma]Ms) have attracted considerable attention because of their ability to selectively target PPAR[gamma] activity states. Several investigators have characterized and identified promising SPPAR[gamma]Ms that serve as partial agonists for PPAR[gamma] in cell based transcriptional activity and adipogenic assays [167,168]. SPPAR[gamma]Ms specifically bind to the LBD of PPAR[gamma] via an activation function 2 motif (AF2). This offers greater flexibility in response to diverse ligands, resulting in different receptor conformations and coactivator and/or corepressor recruitment in different tissues [169]. Several SPPAR[gamma]Ms in preclinical studies have demonstrated strong insulin sensitizing activity in diet induced obese C57/BL6 mice with attenuated adverse effects on adiposity, weight gain, and cardiac related complications compared to potent full PPAR[gamma] agonists [170]. To further explain, the mechanism by which SPPAR[gamma]Ms uniquely interact with the receptor results in diminished conformational stability of the receptor when compared to traditional TZDs. Co-crystallography studies of the PPAR[gamma] LBD complexed with full PPAR[gamma] agonist rosiglitazone demonstrated strong hydrogen bonding with the Tyr473 site in helix 12 of the human PPAR[gamma] LBD. In contrast, rational drug design utilizing molecular modeling and crystallography structure analysis performed on the PPAR[gamma] LbD with SPPAR[gamma]Ms revealed that these compounds have the inability to form hydrogen bonding with Tyr473 due to the bonding distance with the carboxylic acid moiety [171, 172]. Findings from NMR studies have indicated that SPPAR[gamma]Ms induce a less stable confirmation than full PPAR[gamma] agonists (Figure 5) [173]. In addition, the Tyr473 site, within the helix 12 transcriptional activation function 2 domain, is involved in activation of the transcriptional coactivator binding pocket of the LBD [174]. Alteration of this site leads to the potential inability to directly stabilize this region and may serve as the physical basis for the differential receptor coactivator interaction, altered transcriptional activity, and reduced deleterious effects upon the heart and body associated with current full PPAR[gamma] agonists. Traditional PPAR[gamma] agonists, which display strong interaction with Tyr473, displace the inhibitory cofactors NCoR/SMRT and recruit P300/CBP, which confirms the most stable confirmation of the ligand binding pocket. These cofactors serve as histone acetylators and thus conform the receptor to the adipogenic gene in a stable confirmation. SPPAR[gamma]Ms that lack interaction with Tyr473 induce less stable confirmation and thus allow predictions for alternative cofactor associations with the receptor including PGC-1[alpha]. The potential of SPPAR[gamma]Ms in AD is just beginning and will likely lead to development of therapeutic targets for mitigating AD. Tyr473 in the AF2 region of the LBD has been shown to be a critical site of interaction between the full agonists and the PPAR[gamma] receptor. Studies on mutant PPAR[gamma]-LBD, where Tyr473 is replaced with alanine, revealed that interaction with Tyr473 is necessary for full agonist activity [175]. To this, various SPPAR[gamma]Ms such as SPPAR[gamma]M2, GW0072, INT131, and PA082 have been observed not to interact with Tyr473 residue. Recently, Bruning and coworkers demonstrated that several SPPAR[gamma]Ms (BVT13, nTZDpa, MRL-20, MRL-24, SR145, and SR147) cause activation of PPAR[gamma] by interaction and stabilization of the [beta]-sheet and H3 rather than AF2 helix of the LBD, which acts as a novel coactivator interaction site [176]. It suggests that the structurally diverse SPPAR[gamma]Ms, due to their distinct physical interaction with the receptor, uniquely bind to the receptor, resulting in diminished conformational stability compared with full agonists. Figure 5 illustrates the conformational changes in PPAR[gamma]/RXR receptor induced by the binding of full agonists or SPPAR[gamma]Ms, leading to coregulator heterodimer dissociation/recruitment, which forms the molecular basis for selective gene regulation that triggers specific metabolic effects. Studies with several SPPAR[gamma]Ms have mainly focused on four families of coregulators: NCoR and silencing mediator for retinoid and thyroid hormone receptors (SMRT), the p300 and CREB binding protein (CBP) family, the PPAR[gamma] coactivator 1 (PGC1) family, and the p160 family, which are composed of three related coactivators (SRC1/NCoA1, GRIP1/TIF2/SRC2, and pCIP/RAC3/ACTR/AIB1/TRAM1/SRC3). Corepressors NCoR and Not1 and SMRT are known to downregulate full PPAR[gamma] agonist-mediated transcriptional activity and inhibit adipogenesis [177]. Several SPPAR[gamma]Ms that induce selective PPAR[gamma] or lack displacement of corepressors have been observed to display partial or antagonistic effects on adipogenesis and yet maintained insulin sensitization. For example, telmisartan and halofenate, which act as a SPPAR[gamma]Ms, induce reduced dissociation of corepressors and thus are partially adipogenic, while GW0072 (PPAR[gamma] repressor) does not dissociate corepressors resulting in preventing adipo genesis. However, they all are effective insulin sensitizers. Alternatively, FK614 causes NCoR dissociation equal to that of rosiglitazone and is a full agonist in adipogenesis assay, but shows several characteristics of SPPAR[gamma]M in vivo [173]. Since the corepressor dissociation studies with SPPAR[gamma]Ms are limited and given that SPPAR[gamma]Ms display diverse activity in adipogenesis assay, their effects on AD needs to be further explored with respect to corepressor interaction and its role in PPAR[gamma]-mediated insulin sensitization. Co-activators CBP/p300, TIF2 and SRC-3 seem to favor fat accumulation [178], and therefore their recruitment may not be desirable, while the physiological role of other coactivators, such as SRC1 and PGC-1[alpha], is more associated with energy regulation. Thus, the specific recruitment of TIF2 over SRC1 may be a reason for lipid accumulation observed following rosiglitazone treatment in diabetic patients [179]. Interestingly, MBX-102, a SPPAR[gamma]M, promotes higher recruitment of CBP, TIF2, SRC1, and PGC-1[alpha] when compared to a full agonist [173]. Other SPPAR[gamma]Ms including FMOC-leucine, PA-082, GW0072, and FK614 favor the recruitment of PGC1-[alpha] over that of SRC-1, TIF2, or p300 when compared with rosiglitazone [60, 180]. The role of PGC-1[alpha] is important for PPAR[gamma] activity as it acts as a docking surface for integrating the actions of transcription factors and cofactors for regulation of mitochondrial biogenesis and oxidative capacity [181]. Also, it has been shown that rosiglitazone upregulates the constitutively low expression of PGC-1[alpha] in white adipose tissue [182]. In the aged brain, PGC-1[alpha] regulates the expression of sirtuin 3, which is a factor related to the aging process [183]. It has been observed that brains from patients with neurodegenerative diseases display low levels of PGC-1[alpha] which leads to mitochondrial dysfunction and oxidative stress [184]. PGC-1[alpha] regulates mitochondrial density in neurons and PGC-1[alpha]-knockout mice showed an increased sensitivity to the degeneration of dopaminergic and glutamatergic neurons in the brain [185]. Moreover, alternative studies have demonstrated that the reduction of mitochondrial gene expression in PGC-1[alpha]-knockout mice leads to neuronal dysfunction [186]. Given that PGC-1[alpha] plays a crucial role in neuronal function and regulates mitochondrial function, PGC-1[alpha] could ameliorate mitochondrial dysfunction and improve cognitive function in AD [118,187]. Therefore, SPPAR[gamma]Ms favoring the recruitment of PGC-1[alpha] may lead to the discovery of new drug therapy for AD. Some of the newer PPAR[gamma] agonists in several disease models are listed in Table 2, with references and highlights of the study.

6. Conclusions and Future Directions

Following the utilization of PPAR[gamma] agonists for type 2 diabetes mellitus in improving insulin sensitivity, the pleiotropic effects of PPAR[gamma] in neurodegenerative diseases like AD have been increasingly investigated in recent years. Extensive research undertaken to improve the efficacy and/or safety of first-generation PPAR[gamma] agonists (the TZDs) has led to a greater understanding of the complexity of PPAR regulation, specifically the importance of coactivator and corepressor proteins. Developing novel agonists that exploit cofactor biology to derive better agents and reduce the unwanted deleterious effects is currently in process. Recent efforts to demonstrate differential cofactor recruitment and to develop better preclinical efficacy/safety profiles of SPPAR[gamma]Ms compared to conventional PPAR[gamma] agonists are underway. Future directions in PPAR research are likely to focus on optimizing the PPAR subtype interaction profile, maximizing inhibition of PPAR[gamma] phosphorylation, and screening against off-target activity.

https://doi.org/ 10.1155/2018/2010675

Disclosure

There was no involvement of anyone other than the authors who (1) has an interest in the outcome of the work, (2) is affiliated to an organization with such an interest, or (3) was employed or paid by a funder, in the commissioning, conception, planning, design, conduct, or analysis of the work, the preparation or editing of the manuscript, or the decision to publish.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

The current study was supported by funding to Drs. Amin and Suppiramaniam, NIHR15AG048643.

References

[1] Alzheimer's Association, "2018 Alzheimers disease facts and figures," Alzheimer's & Dementia, vol. 14, no. 3, pp. 367-429,2018, http://linkinghub.elsevier.com/retrieve/pii/S1552526018300414.

[2] B. Chami, A. J. Steel, S. M. De La Monte, and G. T. Sutherland, "The rise and fall of insulin signaling in Alzheimer's disease," Metabolic Brain Disease, vol. 31, no. 3, pp. 497-515, 2016, http://www.ncbi.nlm.nih.gov/pubmed/26883429.

[3] S. M. de la Monte, M. Tong, N. Lester-Coll, M. Plater Jr, and J. R. Wands, "Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: Relevance to Alzheimer's disease," Journal of Alzheimer's Disease, vol. 10, no. 1, pp. 89-109, 2006, http://www.ncbi.nlm.nih.gov/pubmed/16988486.

[4] A. Ott, R. P Stolk, F. van Harskamp, H. A. P Pols, A. Hofman, and M. M. B. Breteler, "Diabetes mellitus and the risk of dementia: the Rotterdam Study," Neurology, vol. 53, no. 9, pp. 19371942,1999, http://www.ncbi.nlm.nih.gov/pubmed/10599761.

[5] E. Recio-Pinto, F. F. Lang, and D. N. Ishii, "Insulin and insulin-like growth factor II permit nerve growth factor binding and the neurite formation response in cultured human neuroblastoma cells," Proceedings of the National Acadamy of Sciences of the United States of America, vol. 81, no. 8, pp. 2562-2566, 1984, http://www.ncbi.nlm.nih.gov/pubmed/6326132.

