Printer Friendly

Sensors Applied for the Detection of Pesticides and Heavy Metals in Freshwaters.

1. Introduction

Seventy-one percent of our planet is covered by water which is a vital necessity to the organisms living on the earth. Even though freshwater only occupied less than 3% of all the water on earth, our daily life is more associated with freshwater than saltwater. However, many freshwater ecosystems have been polluted by anthropogenic activities including the three most dominating contributors: human settlements, industries, and agriculture [1-3]. For example, more than 100,000 chemicals (e.g., pesticides) are registered nowadays, and most of them are related to our daily life; these chemicals can inevitably enter freshwaters [4]. In addition, more than half of the total production of chemicals is harmful to the environment [5]. In Latin America, Africa, and Asia, 1/3, 1/7, and 1/10 of all the streams and rivers have already been affected by pathogen (e.g., fecal coliform bacteria), organic (e.g., biochemical oxygen demand (BOD)), and salinity (e.g., total dissolved solids (TDS)) pollution [6]. At a national scale survey, the water quality of ~1/3 of US' streams and rivers was assessed by the Environmental Protection Agency (EPA), and the results revealed that 55% of the streams were categorized as impaired. Bacteria, sediment, and nutrients were identified as the three most significant causes for stream pollution in this survey [7]. Freshwaters in developing countries such as China are facing more serious pollution situation. It was estimated that ~60% of China's groundwater was classified as poor or very poor, and the number is even higher (~80%) in 17 northern provinces [8]. The impaired water quality negatively affected aquatic organisms and generates major threats to waterbodies, with great consequences on aquatic ecosystems at levels ranging from individuals to watershed [9-13]. More importantly, human health is also at risk if clean drinking water cannot be accessed [4]. It was estimated that the freshwater resources for 82% of the world's population are under high levels of threats, and the situation is more serious in developing countries than in developed countries [14]. Consequently, more than 1/3 of the population in the world lacks safe drinking water [4]. Freshwaters (e.g., streams, rivers, lakes, and ponds) receive large quantity of various pollutants including pesticides [15], heavy metals [16], and nutrients [17]. It was estimated that 80% of municipal wastewater that flows into waterbodies is untreated, and millions of tonnes of heavy metals and other pollutants were dumped into waterbodies every year [18]. In China, human activities introduced 14.5 [+ or -] 3.1 mega tonnes of nitrogen to freshwaters each year which are 2.7 times of the predicted safety threshold [19]. Excess nutrients such as nitrogen and phosphorus in freshwaters usually lead to eutrophication, one of the most common reasons for water quality degradation [20, 21]. Many efforts have been done to improve the water quality of freshwaters via direct or indirect ways [22, 23]. Monitoring water quality in freshwaters is still the first priority for many ecological studies, water quality control, and restoration projects [24, 25].

Monitoring water quality is especially important for the provision of clean drinking water and the protection of aquatic ecosystems [26, 27]. After the development of decades, numerous kinds of sensors, including chemical sensors, biosensors, and electronical sensors, have been developed to detect water quality [28, 29]. A sensor is a device that is capable of providing selective quantitative or semiquantitative analytical information via a biological/chemical/electronical recognition element; it usually is composed of a transducer and a processor [30]. Generally, the requirements of water quality sensors are confined to many factors such as the waterbodies to be monitored, water quality parameters to be tested, and the objects of the monitoring system [31]. The projection of future sensors targets on higher sensitivity, rapider detection, smaller size, inexpensiveness, disposability, ease of manipulation, durability for longer time, and suitability for multiple environments. For example, in a newly published review, Parra et al. [29] summarized several requirements of physical sensors for precision aquaculture: low maintenance, low cost, low battery consumption, nonmetal, robust, waterproof, withstand biofouling, and no effects on aquatic organisms. Previous review papers focus on either one type/category of sensors [32] or one analyte (or one group of analytes) [33]. This review paper will focus on the sensors applied to test two of the most common pollutants in freshwaters, i.e., pesticides and heavy metals. The general contamination status of these parameters in freshwaters and a simple analysis of sensors are also discussed. The sensitivity of sensors (limit of detection (LOD)) and sensor types are especially discussed. The present review paper differs from previous review papers in the following ways: (1) we unified the unit of LOD to make the comparison between studies possible and visualized; (2) only the data collected from freshwaters were used; and (3) not only the sensor types but also the detected analyte categories were discussed.

2. Materials and Methods

2.1. Database Compilation. We build the database of pesticide sensors by searching Web of Science using the following topics: "sensor" and "pesticide or herbicide or fungicide or insecticide" and "freshwater or river or stream or lake or reservoir or pond". Most of the collected papers were published during the last five years which composed almost half of the publications (2015-2019). The data collected before 2015 were mainly based on previous review papers [34-36]. For each publication, we extracted the following information: tested analytes, sensor types (e.g., biosensors and electronical sensors), LODs, and the applicable waterbodies. For the optical sensors, we included fluorescent sensors, luminescent sensors, and colorimetric sensors. The tested analytes were grouped into three categories of pesticides (i.e., herbicides, insecticides, and fungicides). All the units of LODs were unified as ng/ml. The same method was used to build the database of heavy metal sensors by replacing "pesticide OR herbicide OR fungicide OR insecticide" with "heavy metal". For heavy metal sensors, we only collected data during the year 2017-2019 (updated until October) which composed ~1/3 of all the publications.