[6] H. Sancheti, G. Akopian, F. Yin et al., "Age-dependent modulation of synaptic plasticity and insulin mimetic effect of lipoic acid on a mouse model of alzheimer's disease," PLoS ONE, vol. 8, no. 7, p. e69830, 2013, http://www.ncbi .nlm.nih.gov/pubmed/23875003.

[7] W. A. Pedersen, P. J. McMillan, J. J. Kulstad, J. B. Leverenz, S. Craft, and G. R. Haynatzki, "Rosiglitazone attenuates learning and memory deficits in Tg2576 Alzheimer mice," Experimental Neurology, vol. 199, no. 2, pp. 265-273, 2006, http://www .ncbi.nlm.nih.gov/pubmed/16515786.

[8] L. Escribano, A.-M. Simon, E. Gimeno et al., "Rosiglitazone rescues memory impairment in Alzheimer's transgenic mice: mechanisms involving a reduced amyloid and tau pathology," Neuropsychopharmacology, vol. 35, no. 7, pp. 1593-1604, 2010, http://www.ncbi.nlm.nih.gov/pubmed/20336061.

[9] H. Cheng, Y. Shang, L. Jiang et al., "The peroxisome proliferators activated receptor-gamma agonists as therapeutics for the treatment of Alzheimer's disease and mild-to-moderate Alzheimer's disease: a meta-analysis," International Journal of Neuroscience, vol. 126, no. 4, pp. 299-307, 2015, http://www .tandfonline.com/doi/full/10.3109/00207454.2015.1015722.

[10] F. Masciopinto, N. Di Pietro, C. Corona et al., "Effects of long-term treatment with pioglitazone on cognition and glucose metabolism of PS1-KI, 3xTg-AD and wild-type mice," Cell Death & Disease, vol. 3, no. 12, pp. e448-e448, 2012, http://www.ncbi.nlm.nih.gov/pubmed/23254291.

[11] L.-Y. Jiang, S.-S. Tang, X.-Y. Wang et al., "PPAR[gamma] agonist pioglitazone reverses memory impairment and biochemical changes in a mouse model of type 2 diabetes mellitus," CNS Neuroscience & Therapeutics, vol. 18, no. 8, pp. 659-666, 2012, http://www.ncbi.nlm.nih.gov/pubmed/22620268.

[12] G. Landreth, Q. Jiang, S. Mandrekar, and M. Heneka, "PPAR[gamma] agonists as therapeutics for the treatment of Alzheimer's disease," Neurotherapeutics, vol. 5, no. 3, pp. 481-489, 2008, http://www.ncbi.nlm.nih.gov/pubmed/18625459.

[13] A. Kermani and A. Garg, "Thiazolidinedione-Associated Congestive Heart Failure and Pulmonary Edema," Mayo Clinic Proceedings, vol. 78, no. 9, pp. 1088-1091,2003, http://www.ncbi .nlm.nih.gov/pubmed/12962163.

[14] L. Nagy and J. W. R. Schwabe, "Mechanism of the nuclear receptor molecular switch," Trends in Biochemical Sciences, vol. 29, no. 6, pp. 317-324, 2004, http://www.ncbi.nlm.nih.gov/ pubmed/15276186.

[15] J. C. Corton, S. P Anderson, and A. Stauber, "Central role of peroxisome proliferator-activated receptors in the actions of peroxisome proliferators," Annual Review of Pharmacology and Toxicology, vol. 40, no. 1, pp. 491-518, 2000, http:// www.ncbi.nlm.nih.gov/pubmed/10836145.

[16] S. Neschen, K. Morino, J. Dong et al., "n-3 Fatty acids preserve insulin sensitivity in vivo in a peroxisome proliferator-activated receptor-alpha-Dependent manner," Diabetes, vol. 56, no. 4, pp. 1034-1041, 2007, http://www.ncbi.nlm.nih.gov/ pubmed/17251275.

[17] R. C. Scarpulla, R. B. Vega, and D. P Kelly, "Transcriptional integration of mitochondrial biogenesis," Trends in Endocrinology & Metabolism, vol. 23, no. 9, pp. 459-466, 2012, http://www.ncbi.nlm.nih.gov/pubmed/22817841.

[18] Y. Zhu, C. Qi, J. R. Korenberg et al., "Structural organization of mouse peroxisome proliferator-activated receptor gamma (mPPAR gamma) gene: alternative promoter use and different splicing yield two mPPAR gamma isoforms," Proceedings of the National Acadamy of Sciences of the United States of America, vol. 92, no. 17, pp. 7921-7925, 1995, http://www.ncbi.nlm.nih .gov/pubmed/7644514.

[19] G. Medina-Gomez, S. L. Gray, L. Yetukuri et al., "PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism," PLoS Genetics, vol. 3, no. 4, p. e64,2007, http://dx.plos.org/10.1371/journal.pgen.0030064.

[20] M. T. Heneka and G. E. Landreth, "PPARs in the brain," Biochimica et Biophysica Acta (BBA)--Molecular and Cell Biology of Lipids, vol. 1771, no. 8, pp. 1031-1045, 2007, http://www .ncbi.nlm.nih.gov/pubmed/17569578.

[21] S. Moreno, S. Farioli-Vecchioli, and M. P Ceru, "Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS," Neuroscience, vol. 123, no. 1, pp. 131-145, 2004, http://www.ncbi.nlm.nih.gov/ pubmed/14667448.

[22] K. Murakami, K. Tobe, T. Ide et al., "A novel insulin sensitizer acts as a coligand for peroxisome proliferator-activated receptor-[alpha] (PPAR-[alpha]) and PPAR-[gamma]. Effect of PPAR-[alpha] activation on abnormal lipid metabolism in liver of Zucker fatty rats," Diabetes, vol. 47, no. 12, pp. 1841-1847, 1998, http://www.ncbi.nlm .nih.gov/pubmed/9836514.

[23] I. Saluja, J. G. Granneman, and R. P Skoff, "PPAR delta agonists stimulate oligodendrocyte differentiation in tissue culture," Glia, vol. 33, no. 3, pp. 191-204, 2001, http://www.ncbi.nlm.nih .gov/pubmed/11241737.

[24] P. E. Polak, S. Kalinin, C. Dello Russo et al., "Protective effects of a peroxisome proliferator-activated receptor-[beta]/[delta] agonist in experimental autoimmune encephalomyelitis," Journal of Neuroimmunology, vol. 168, no. 1-2, pp. 65-75, 2005, http://www.ncbi.nlm.nih.gov/pubmed/16098614.

[25] P. D. Storer, J. Xu, J. Chavis, and P. D. Drew, "Peroxisome proliferator-activated receptor-gamma agonists inhibit the activation of microglia and astrocytes: implications for multiple sclerosis," Journal of Neuroimmunology, vol. 161, no. 1-2, pp. 113-122, 2005, http://www.ncbi.nlm.nih.gov/pubmed/15748950.

[26] B. Desvergne and W. Wahli, "Peroxisome Proliferator-Activated Receptors: Nuclear Control of Metabolism," Endocrine Reviews, vol. 20, no. 5, pp. 649-688,1999, http://www.ncbi.nlm.nih.gov/ pubmed/10529898.

[27] J.-D. Lin, C. Handschin, and B. M. Spiegelman, "Metabolic control through the PGC-1 family of transcription coactivators," Cell Metabolism, vol. 1, no. 6, pp. 361-370,2005, https:// www.sciencedirect.com/science/article/pii/S1550413105001427.

[28] M. P. Mattson, "Energy intake and exercise as determinants of brain health and vulnerability to injury and disease," Cell Metabolism, vol. 16, no. 6, pp. 706-722, 2012, http://www.ncbi.nlm.nih.gov/pubmed/23168220.

[29] D. Li, K. Chen, N. Sinha et al., "The effects of PPAR-y ligand pioglitazone on platelet aggregation and arterial thrombus formation," Cardiovascular Research, vol. 65, no. 4, pp. 907-912, 2005, https://academic.oup.com/cardiovascres/ article-lookup/doi/10.1016/j.cardiores.2004.11.027.

[30] E. Burgermeister and R. Seger, "MAPK kinases as nucleocytoplasmic shuttles for PPAR[gamma]," Cell Cycle, vol. 6, no. 13, pp. 1539-1548, 2007, http://www.ncbi.nlm.nih.gov/pubmed/ 17611413.

[31] M. Luconi, G. Cantini, and M. Serio, "Peroxisome proliferator-activated receptor gamma (PPAR[gamma]): is the genomic activity the only answer?" Steroids, vol. 75, no. 8-9, pp. 585-594, 2010, http://www.ncbi.nlm.nih.gov/pubmed/19900469.

[32] H. S. Camp and S. R. Tafuri, "Regulation of Peroxisome Proliferator-activated Receptor y Activity by Mitogen-activated Protein Kinase," The Journal of Biological Chemistry, vol. 272, no. 16, pp. 10811-10816, 1997, http://www.ncbi.nlm.nih.gov/ pubmed/9099735.

[33] E. Hu, J. B. Kim, P. Sarraf, and B. M. Spiegelman, "Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPAR[gamma]," Science, vol. 274, no. 5295, pp. 2100-2103, 1996, http://www.ncbi.nlm.nih.gov/pubmed/8953045.

[34] J. H. Choi, A. S. Banks, J. L. Estall et al., "Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPAR[gamma] 3 by Cdk5," Nature, vol. 466, no. 7305, pp. 451-456, 2010, http://www.ncbi .nlm.nih.gov/pubmed/20651683.

[35] M. E. Risner, A. M. Saunders, J. F. B. Altman et al., "Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer's disease," The Pharmacogenomics Journal, vol. 6, no. 4, pp. 246-254, 2006, http://www.ncbi.nlm.nih.gov/ pubmed/16446752.

[36] M. Gold, C. Alderton, M. Zvartau-Hind et al., "Rosiglitazone monotherapy in mild-to-moderate alzheimer's disease: results from a randomized, double-blind, placebo-controlled phase III study," Dementia and Geriatric Cognitive Disorders, vol. 30, no. 2, pp. 131-146, 2010, http://www.ncbi.nlm.nih.gov/pubmed/ 20733306.

[37] C. Harrington, S. Sawchak, C. Chiang et al., "Rosiglitazone Does Not Improve Cognition or Global Function when Used as Adjunctive Therapy to AChE Inhibitors in Mild-to-Moderate Alzheimers Disease: Two Phase 3 Studies," Current Alzheimer Research, vol. 8, no. 5, pp. 592-606, 2011, http://www.ncbi.nlm.nih.gov/pubmed/21592048.

[38] T. Sato, H. Hanyu, K. Hirao, H. Kanetaka, H. Sakurai, and T. Iwamoto, "Efficacy of PPAR-y agonist pioglitazone in mild Alzheimer disease," Neurobiology of Aging, vol. 32, no. 9, pp. 1626-1633, 2011, http://www.ncbi.nlm.nih.gov/pubmed/ 19923038.

[39] Biomarker Qualification for Risk of Mild Cognitive Impairment (MCI) Due to Alzheimer's Disease (AD) and Safety and Efficacy Evaluation of Pioglitazone in Delaying Its Onset -Tabular View, https://clinicaltrials.gov/ct2/show/record/ NCT01931566?view=record.

[40] Telmisartan vs. Perindopril in Hypertensive Mild-Moderate Alzheimer's Disease Patients-Tabular View-ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/record/NCT02085265.

[41] W. Li, J. Zhang, F. Lu, M. Ma, J. Wang, and A. Suo, "Effects of telmisartan on the level of A[beta]1-42, interleukin-1[beta], tumor necrosis factor a and cognition in hypertensive patients with Alzheimer's disease," Zhonghua Yi Xue Za Zhi, vol. 92, no. 39, pp. 2743-2746, 2012, http://www.ncbi.nlm.nih .gov/pubmed/23290159.

[42] M. Tong, C. Deochand, J. Didsbury, and S. M. de la Monte, "T3D-959: A Multi-Faceted Disease Remedial Drug Candidate for the Treatment of Alzheimer's Disease," Journal of Alzheimer's Disease, vol. 51, no. 1, pp. 123-138, 2016, http://www.ncbi.nlm.nih.gov/pubmed/26836193.

[43] R. Luna-Medina, M. Cortes-Canteli, M. Alonso, A. Santos, A. Martinez, and A. Perez-Castillo, "Regulation of inflammatory response in neural cells in vitro by thiadiazolidinones derivatives through peroxisome proliferator-activated receptor gamma activation," The Journal of Biological Chemistry, vol. 280, no. 22, pp. 21453-21462, 2005, http://www.ncbi.nlm.nih.gov/ pubmed/15817469.

[44] M. Pohland, M. Pellowska, H. Asseburg et al., "MH84 improves mitochondrial dysfunction in a mouse model of early Alzheimer's disease," Alzheimer's Research & Therapy, vol. 10, no. 1, p. 18, 2018, http://www.ncbi.nlm.nih.gov/pubmed/ 29433569.

[45] J. A. Godoy, J. M. Zolezzi, and N. C. Inestrosa, "INT131 increases dendritic arborization and protects against A[beta] toxicity by inducing mitochondrial changes in hippocampal neurons," Biochemical and Biophysical Research Communications, vol. 490, no. 3, pp. 955-962, 2017, http://www.ncbi.nlm.nih.gov/ pubmed/28655613.

[46] S. M. de la Monte, M. Tong, I. Schiano, and J. Didsbury, "Improved Brain Insulin/IGF Signaling and Reduced Neuroinflammation with T3D-959 in an Experimental Model of Sporadic Alzheimer's Disease," Journal of Alzheimer's Disease, vol. 55, no. 2, pp. 849-864, 2016, http://www.ncbi.nlm .nih.gov/pubmed/27802237.

[47] D. Moras and H. Gronemeyer, "The nuclear receptor ligand-binding domain: structure and function," Current Opinion in Cell Biology, vol. 10, no. 3, pp. 384-391, 1998, http://www.ncbi .nlm.nih.gov/pubmed/9640540.

[48] B. A. Johnson, E. M. Wilson, Y. Li, D. E. Moller, R. G. Smith, and G. Zhou, "Ligand-induced stabilization of PPAR[gamma] monitored by NMR spectroscopy: implications for nuclear receptor activation," Journal of Molecular Biology, vol. 298, no. 2, pp. 187-194, 2000, http://www.ncbi.nlm.nih.gov/pubmed/10764590.

[49] T. S. Hughes, M. J. Chalmers, S. Novick et al., "Ligand and receptor dynamics contribute to the mechanism of graded PPAR[gamma] agonism," Structure, vol. 20, no. 1, pp. 139-150, 2012, http://www.ncbi.nlm.nih.gov/pubmed/22244763.

[50] R. T. Nolte, G. B. Wisely, S. Westin et al., "Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-y," Nature, vol. 395, no. 6698, pp. 137-143, 1998, http://www.ncbi.nlm.nih.gov/pubmed/9744270.

[51] R. T. Gampe, V. G. Montana, M. H. Lambert et al., "Asymmetry in the PPAR[gamma]/RXRa crystal structure reveals the molecular basis of heterodimerization among nuclear receptors," Molecular Cell, vol. 5, no. 3, pp. 545-555, 2000, http://www.ncbi.nlm.nih.gov/pubmed/10882139.

[52] U. Grether, W. Klaus, B. Kuhn, H. P Maerki, P Mohr, and M. B. Wright, "New insights on the mechanism of PPAR-targeted drugs," ChemMedChem, vol. 5, no. 12, pp. 1973-1976, 2010, http://doi.wiley.com/10.1002/cmdc.201000446.

[53] L. Guasch, E. Sala, C. Valls et al., "Structural insights for the design of new PPARgamma partial agonists with high binding affinity and low transactivation activity," Journal of Computer-Aided Molecular Design, vol. 25, no. 8, pp. 717-728, 2011, http://www.ncbi.nlm.nih.gov/pubmed/21691811.

[54] T. S. Hughes, P K. Giri, I. M. de Vera et al., "An alternate binding site for PPAR[gamma] ligands," Nature Communications, vol. 5, no. 1, 2014, http://www.nature.com/articles/ncomms4571.

[55] M. B. Wright, M. Bortolini, M. Tadayyon, and M. Bopst, "Minireview: challenges and opportunities in development of PPAR agonists," Molecular Endocrinology, vol. 28, no. 11, pp. 1756-1768, 2014, http://www.ncbi.nlm.nih.gov/pubmed/ 25148456.

[56] S. Garcia-Vallve, L. Guasch, S. Tomas-Hernandez et al., "Peroxisome Proliferator-Activated Receptor y (PPAR[gamma]) and Ligand Choreography: Newcomers Take the Stage," Journal of Medicinal Chemistry, vol. 58, no. 14, pp. 5381-5394, 2015, http://pubs.acs.org/doi/10.1021/jm501155f.

[57] M. Ahmadian, J. M. Suh, N. Hah et al., "PPAR[gamma] signaling and metabolism: the good, the bad and the future," Nature Medicine, vol. 99, no. 5, pp. 557-566, 2013, http://www.ncbi.nlm.nih.gov/ pubmed/23652116.

[58] C. Pirat, A. Farce, N. Lebegue et al., "Targeting Peroxisome Proliferator-Activated Receptors (PPARs): Development of Modulators," Journal of Medicinal Chemistry, vol. 55, no. 9, pp. 4027-4061, 2012, http://www.ncbi.nlm.nih.gov/pubmed/ 22260081.

[59] G. Pochetti, C. Godio, N. Mitro et al., "Insights into the mechanism of partial agonism: crystal structures of the peroxisome proliferator-activated receptor y ligand-binding domain in the complex with two enantiomeric ligands," The Journal of Biological Chemistry, vol. 282, no. 23, pp. 17314-17324, 2007, http://www.ncbi.nlm.nih.gov/pubmed/17403688.

[60] F. Zhang, B. E. Lavan, and F. M. Gregoire, "Selective Modulators of PPAR-y Activity: Molecular Aspects Related to Obesity and Side-Effects," PPAR Research, Article ID 32696, pp. 1-7, 2007, http://www.ncbi.nlm.nih.gov/pubmed/17389769.

[61] W. Zheng, X. Feng, L. Qiu et al., "Identification of the antibiotic ionomycin as an unexpected peroxisome proliferator-activated receptor y (PPAR[gamma]) ligand with a unique binding mode and effective glucose-lowering activity in a mouse model of diabetes," Diabetologia, vol. 56, no. 2, pp. 401-411, 2013, http://www.ncbi.nlm.nih.gov/pubmed/23178929.

[62] A. Kumar, A. Singh, and Ekavali, "A review on Alzheimer's disease pathophysiology and its management: an update," Pharmacological Reports, vol. 67, no. 2, pp. 195-203, 2015, http://www.ncbi.nlm.nih.gov/pubmed/25712639.

[63] M. R. Bronzuoli, A. Iacomino, L. Steardo, and C. Scuderi, "Targeting neuroinflammation in Alzheimer's disease," Journal of Inflammation Research, vol. 9, pp. 199-208, 2016, http:// www.ncbi.nlm.nih.gov/pubmed/27843334.

[64] I. G. Onyango, J. Dennis, and S. M. Khan, "Mitochondrial dysfunction in Alzheimer's disease and the rationale for bioenergetics based therapies," Aging and Disease (A&D), vol. 7, no. 2, pp. 201-214,2016, http://www.ncbi.nlm.nih.gov/pubmed/ 27114851.

[65] S. T. Ferreira, J. R. Clarke, T. R. Bomfim, and F. G. de Felice, "Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer's disease," Alzheimer's & Dementia, vol. 10, no. 1, pp. S76-S83, 2014, http://www.ncbi.nlm.nih.gov/ pubmed/24529528.

[66] M. Sheng, B. L. Sabatini, and T. C. Sudhof, "Synapses and Alzheimer's disease," Cold Spring Harbor Perspectives in Biology, vol. 4, no. 5, 2012, http://www.ncbi.nlm.nih.gov/pubmed/ 22491782.

[67] J-C. Lambert, C. A. Ibrahim-Verbaas, D. Harold, A. C. Naj, R. Sims, C. Bellenguez et al., "Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease," Nature Genetics, vol. 45, no. 12, pp. 1452-1458, 2013, http://www.ncbi.nlm.nih.gov/pubmed/24162737.

[68] L. Bertram, M. B. McQueen, K. Mullin, D. Blacker, and R. E. Tanzi, "Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database," Nature Genetics, vol. 39, no. 1, pp. 17-23, 2007, http://www.ncbi.nlm.nih.gov/ pubmed/17192785.

[69] A. Payton, P. Sindrewicz, V. Pessoa et al., "A TOMM40 polyT variant modulates gene expression and is associated with vocabulary ability and decline in nonpathologic aging," Neurobiology of Aging, vol. 39, pp. 217.e1-217.e7, 2016, http://www .ncbi.nlm.nih.gov/pubmed/26742953.

[70] W. K. Gottschalk and M. Mihovilovic, "The Role of Upregulated APOE in Alzheimer's Disease Etiology," Journal of Alzheimer's Disease & Parkinsonism, vol. 6, no. 1, 2016, http:// www.ncbi.nlm.nih.gov/pubmed/27104063.

[71] C. Linnertz, L. Anderson, W. Gottschalk et al., "The cis-regulatory effect of an Alzheimer's disease-associated poly-T locus on expression of TOMM40 and apolipoprotein E genes," Alzheimer's & Dementia, vol. 10, no. 5, pp. 541-551, 2014, http://www.ncbi.nlm.nih.gov/pubmed/24439168.

[72] S. Subramanian, W. K. Gottschalk, S. Y. Kim, A. D. Roses, and O. Chiba-Falek, "The effects of PPAR[gamma] on the regulation of the TOMM40-APOE-C1 genes cluster," Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol. 1863, no. 3, pp. 810-816, 2017, https://www.sciencedirect.com/science/article/pii/ S092544391730008X.

[73] J. Barrera, S. Subramanian, O. Chiba-Falek, and J. Fuh, "Probing the role of PPAR[gamma] in the regulation of late-onset Alzheimer's disease-associated genes," PLoS ONE, vol. 13, no. 5, p. e0196943, 2018, http://dx.plos.org/10.1371/journal.pone.0196943.

[74] S. H. Barage and K. D. Sonawane, "Amyloid cascade hypothesis: pathogenesis and therapeutic strategies in Alzheimer's disease," Neuropeptides, vol. 52, pp. 1-18, 2015, http://www.ncbi .nlm.nih.gov/pubmed/26149638.

[75] M. T. Heneka, M. Sastre, L. Dumitrescu-Ozimek et al., "Acute treatment with the PPAR[gamma] agonist pioglitazone and ibuprofen reduces glial inflammation and A[beta]1-42 levels in APPV717I transgenic mice," Brain, vol. 128, no. 6, pp. 1442-1453, 2005, http://www.ncbi.nlm.nih.gov/pubmed/15817521.

[76] S. Mandrekar-Colucci, J. C. Karlo, and G. E. Landreth, "Mechanisms underlying the rapid peroxisome proliferator-activated receptor-y-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer's disease," The Journal of Neuroscience, vol. 32, no. 30, pp. 10117-10128, 2012, http://www.ncbi.nlm.nih.gov/pubmed/22836247.

[77] M. Shibata, S. Yamada, S. R. Kumar et al., "Clearance of Alzheimer's amyloid-[beta]1-40 peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier," The Journal of Clinical Investigation, vol. 106, no. 12, pp. 1489-1499, 2000, http://www.ncbi.nlm.nih.gov/pubmed/11120756.

[78] R. Deane, Z. Wu, A. Sagare et al., "LRP/amyloid [beta]-peptide interaction mediates differential brain efflux of A[beta] isoforms," Neuron, vol. 43, no. 3, pp. 333-344, 2004, http://www.ncbi.nlm.nih .gov/pubmed/15294142.

[79] A. P. Lillis, L. B. Van Duyn, J. E. Murphy-Ullrich, and D. K. Strickland, "LDL receptor-related protein 1: Unique tissue-specific functions revealed by selective gene knockout studies," Physiological Reviews, vol. 88, no. 3, pp. 887-918, 2008, http://www.ncbi.nlm.nih.gov/pubmed/18626063.

[80] A. Ramanathan, A. R. Nelson, A. P. Sagare, and B. V. Zlokovic, "Impaired vascular-mediated clearance of brain amyloid beta in Alzheimer's disease: the role, regulation and restoration of LRP1," Frontiers in Aging Neuroscience, vol. 7, 2015, http:// www.ncbi.nlm.nih.gov/pubmed/26236233.

[81] A. Gauthier, G. Vassiliou, F. Benoist, and R. McPherson, "Adipocyte Low Density Lipoprotein Receptor-related Protein Gene Expression and Function Is Regulated by Peroxisome Proliferator-activated Receptor y," The Journal of Biological Chemistry, vol. 278, no. 14, pp. 11945-11953, 2003, http://www.ncbi.nlm.nih.gov/pubmed/12551936.

[82] A. N. Rondon-Ortiz, C. L. Lino Cardenas, J. Martinez-Malaga et al., "High Concentrations of Rosiglitazone Reduce mRNA and Protein Levels of LRP1 in HepG2 Cells," Frontiers in Pharmacology, vol. 8, p. 772, 2017, http://www.ncbi.nlm.nih.gov/ pubmed/29201005.

[83] J. H. Moon, H. J. Kim, H. M. Kim et al., "Upregulation of hepatic LRP1 by rosiglitazone: a possible novel mechanism of the beneficial effect of thiazolidinediones on atherogenic dyslipidemia," Molecular Endocrinology, vol. 49, no. 3, pp. 165-174, 2012, http://www.ncbi.nlm.nih.gov/pubmed/22889684.

[84] Q. Jiang, C. Y. D. Lee, S. Mandrekar et al., "ApoE promotes the proteolytic degradation of A[beta]>," Neuron, vol. 58, no. 5, pp. 681-693, 2008, http://www.ncbi.nlm.nih.gov/pubmed/18549781.

[85] M. Yamanaka, T. Ishikawa, A. Griep, D. Axt, M. P. Kummer, and M. T. Heneka, "PPAR[gamma]/RXRA-induced and CD36mediated microglial amyloid-[beta] phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice," The Journal of Neuroscience, vol. 32, no. 48, pp. 17321-17331, 2012, http://www.ncbi.nlm.nih.gov/pubmed/23197723.

[86] L. A. Medeiros, T. Khan, J. B. El Khoury et al., "Fibrillar Amyloid Protein Present in Atheroma Activates CD36 Signal Transduction," The Journal of Biological Chemistry, vol. 279, no. 11, pp. 10643-10648, 2004.

[87] P. F. Chapman, G. L. White, M. W. Jones et al., "Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice," Nature Neuroscience, vol. 2, no. 3, pp. 271-276,1999, http://www.ncbi.nlm.nih.gov/pubmed/10195221.

[88] K. Hsiao, P. Chapman, S. Nilsen et al., "Correlative memory deficits, A[beta] elevation, and amyloid plaques in transgenic mice," Science, vol. 274, no. 5284, pp. 99-102, 1996, http://www.ncbi.nlm.nih.gov/pubmed/8810256.

[89] K. Johnson-Wood, M. Lee, R. Motter et al., "Amyloid precursor protein processing and A 42 deposition in a transgenic mouse model of Alzheimer disease," Proceedings of the National Acadamy of Sciences of the United States of America, vol. 94, no. 4, pp. 1550-1555, 1997, http://www.ncbi.nlm .nih.gov/pubmed/9037091.

[90] C. Jiang, A. T. Ting, and B. Seed, "PPAR-y agonists inhibit production of monocyte inflammatory cytokines," Nature, vol. 391, no. 6662, pp. 82-86, 1998, http://www.ncbi.nlm.nih.gov/ pubmed/9422509.

[91] M. Ricote, J. Huang, L. Fajas et al., "Expression of the peroxisome proliferator-activated receptor y (PPAR[gamma]) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein," Proceedings of the National Acadamy of Sciences of the United States of America, vol. 95, no. 13, pp. 7614-7619, 1998, http://www.ncbi.nlm.nih.gov/pubmed/9636198.

[92] C. Zhang, Y. Wang, D. Wang, J. Zhang, and F. Zhang, "NSAID Exposure and Risk of Alzheimer's Disease: An Updated Meta-Analysis From Cohort Studies," Frontiers in AgingNeuroscience, vol. 10, p. 83, 2018.

[93] A. C. Puhl, F. A. Milton, A. Cvoro et al., "Mechanisms of Peroxisome Proliferator Activated Receptor y Regulation by Non-steroidal Anti-inflammatory Drugs," Nuclear Receptor Signaling, vol. 13, no. 1, 2018, http://www.ncbi.nlm.nih.gov/ pubmed/26445566.

[94] Y. Kitamura, S. Shimohama, H. Koike et al., "Increased Expression ofCyclooxygenases and Peroxisome Proliferator-Activated Receptor-y in Alzheimer's Disease Brains," Biochemical and Biophysical Research Communications, vol. 254, no. 3, pp. 582-586, 1999, http://www.ncbi.nlm.nih.gov/pubmed/9920782.

[95] M. Ricote, A. C. Li, T. M. Wiilson, C. J. Kelly, and C. K. Glass, "The peroxisome proliferator-activated receptor-y is a negative regulator of macrophage activation," Nature, vol. 391, no. 6662, pp. 79-82,1998.

[96] R. Kapadia, J.-H. Yi, and R. Vemuganti, "Mechanisms of anti-inflammatory and neuroprotective actions of PPAR-gamma agonists," Frontiers in Bioscience, vol. 13, no. 5, pp. 1813-1826, 2008, http://www.ncbi.nlm.nih.gov/pubmed/17981670.

[97] M. T. Heneka, T. Klockgether, and D. L. Feinstein, "Peroxisome proliferator-activated receptor-gamma ligands reduce neuronal inducible nitric oxide synthase expression and cell death in vivo," The Journal of Neuroscience, vol. 20, no. 18, pp. 6862-6867, 2000, http://www.ncbi.nlm.nih.gov/pubmed/10995830.

[98] S. Lenglet, F. Montecucco, and F. Mach, "Role of Matrix Metalloproteinases in Animal Models of Ischemic Stroke," Current Vascular Pharmacology, vol. 13, no. 2, pp. 161-166, 2015, https://www.ingentaconnect.com/content/ben/cvp/2015/ 00000013/00000002/art00005.

[99] C. K. Combs, D. E. Johnson, J. C. Karlo, S. B. Cannady, and G. E. Landreth, "Inflammatory Mechanisms in Alzheimer's Disease: Inhibition of [beta]-Amyloid-Stimulated Proinflammatory Responses and Neurotoxicity by PPAR[gamma] Agonists," The Journal of Neuroscience, vol. 20, no. 2, pp. 558-567, 2000, http://www.ncbi.nlm.nih.gov/pubmed/10632585.

[100] N. Nicolakakis, T. Aboulkassim, B. Ongali et al., "Complete rescue of cerebrovascular function in aged Alzheimer's disease transgenic mice by antioxidants and pioglitazone, a peroxisome proliferator-activated receptor [gamma] agonist," The Journal of Neuroscience, vol. 28, no. 37, pp. 9287-9296, 2008, http://www.ncbi.nlm.nih.gov/pubmed/18784309.

[101] E. M. Toledo and N. C. Inestrosa, "Activation of Wnt signaling by lithium and rosiglitazone reduced spatial memory impairment and neurodegeneration in brains of an APPswe/PSEN1[DELTA]E9 mouse model of Alzheimer's disease," Molecular Psychiatry, vol. 15, no. 3, pp. 272-285, 2010, http:// www.ncbi.nlm.nih.gov/pubmed/19621015.

[102] M. E. Calhoun, P. Burgermeister, A. L. Phinney et al., "Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid," Proceedings of the National Acadamy of Sciences of the United States of America, vol. 96, no. 24, pp. 14088-14093, 1999, http://www.ncbi.nlm.nih.gov/pubmed/10570203.

[103] E. Utreras, R. Hamada, M. Prochazkova et al., "Suppression of neuroinflammation in forebrain-specific Cdk5 conditional knockout mice by PPAR[gamma] agonist improves neuronal loss and early lethality," Journal of Neuroinflammation, vol. 11, no. 1, p. 28, 2014, http://www.ncbi.nlm.nih.gov/pubmed/24495352.

[104] J. P Lopes, C. R. Oliveira, and P. Agostinho, "Neurodegeneration in an A[beta]-induced model of Alzheimer's disease: The role of Cdk5," Aging Cell, vol. 9, no. 1, pp. 64-77, 2010, http://www.ncbi.nlm.nih.gov/pubmed/19895631.

[105] F. Roselli, P Livrea, and O. F. X. Almeida, "CDK5 is essential for soluble amyloid [beta]-induced degradation of GKAP and remodeling of the synaptic actin cytoskeleton," PLoS ONE, vol. 6, no. 7, Article ID e23097, 2011, http://dx.plos.org/ 10.1371/journal.pone.0023097.

[106] A. Michelucci, T. Heurtaux, L. Grandbarbe, E. Morga, and P. Heuschling, "Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: effects of oligomeric and fibrillar amyloid-[beta]," Journal of Neuroimmunology, vol. 210, no. 1-2, pp. 3-12, 2009, http://www.ncbi.nlm.nih.gov/pubmed/19269040.

[107] J. Y. Choi, J. Y. Kim, J. Y. Kim, J. Park, W. T. Lee, and J. E. Lee, "M2 Phenotype Microglia-derived Cytokine Stimulates Proliferation and Neuronal Differentiation of Endogenous Stem Cells in Ischemic Brain," Experimental Neurobiology, vol. 26, no. 1, p. 33, 2017, http://www.ncbi.nlm.nih.gov/pubmed/28243165.

[108] M. A. Bouhlel, B. Derudas, E. Rigamonti et al., "PPAR[gamma] activation primes human monocytes into alternative m2 macrophages with anti-inflammatory properties," Cell Metabolism, vol. 6, no. 2, pp. 137-143, 2007, http://www.ncbi.nlm.nih.gov/ pubmed/17681149.

[109] J. I. Odegaard, R. R. Ricardo-Gonzalez, M. H. Goforth et al., "Macrophage-specific PPAR[gamma] controls alternative activation and improves insulin resistance," Nature, vol. 447, no. 7148, pp. 1116-1120, 2007, http://www.ncbi.nlm.nih.gov/pubmed/ 17515919.

[110] G. J. Song, Y. Nam, M. Jo et al., "A novel small-molecule agonist of PPAR-y potentiates an anti-inflammatory M2 glial phenotype," Neuropharmacology, vol. 109, pp. 159-169, 2016, http://www.ncbi.nlm.nih.gov/pubmed/27288982.

[111] A. Chawla, Y. Barak, L. Nagy, D. Liao, P Tontonoz, and R. M. Evans, "PPAR-y dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation," Nature Medicine, vol. 7, no. 1, pp. 48-52, 2001, http://www.ncbi.nlm.nih.gov/pubmed/11135615.

[112] M. Obulesu and M. J. Lakshmi, "Apoptosis in Alzheimer's disease: an understanding of the physiology, pathology and therapeutic avenues," Neurochemical Research, vol. 39, no. 12, pp. 2301-2312, 2014, http://www.ncbi.nlm.nih.gov/pubmed/ 25322820.

[113] R. Castellani, K. Hirai, G. Aliev et al., "Role of mitochondrial dysfunction in Alzheimer's disease," Journal of Neuroscience Research, vol. 70, no. 3, pp. 357-360, 2002, http://www.ncbi.nlm .nih.gov/pubmed/12391597.

[114] I. Bogacka, H. Xie, G. A. Bray, and S. R. Smith, "Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo," Diabetes, vol. 54, no. 5, pp. 1392-1399, 2005, http://www.ncbi.nlm.nih.gov/pubmed/15855325.

[115] L. Qiang, L. Wang, N. Kon et al., "Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppar[gamma]," Cell, vol. 150, no. 3, pp. 620-632, 2012, http://www.ncbi.nlm .nih.gov/pubmed/22863012.

[116] G. Haemmerle, T. Moustafa, G. Woelkart et al., "ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-[alpha] and PGC-1," Nature Medicine, vol. 17, no. 9, pp. 1076-1085, 2011, http://www.ncbi.nlm.nih.gov/pubmed/ 21857651.

[117] D. M. Muoio and T. R. Koves, "Skeletal muscle adaptation to fatty acid depends on coordinated actions of the PPARs and PGC1a: implications for metabolic disease," Applied Physiology, Nutrition, and Metabolism, vol. 32, no. 5, pp. 874-883, 2007, http://www.ncbi.nlm.nih.gov/pubmed/18059612.

[118] W. Qin, V. Haroutunian, P Katsel et al., "PGC-1[alpha] expression decreases in the Alzheimer disease brain as a function of dementia," JAMA Neurology, vol. 66, no. 3, pp. 352-361, 2009, http://www.ncbi.nlm.nih.gov/pubmed/19273754.

[119] P Wareski, A. Vaarmann, V. Choubey et al., "PGC-1[alpha] and PGC-1[beta] regulate mitochondrial density in neurons," The Journal of Biological Chemistry, vol. 284, no. 32, pp. 21379-21385, 2009, http://www.ncbi.nlm.nih.gov/pubmed/19542216.

[120] J. M. Zolezzi, C. Silva-Alvarez, D. Ordenes et al., "Peroxisome Proliferator-Activated Receptor (PPAR) [gamma] and PPAR[alpha] Agonists Modulate Mitochondrial Fusion-Fission Dynamics: Relevance to Reactive Oxygen Species (ROS)-Related Neurodegenerative Disorders?" PLoS ONE, vol. 8, no. 5, Article ID e64019, 2013, http://dx.plos.org/10.1371/journal.pone.0064019.

[121] L. Katsouri, Y. M. Lim, K. Blondrath et al., "PPAR[gamma]-coactivator-1[alpha] gene transfer reduces neuronal loss and amyloid-[beta] generation by reducing [beta]-secretase in an Alzheimer's disease model," Proceedings of the National Acadamy of Sciences of the United States of America, vol. 113, no. 43, pp. 12292-12297, 2016, http://www.ncbi.nlm.nih.gov/pubmed/27791018.

[122] L. K. Russell, C. M. Mansfield, J. J. Lehman et al., "Cardiac-Specific Induction of the Transcriptional Coactivator Peroxisome Proliferator-Activated Receptor [gamma] Coactivator-1[alpha] Promotes Mitochondrial Biogenesis and Reversible Cardiomyopathy in a Developmental Stage-Dependent Manner," Circulation Research, vol. 94, no. 4, pp. 525-533, 2004, http://www.ncbi.nlm.nih.gov/pubmed/14726475.

[123] S. Miura, E. Tomitsuka, Y. Kamei et al., "Overexpression of Peroxisome Proliferator-Activated Receptor [gamma] Co-Activator-1[alpha] Leads to Muscle Atrophy with Depletion of ATP," The American Journal of Pathology, vol. 169, no. 4, pp. 1129-1139, 2006, http://www.ncbi.nlm.nih.gov/pubmed/17003473.

[124] J. Clark, J. M. Silvaggi, T. Kiselak et al., "Pgc-1a overexpression downregulates Pitx3 and increases susceptibility to MPTP toxicity associated with decreased Bdnf," PLoS ONE, vol. 7, no. 11, Article ID e48925, 2012, http://dx.plos.org/10.1371/ journal.pone.0048925.

[125] C. Ciron, S. Lengacher, J. Dusonchet, P. Aebischer, and B. L. Schneider, "Sustained expression of PGC-1[alpha] in the rat nigrostriatal system selectively impairs dopaminergic function," Human Molecular Genetics, vol. 21, no. 8, pp. 1861-1876, 2012, http://www.ncbi.nlm.nih.gov/pubmed/22246294.

[126] M.-C. Chiang, Y.-C. Cheng, H.-M. Chen, Y.-J. Liang, and C.-H. Yen, "Rosiglitazone promotes neurite outgrowth and mitochondrial function in N2A cells via PPARgamma pathway," Mitochondrion, vol. 14, no. 1, pp. 7-17, 2014, http://www.ncbi .nlm.nih.gov/pubmed/24370585.

[127] A. Prakash and A. Kumar, "Role of nuclear receptor on regulation of BDNF and neuroinflammation in hippocampus of [beta]-amyloid animal model of Alzheimer's disease," Neurotoxicity Research, vol. 25, no. 4, pp. 335-347, 2014, http://www.ncbi .nlm.nih.gov/pubmed/24277156.

[128] J. L. Marks, D. Porte, W. L. Stahl, and D. G. Baskin, "Localization of insulin receptor mRNA in rat brain by in situ hybridization," Endocrinology, vol. 127, no. 6, pp. 3234-3236, 1990, http://www.ncbi.nlm.nih.gov/pubmed/2249648.

[129] J. W. Unger and M. Betz, "Insulin receptors and signal transduction proteins in the hypothalamo-hypophyseal system: a review on morphological findings and functional implications," Histology Histopathology Journal, vol. 13, no. 4, pp. 1215-1224, 1998, http://www.ncbi.nlm.nih.gov/pubmed/9810512.

[130] G. A. Werther, A. Hogg, B. J. Oldfield et al., "Localization and characterization of insulin receptors in rat brain and pituitary gland using in vitro autoradiography and computerized densitometry," Endocrinology, vol. 121, no. 4, pp. 1562-1570, 1987, http://www.ncbi.nlm.nih.gov/pubmed/3653038.

[131] W. Zhao, H. Chen, H. Xu et al., "Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats," The Journal of Biological Chemistry, vol. 274, no. 49, pp. 34893-34902, 1999, http://www.ncbi.nlm.nih.gov/pubmed/10574963.

[132] J. Bloemer, S. Bhattacharya, R. Amin, and V. Suppiramaniam, "Impaired insulin signaling and mechanisms of memory loss," Progress in Molecular Biology and Translational Science, vol. 121, pp. 413-449, 2014, http://www.ncbi.nlm.nih .gov/pubmed/24373245.

[133] M. Schubert, D. Gautam, D. Surjo et al., "The role for neuronal insulin resistance in neurodegenerative diseases," Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 9, pp. 3100-3105, 2004, http://www .ncbi.nlm.nih.gov/pubmed/14981233.

[134] L. Ho, W. Qin, P. N. Pompl, Z. Xiang, J. Wang et al., "Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer's disease," The FASEB Journal, vol. 18, no. 7, pp. 902-904, 2004, http://www.ncbi.nlm.nih .gov/pubmed/15033922.

[135] A. R. Pathan, A. B. Gaikwad, B. Viswanad, and P. Ramarao, "Rosiglitazone attenuates the cognitive deficits induced by high fat diet feeding in rats," European Journal of Pharmacology, vol. 589, no. 1-3, pp. 176-179, 2008, http://www.ncbi.nlm .nih.gov/pubmed/18602098.

[136] X.-L. Li, S. Aou, Y. Oomura, N. Hori, K. Fukunaga, and T. Hori, "Impairment of long-term potentiation and spatial memory in leptin receptor-deficient rodents," Neuroscience, vol. 113, no. 3, pp. 607-615, 2002, http://www.ncbi.nlm.nih .gov/pubmed/12150780.

[137] E. Steen, B. M. Terry, E. J. Rivera et al., "Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease-Is this type 3 diabetes?" Journal of Alzheimer's Disease, vol. 7, no. 1, pp. 63-80, 2005, http://www.ncbi.nlm.nih.gov/pubmed/15750215.

[138] S. Hoyer and H. Lannert, "Inhibition of the Neuronal Insulin Receptor Causes Alzheimer-like Disturbances in Oxidative/Energy Brain Metabolism and in Behavior in Adult Rats," Annals of the New York Academy of Sciences, vol. 893, no. 1, pp. 301-303, 1999, http://www.ncbi.nlm.nih.gov/ pubmed/10672254.

[139] G.-J. Chen, J. Xu, S. A. Lahousse, N. L. Caggiano, and S. M. De la Monte, "Transient hypoxia causes Alzheimer-type molecular and biochemical abnormalities in cortical neurons: Potential strategies for neuroprotection," Journal of Alzheimer's Disease, vol. 5, no. 3, pp. 209-228, 2003, http://www.ncbi.nlm .nih.gov/pubmed/12897406.

[140] P. L. Mcclean, V. Parthsarathy, E. Faivre, and C. Holscher, "The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer's disease," The Journal of Neuroscience, vol. 31, no. 17, pp. 6587-6594,2011, http://www.ncbi.nlm .nih.gov/pubmed/21525299.

[141] N. Pipatpiboon, W. Pratchayasakul, N. Chattipakorn, and S. C. Chattipakorn, "PPAR[gamma] agonist improves neuronal insulin receptor function in hippocampus and brain mitochondria function in rats with insulin resistance induced by long term high-fat diets," Endocrinology, vol. 153, no. 1, pp. 329-338, 2012, http://www.ncbi.nlm.nih.gov/pubmed/22109891.

[142] N. C. Inestrosa and L. Varela-Nallar, "Wnt signaling in the nervous system and in Alzheimer's disease," Journal of Molecular Cell Biology, vol. 6, no. 1, pp. 64-74, 2014, http://www.ncbi.nlm .nih.gov/pubmed/24549157.

[143] C. Tapia-Rojas and N. Inestrosa, "Loss of canonical Wnt signaling is involved in the pathogenesis of Alzheimer's disease," Neural Regeneration Research, vol. 13, no. 10, p. 1705, 2018, http://www.ncbi.nlm.nih.gov/pubmed/30136680.

[144] P. Cisternas, P. Salazar, C. Silva-Alvarez, L. F. Barros, and N. C. Inestrosa, "Activation of Wnt Signaling in Cortical Neurons Enhances Glucose Utilization through Glycolysis," The Journal ofBiological Chemistry, vol. 291, no. 50, pp. 25950-25964, 2016, http://www.ncbi.nlm.nih.gov/pubmed/27703002.

[145] E. A. Winkler, Y. Nishida, A. P. Sagare et al., "GLUT1 reductions exacerbate Alzheimer's disease vasculo-neuronal dysfunction and degeneration," Nature Neuroscience, vol. 18, no. 4, pp. 521-530, 2015, http://www.ncbi.nlm.nih.gov/pubmed/25730668.

[146] Z. Chen and C. Zhong, "Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: Implications for diagnostic and therapeutic strategies," Progress in Neurobiology, vol. 108, pp. 21-43, 2013, http://www.ncbi.nlm.nih.gov/ pubmed/23850509.

[147] D. W. Cleveland, S. Y. Hwo, and M. W. Kirschner, "Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly," Journal of Molecular Biology, vol. 116, no. 2, pp. 227-247, 1977, http://www .ncbi.nlm.nih.gov/pubmed/146092.

[148] A. Mietelska-Porowska, U. Wasik, M. Goras, A. Filipek, and G. Niewiadomska, "Tauprotein modifications and interactions: their role in function and dysfunction," International Journal of Molecular Sciences, vol. 15, no. 3, pp. 4671-4713, 2014, http://www.mdpi.com/1422-0067/15/3/4671.

[149] C. d'abramo, R. Ricciarelli, M. A. Pronzato, and P. Davies, "Troglitazone, a peroxisome proliferator-activated receptor-gamma agonist, decreases tau phosphorylation in CHOtau4R cells," Journal of Neurochemistry, vol. 98, no. 4, pp. 1068-1077, 2006, http://doi.wiley.com/10.M1/j.M71-4159.2006.03931.x.

[150] B. L. Adler, M. Yarchoan, H. M. Hwang et al., "Neuroprotective effects of the amylin analogue pramlintide on Alzheimer's disease pathogenesis and cognition," Neurobiology of Aging, vol. 35, no. 4, pp. 793-801, 2014, http://www.ncbi.nlm .nih.gov/pubmed/24239383.

[151] M. Dumont, C. Stack, C. Elipenahli et al., "Bezafibrate administration improves behavioral deficits and tau pathology in P301S mice," Human Molecular Genetics, vol. 21, no. 23, Article ID dds355, pp. 5091-5105, 2012.

[152] T. Falkenberg, A. K. Mohammed, B. Henriksson, H. Persson, B. Winblad, and N. Lindefors, "Increased expression of brain-derived neurotrophic factor mRNA in rat hippocampus is associated with improved spatial memory and enriched environment," Neuroscience Letters, vol. 138, no. 1, pp. 153-156, 1992, http://www.ncbi.nlm.nih.gov/pubmed/1407655.

[153] T. Kariharan, G. Nanayakkara, K. Parameshwaran et al., "Central activation of PPAR-gamma ameliorates diabetes induced cognitive dysfunction and improves BDNF expression," Neurobiology of Aging, vol. 36, no. 3, pp. 1451-1461, 2015, https:// www.sciencedirect.com/science/article/pii/S0197458014006344? via%3Dihub.

[154] F. Plattner, M. Angelo, and K. P Giese, "The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation," The Journal of Biological Chemistry, vol. 281, no. 35, pp. 25457-25465, 2006, http://www.ncbi.nlm .nih.gov/pubmed/16803897.

[155] J. Chen, S. Li, W. Sun, J. Li, and J. Padmanabhan, "Anti-diabetes drug pioglitazone ameliorates synaptic defects in AD transgenic mice by inhibiting cyclin-dependent kinase5 activity," PLoS ONE, vol. 10, no. 4, Article ID e0123864, 2015, http://dx.plos.org/10.1371/journal.pone.0123864.

[156] E. Thouennon, Y. Cheng, V. Falahatian, N. X. Cawley, and Y. P Loh, "Rosiglitazone-activated PPAR[gamma] induces neurotrophic factor-a1 transcription contributing to neuroprotection," Journal of Neurochemistry, vol. 134, no. 3, pp. 463-470, 2015, http://www.ncbi.nlm.nih.gov/pubmed/25940785.

[157] K. M. Fuenzalida, M. C. Aguilera, D. G. Piderit et al., "Peroxisome Proliferator-activated Receptor y Is a Novel Target of the Nerve Growth Factor Signaling Pathway in PC12 Cells," The Journal of Biological Chemistry, vol. 280, no. 10, pp. 9604-9609, 2005, http://www.jbc.org/cgi/doi/10.1074/jbc.M409447200.

[158] L. Aloe, M. L. Rocco, P Bianchi, and L. Manni, "Nerve growth factor: from the early discoveries to the potential clinical use," Journal of Translational Medicine, vol. 10, no. 1, p. 239, 2012, http://www.ncbi.nlm.nih.gov/pubmed/23190582.

[159] J. M. Zolezzi, M. J. Santos, S. Bastias-Candia, C. Pinto, J. A. Godoy, and N. C. Inestrosa, "PPARs in the central nervous system: roles in neurodegeneration and neuroinflammation," Biological Reviews, vol. 92, no. 4, pp. 2046-2069, 2017, http://doi .wiley.com/10.1111/brv.12320.

[160] B. W. Miller, K. C. Willett, and A. R. Desilets, "Rosiglitazone and Pioglitazone for the Treatment of Alzheimer's Disease," Annals of Pharmacotherapy, vol. 45, no. 11, pp. 1416-1424, 2011, http://journals.sagepub.com/doi/10.1345/aph.1Q238.

[161] M. T. Heneka, A. Fink, and G. Doblhammer, "Effect of pioglitazone medication on the incidence of dementia," Annals of Neurology, vol. 78, no. 2, pp. 284-294, 2015, http://www.ncbi.nlm .nih.gov/pubmed/25974006.

[162] D. S. Geldmacher, T. Fritsch, M. J. McClendon, and G. Landreth, "A randomized pilot clinical trial of the safety of pioglitazone in treatment of patients with alzheimer disease," JAMA Neurology, vol. 68, no. 1, pp. 45-50, 2011, http://www.ncbi .nlm.nih.gov/pubmed/20837824.

[163] Takeda and Zinfandel Pharmaceuticals Discontinue TOMMORROW Trial Following Planned Futility Analysis, https://www.takeda.com/newsroom/newsreleases/2018/takedatommorrow-trial/.

[164] J. Liu, L. Wang, and J. Jia, "Peroxisome Proliferator-Activated Receptor-Gamma Agonists for Alzheimer's Disease and Amnestic Mild Cognitive Impairment: A Systematic Review and Meta-Analysis," Drugs & Aging, vol. 32, no. 1, pp. 57-65, 2015, http://www.ncbi.nlm.nih.gov/pubmed/25504005.

[165] H. Cheng, Y. Shang, and L. Jiang, "The peroxisome proliferators activated receptor-gamma agonists as therapeutics for the treatment of Alzheimer's disease and mild-to-moderate Alzheimer's disease: a meta-analysis," International Journal of Neuroscience, vol. 126, no. 4, pp. 299-307, 2015, http://www.ncbi.nlm.nih.gov/pubmed/26001206.

[166] B. W. Miller, K. C. Willett, and A. R. Desilets, "Rosiglitazone and Pioglitazone for the Treatment of Alzheimer's Disease," Annals of Pharmacotherapy, vol. 45, no. 11, pp. 1416-1424, 2011, http://www.ncbi.nlm.nih.gov/pubmed/22028424.

[167] S. Gathiaka, G. Nanayakkara, T. Boncher et al., "Design, development and evaluation of novel dual PPARd/PPAR[gamma] agonists," Bioorganic & Medicinal Chemistry Letters, vol. 23, no. 3,pp. 873-879, 2013, http://www.ncbi.nlm.nih.gov/pubmed/23273519.

[168] K. Liu, L. Xu, J. P Berger et al., "Discovery of a Novel Series of Peroxisome Proliferator-Activated Receptor a/y Dual Agonists for the Treatment of Type 2 Diabetes and Dyslipidemia," Journal of Medicinal Chemistry, vol. 48, no. 7, pp. 2262-2265, 2005, http://www.ncbi.nlm.nih.gov/pubmed/15801817.

[169] L. S. Higgins and A. M. Depaoli, "Selective peroxisome proliferator-activated receptor y (PPAR[gamma]) modulation as a strategy for safer therapeutic PPAR[gamma] activation," American Journal of Clinical Nutrition, vol. 91, no. 1, pp. 267S-272S, 2010, https://academic.oup.com/ajcn/article/91/1/267S/4597134.

[170] M. Laplante, H. Sell, K. L. MacNaul, D. Richard, J. P. Berger, and Y. Deshaies, "PPAR-gamma activation mediates adipose depot-specific effects on gene expression and lipoprotein lipase activity: mechanisms for modulation of postprandial lipemia and differential adipose accretion," Diabetes, vol. 52, no. 2, pp. 291-299, 2003, http://www.ncbi.nlm.nih.gov/pubmed/12540599.

[171] J. L. Oberfield, J. L. Collins, C. P. Holmes et al., "A peroxisome proliferator-activated receptor gamma ligand inhibits adipocyte differentiation," Proceedings of the National Acadamy of Sciences of the United States of America, vol. 96, no. 11, pp. 6102-6106, 1999, http://www.ncbi.nlm.nih.gov/pubmed/10339548.

[172] E. Burgermeister, A. Schnoebelen, A. Flament et al., "A novel partial agonist of peroxisome proliferator-activated receptor-[gamma] (PPAR[gamma]) recruits PPAR[gamma]-coactivator-1[alpha], prevents triglyceride accumulation, and potentiates insulin signaling in vitro," Molecular Endocrinology, vol. 20, no. 4, pp. 809-830, 2006, http://www.ncbi.nlm.nih.gov/pubmed/16373399.

[173] J. P. Berger, A. E. Petro, K. L. Macnaul et al., "Distinct properties and advantages of a novel peroxisome proliferator-activated protein [gamma] selective modulator," Molecular Endocrinology, vol. 17, no. 4, pp. 662-676, 2003, http://www.ncbi.nlm .nih.gov/pubmed/12554792.

[174] S.-H. Sheu, T. Kaya, D. J. Waxman, and S. Vajda, "Exploring the binding site structure of the PPAR[gamma] ligand-binding domain by computational solvent mapping," Biochemistry, vol. 44, no. 4, pp. 1193-1209, 2005, http://www.ncbi.nlm.nih.gov/ pubmed/15667213.

[175] L. L. Atkinson, M. A. Fischer, and G. D. Lopaschuk, "Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated protein kinase-acetyl-CoA carboxylasemalonyl-CoA axis," The Journal of Biological Chemistry, vol. 277, no. 33, pp. 29424-29430, 2002, http://www.ncbi.nlm.nih .gov/pubmed/12058043.

[176] J. B. Bruning, M. J. Chalmers, S. Prasad et al., "Partial agonists activate PPAR[gamma] using a helix 12 independent mechanism," Structure, vol. 15, no. 10, pp. 1258-1271, 2007, http://www.ncbi .nlm.nih.gov/pubmed/17937915.

[177] I. A. Voutsadakis, "Peroxisome proliferator activated receptor-[gamma] and the ubiquitin-proteasome system in colorectal cancer," World Journal of Gastrointestinal Oncology, vol. 2, no. 5, pp. 235-241, 2010, http://www.ncbi.nlm.nih.gov/pubmed/21160623.

[178] N. Viswakarma, Y. Jia, L. Bai et al., "Coactivators in PPAR-Regulated Gene Expression," PPAR Research, Article ID 250126, pp. 1-21, 2010, http://www.ncbi.nlm.nih.gov/pubmed/ 20814439.

[179] S. M. Watkins, P R. Reifsnyder, H. Pan, J. B. German, and E. H. Leiter, "Lipid metabolome-wide effects of the PPAR[gamma] agonist rosiglitazone," Journal of Lipid Research, vol. 43, no. 11, pp. 1809-1817, 2002, http://www.ncbi.nlm.nih.gov/pubmed/12401879.

[180] M. Einstein, T. E. Akiyama, G. A. Castriota et al., "The differential interactions of peroxisome proliferator-activated receptor y ligands with Tyr473 is a physical basis for their unique biological activities," Molecular Pharmacology, vol. 73, no. 1, pp. 62-74, 2008, http://www.ncbi.nlm.nih.gov/pubmed/17940191.

[181] L. Cui, H. Jeong, F. Borovecki, C. N. Parkhurst, N. Tanese, and D. Krainc, "Transcriptional repression of PGC-1[alpha] by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration," Cell, vol. 127, no. 1, pp. 59-69, 2006, http://www .ncbi.nlm.nih.gov/pubmed/17018277.

[182] M. H. Karimfar, K. Haghani, A. Babakhani, and S. Bakhtiyari, "Rosiglitazone, but Not Epigallocatechin-3-Gallate, Attenuates the Decrease in PGC-1[alpha] Protein Levels in Palmitate-Induced Insulin-Resistant C2C12 Cells," Lipids, vol. 50, no. 6, pp. 521-528, 2015, http://www.ncbi.nlm.nih.gov/pubmed/25893813.

[183] X. Kong, R. Wang, Y. Xue et al., "Sirtuin 3, a new target of PGC-1[alpha], plays an important role in the suppression of ROS and mitochondrial biogenesis," PLoS ONE, vol. 5, no. 7, Article ID e11707,2010, http://dx.plos.org/10.1371/journal.pone.0011707.

[184] X. Zhang, X. Ren, Q. Zhang et al., "PGC-1[alpha]/ERR[alpha]-Sirt3 pathway regulates DAergic neuronal death by directly deacetylating SOD2 and ATP synthase [beta]," Antioxidants & Redox Signaling, vol. 24, no. 6, pp. 312-328, 2016, http://www.ncbi.nlm.nih.gov/ pubmed/26421366.

[185] H. Jiang, S. Kang, S. Zhang et al., "Adult Conditional Knockout of PGC-1[alpha] Leads to Loss of Dopamine Neurons," eNeuro, vol. 3, no. 4, 2016, http://www.ncbi.nlm.nih.gov/pubmed/27622213.

[186] J. Lin, P.-H. Wu, P T. Tarr et al., "Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1[alpha] null mice," Cell, vol. 119, no. 1, pp. 121-135, 2004, http://www.ncbi .nlm.nih.gov/pubmed/15454086.

[187] G. Sweeney and J. Song, "The association between PGC-1[alpha] and Alzheimer's disease," Anatomy & Cell Biology, vol. 49, no. 1, pp. 1-6, 2016, http://www.ncbi.nlm.nih.gov/pubmed/27051562.

Manoj Govindarajulu, (1) Priyanka D. Pinky (iD), (1) Jenna Bloemer (iD), (1) Nila Ghanei, (1) Vishnu Suppiramaniam (iD), (1,2) and Rajesh Amin (iD)(1,2)

(1) Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA

(2) Center for Neuroscience, Auburn University, Auburn, AL, USA

Correspondence should be addressed to Rajesh Amin; rha0003@auburn.edu

Received 18 June 2018; Revised 31 August 2018; Accepted 13 September 2018; Published 21 October 2018

Academic Editor: Paul D. Drew

Caption: FIGURE 1: Mechanism of action of PPAR[gamma] agonists. (a) During unstimulated conditions, the hetero dimer is associated with corepressors which suppress gene transcription. (b) Binding of PPAR[gamma] agonist induces release of corepressor complex, while binding to coactivator complex, thereby stimulating the response elements of target genes. This scaffold recruits histone acetyl transferase and RNA polymerase leading to transcription of target genes.

Caption: FIGURE 2: PPAR[gamma] mediated transrepression of NF-[kappa]B through SUMOylation modification. Binding of PPAR[gamma] ligand to the AF-2 domain at Lys-365 position is important in regulation of inflammatory gene expression through transrepression. Additionally, recruitment of NCoR with inhibition of NCoRproteosomal degradation occurs.

Caption: FIGURE 3: Description of progressive clinical stages and pathologies associated with Alzheimer's disease (AD) for relevance in developing therapeutic strategies for mitigating progression of AD.

Caption: FIGURE 4: PPAR[gamma] agonist mediated transrepression of NF-[kappa]B signaling. Activation of PPAR[gamma] occurs upon binding of PPAR[gamma] agonists through association of heterodimer with coactivator complex to form a transcriptional complex. This complex binds to the PPAR[gamma] response element (PPRE) of IkB[alpha] gene, thereby inducing the expression of IkB[alpha]. An additional transrepressive mechanism involves inhibition of IKK[alpha]/[beta], an upstream kinase of IkB[alpha]. Consequently degradation of IkB[alpha] and subsequent nuclear-translocation and activation of NF-[kappa]B (p50/p65) fail to occur, resulting in inhibition of inflammatory gene expression.

Caption: FIGURE 5: PPAR[gamma] receptor (a) is in the repressed state due to the transcriptional cofactor inhibitors NCoR/SMRT binding with PPAR[gamma] and preventing the transcription of target genes. When traditional (full agonist, (b)) or selective agonist (c) changes the confirmation of the PPAR[gamma] receptor and corepressors NCoR/SMRT come off. Traditional agonists (full agonist) such as rosiglitazone or pioglitazone promote a stable confirmation of the PPAR[gamma]-RXR confirmation with coactivators CBP/P300. However, selective agonists can induce an unstable confirmation of the PPAR[gamma] complex and allow alternative interactions with nontraditional coactivators, potentially PGC- 1[alpha], thus inducing alternative gene expression.
TABLE 1: Clinical trials of PPARy agonists.

Title                               Treatment                # Of
                                                           subjects

Efficacy of               Rosi 2mg, Rosi 4mg, Rosi 8mg,      511
rosiglitazone in a        or placebo daily for 24 weeks
genetically defined
population with mild-
to-moderate AD

Rosiglitazone               Rosi XR 2mg, Rosi XR 8 mg,       693
monotherapy in mild-        donepezil 10mg, or placebo
to-moderate AD: results         daiy for 24 weeks
from a randomized,
double-blind, placebo-
controlled phase III
study.

Rosiglitazone does not    Rosi XR 2mg, Rosi XR 8 mg, or     2,822
improve cognition or      placebo daily for 48 weeks in
global function when           addition to an AChEI
used as adjunctive
therapy to AChE
inhibitors in mild-to-
moderate AD: two phase
3 studies.

Efficacy of PPAR-            Pio 15-30 mg daily or no         42
[gamma] agonist               treatment for 6 months
pioglitazone in mild AD

Biomarker Qualification   Pio 0.8mg SR daily or placebo     3,494
for Risk of MCI Due to          for up to 5 years
AD and Safety and
Efficacy Evaluation of
Pioglitazone in
Delaying Its Onset
(TOMMORROW)

Telmisartan vs.              Telmi 40mg, Telmi 80mg,       goal of
Perindopril in             perindopril 2mg, perindopril      240
Hypertensive Mild-        4mg, or perindopril 8mg daily
Moderate AD Patients              for 12 months
(SARTAN-AD)

Effects of telmisartan     Telmi 40-80mg or amlodipine        48
on the level of             5-10 mg daily for 6 months
A[beta]-42,
interleukin-1[beta],
TNF[alpha] and
cognition in
hypertensive patients
with AD

Phase 2a Feasibility       T3D-959* 3mg, lOmg, 30mg, or       36
Study of T3D-959 in        90mg once daily for 2 weeks
Subjects with Mild to
Moderate AD

Title                       Methods        Inclusion         Major
                                           criteria         outcome
                                                              (s)

Efficacy of                   RCT        Probable AD,       ADAS-Cog
rosiglitazone in a                       MMSE score of     and CIBIC+
genetically defined                          16-26
population with mild-
to-moderate AD

Rosiglitazone                 RCT        Probable AD,       ADAS-Cog
monotherapy in mild-                     MMSE score of     and CIBIC+
to-moderate AD: results                      10-23
from a randomized,
double-blind, placebo-
controlled phase III
study.

Rosiglitazone does not        RCT            Mild-          ADAS-Cog
improve cognition or                       moderate         and CDR-
global function when                     probable AD,          SB
used as adjunctive                       MMSE score of
therapy to AChE                              10-26
inhibitors in mild-to-
moderate AD: two phase
3 studies.

Efficacy of PPAR-         randomized,      Mild AD,          MMSE,
[gamma] agonist           open-label       Clinical         ADAS-Cog
pioglitazone in mild AD                    Dementia
                                         Rating score
                                          of 0.5 or 1

Biomarker Qualification       RCT         Cognitively       Time to
for Risk of MCI Due to                      normal         diagnosis
AD and Safety and                          patients        of MCI due
Efficacy Evaluation of                                     to AD for
Pioglitazone in                                             subjects
Delaying Its Onset                                           in the
(TOMMORROW)                                                high-risk
                                                            stratum

Telmisartan vs.           Randomized,     Probable AD     Ventricular
Perindopril in            open label      or possible     enlargement,
Hypertensive Mild-                        AD dementia      cognitive
Moderate AD Patients                        due to          function
(SARTAN-AD)                               concomitant       based on
                                        cerebrovascular     ADAS-cog
                                         disease, MMSE        and
                                             16-27         cognitive
                                                            battery

Effects of telmisartan    Randomized    Probable AD and     ADAS-Cog
on the level of                            essential        and MMSE
A[beta]-42,                              hypertension
interleukin-1[beta],
TNF[alpha] and
cognition in
hypertensive patients
with AD

Phase 2a Feasibility      Randomized,      Mild-to-         FDG-PET
Study of T3D-959 in       open-label     moderate AD,       Imaging,
Subjects with Mild to                    MMSE score of      ADAS-Cog
Moderate AD                                  14-26

Title                       Results of major outcome (s)     Reference

Efficacy of                  No significant difference;        [35]
rosiglitazone in a         exploratory analyses suggested
genetically defined           that ApoE4 non-carriers
population with mild-     exhibited cognitive improvement
to-moderate AD                 with 8mg dose of Rosi

Rosiglitazone              No significant difference for       [36]
monotherapy in mild-         Rosi group vs. placebo; no
to-moderate AD: results    interaction between treatment
from a randomized,                and ApoE status
double-blind, placebo-
controlled phase III
study.

Rosiglitazone does not     No significant difference; no       [37]
improve cognition or       interaction between treatment
global function when              and ApoE status
used as adjunctive
therapy to AChE
inhibitors in mild-to-
moderate AD: two phase
3 studies.

Efficacy of PPAR-         Significant improvement in MMSE      [38]
[gamma] agonist            and ADAS-cog from baseline in
pioglitazone in mild AD         pio treated subjects

Biomarker Qualification      Trial discontinued due to         [39]
for Risk of MCI Due to      inadequate treatment effect;
AD and Safety and          full results not yet published
Efficacy Evaluation of
Pioglitazone in
Delaying Its Onset
(TOMMORROW)

Telmisartan vs.                   Trial is ongoing             [40]
Perindopril in
Hypertensive Mild-
Moderate AD Patients
(SARTAN-AD)

Effects of telmisartan    Significant improvement in MMSE      [41]
on the level of            and ADAS-cog in Telmi treated
A[beta]-42,               subjects compared to amlodipine
interleukin-1[beta],              treated subjects
TNF[alpha] and
cognition in
hypertensive patients
with AD

Phase 2a Feasibility       Trends towards improvement in       [42]
Study of T3D-959 in                   ADAS-Cog
Subjects with Mild to
Moderate AD

Clinical trials of PPAR[gamma] agonists. AChEI: acetylcholinesterase
inhibitor; AD: Alzheimers disease; ADAS-Cog: Alzheimer's disease
assessment scale cognitive subscale; ApoE: apolipoprotein E; CDR-SB:
clinical dementia rating scale sum of boxes; CIBIC+: clinicians
interview-based impression of change with caregiver input; FDG-PET:
fluorodeoxyglucose-positron emission tomography; MMSE: mini mental
status exam; PPAR-[gamma]: peroxisome proliferator activated receptor
gamma; Pio: pioglitazone; Rosi: rosiglitazone; Telmi: telmisartan;
* T3D-959 is a dual PPAR[delta]/[gamma] agonist.

TABLE 2

Ligand              Classification                   Model

NP00111 and       PPAR[gamma] agonist         cerebral cortex of
NP01138                                      embryonic day 18 rats
(Novel TZDs)

Pirinixic acid        Dual gamma-        Thy-1 [A[beta]PP.sub.SL] mice
derivate MH84    secretase/PPAR[gamma]
                       modulator

INT131                 SPPARMs-                  Rat primary
                 non-thiazolidinedione        hippocampal neurons
                       compound

T3D-959           Dual PPAR-[delta]/        streptozotocin-induced
                  PPAR[gamma] agonist           AD mouse model

                                                 Intracerebral
                                             streptozotocin (i.c.
                                                  STZ) model

Ligand                 Amyloid         Other pathologies    references

NP00111 and       Decreased A[beta]        Prevented           [43]
NP01138                                  activation of
(Novel TZDs)                             microglia and
                                           suppressed
                                          inflammatory
                                            markers.

                                           Restricted
                                          cortical or
                                          hippocampal
                                         neuronal cell
                                             death

Pirinixic acid    reduced cerebral             NA              [44]
derivate MH84    levels of A[beta]40

INT131            Improved neuronal        increased           [45]
                  survival against         dendritic
                       A[beta]             branching,
                                            improved
                                         mitochondrial
                                           functions

T3D-959            reduced A[beta]     Reduced levels of       [42]
                                       oxidative stress,
                                           normalized
                                         expression of
                                        phospho-tau and
                                            choline
                                       acetyltransferase.

                        -NA-             Improved Brain        [46]
                                          Insulin/IGF
                                         Signaling and
                                            reduced
                                       neuroinflammation

PPAR[GAMMA] agonists in various models of AD and its effects on
various pathologies. Amyloid beta (A[beta]), peroxisome proliferator-
activated receptor gamma (PPAR-[gamma]), thiazolidinediones (TZDs),
streptozotocin (STZ).
COPYRIGHT 2018 Hindawi Limited
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2018 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Govindarajulu, Manoj; Pinky, Priyanka D.; Bloemer, Jenna; Ghanei, Nila; Suppiramaniam, Vishnu; Amin,
Publication:PPAR Research
Date:Jan 1, 2018
Words:16566
Previous Article:Expression of GPR43 in Brown Adipogenesis Is Enhanced by Rosiglitazone and Controlled by PPAR[gamma]/RXR Heterodimerization.
Next Article:The Hepatoprotection by Oleanolic Acid Preconditioning: Focusing on PPAR[alpha] Activation.
Topics:

Terms of use | Privacy policy | Copyright © 2020 Farlex, Inc. | Feedback | For webmasters