2.2. Data Analysis. One-way ANOVA (analysis of variation) was conducted to test the differences of LODs among the pesticide groups/heavy metals and among the sensor types. All data were checked for normality before conducting the ANOVA tests and were log-transformed to meet normality and homogeneity assumptions [37]. One case (1.84 * [10.sup.-7]) was deleted from the pesticide sensor dataset due to the outlier when conducting the ANOVA. If significant effects present in the ANOVA, then Tukey's multiple comparison was used for post hoc analysis of significant differences among sensor types or analyte groups [38]. All statistical analyses were carried out using SPSS 24.0.

3. Results and Discussion

3.1. Pesticide Sensors

3.1.1. Pesticides in Freshwaters. Pesticides are usually classified into three major categories: herbicides, insecticides, and fungicides/bactericides. The application of pesticides is used to control weeds, pest outbreaks, and fungal infestations for the security of global food supply [15, 39, 40]. The worldwide pesticide expenditures increased from $48.8 billion in 2008 to $55.9 billion in 2012 [41]. After application, these pesticides can enter freshwaters via numerous ways such as wastewater effluent and surface runoff [15]. In a national (US) monitoring network for pesticides in streams and rivers during 1992-2011, the concentrations of one or more pesticides exceeded the aquatic organism benchmark in 61%-69%, 45%, and 53%90% of the streams in agricultural, mixed-land-use, and urban areas, respectively [42]. In Europe, atrazine (herbicide) is among the most frequently detected chemicals in groundwaters [5]. Due to their high frequency of being detected in freshwaters and the toxicity effects on aquatic organisms, pesticides are one of the most common monitored water quality parameters [43-45]. During the last few decades, many sensors have been developed to detect pesticides in freshwaters [46, 47].

Most of the sensor data we collected can be applied in rivers and streams which correspond to the fact that most studies focused on these waterbodies and indicated the needs to monitoring pesticides in streams and rivers. The most frequently detected pesticides are paraquat, followed by atrazine and carbaryl (Table 1). This result is in accordance with the most common pesticide contamination in freshwaters [5]. However, only three studies detected glyphosate [48-50], the most widely used herbicide worldwide [51, 52]. Therefore, more studies should target on the development of glyphosate sensors to get a clearer understanding of the glyphosate contamination in freshwaters. Although the production of herbicides is the highest worldwide [53], more studies focus on insecticide sensors than herbicide sensors (Table 1), probably because organophosphorus pesticides, the most frequently detected analytes, are highly toxic to organisms [54]. Therefore, priority was given to those with relatively high toxicity rather than those used in large quantity when monitoring water quality.

3.1.2. Sensitivity of Pesticide Sensors. The average LOD of pesticide sensors included in this review was 72.53 [+ or -] 12.69 ng/ml (n =180, mean [+ or -] SE). Not all of sensors for the detection of pesticides in freshwaters were sensitive enough for ecological and monitoring requirements. The proposed maximum contaminant level, i.e., the maximum permissible level (MCL) of a contaminant in water that is delivered to any user of a public waterbody, for many pesticides (e.g., atrazine and aldicarb) is at the level of ng/ml or even less than 1 ng/ml [170]. For example, the criterion maximum concentrations (CMC) of carbaryl, chlorpyrifos, diazinon, and parathion for aquatic life in freshwaters of the United States are 2.1, 0.083, 0.17, and 0.065 ng/ml, respectively (Table 2). Moreover, more than 5% of the MCLs for the top 29 commonly regulated pesticides in drinking water exceed the computed upper thresholds for human health risk uncertainty [171], which means that the MCLs for pesticides in drinking water should be stricter and higher sensitive sensors are needed. However, our results indicated that the LODs for 32.8% of the sensors are higher than 10 ng/ml, and <50% of the sensors can reach the level of 3 ng/ml. Therefore, many sensors may not be sensitive enough for the detection of pesticides in freshwaters regarding the requirements for the protection of aquatic life and human health. In addition, there are more than 1,000 pesticides used worldwide to ensure food security. Nevertheless, this review paper only included 97 kinds of pesticides/active ingredients which cover less than 10% of all pesticides. Therefore, future studies should focus on the largely ignored pesticides because many pesticides have toxic effects on aquatic organisms [172] and human health [173, 174]. For example, many sensors were developed to analyze organophosphorus pesticides (e.g., chlorpyrifos and carbaryl) while fewer sensors were targeted on organochlorine pesticides such as dichlorodiphenyltrichloroethane (DDT). DDT was widely used for the control of pest and fungus in the last century. Even though DDT has been banned for decades in many countries, it can still be found in 8-100% of the sampled small streams in three South American countries [175]. Therefore, DDT is still a global concern due to the toxicity, not easy to be degraded, and the tendency to be accumulated in organisms [176]. The LOD of one biooptical sensor used for the detection of DDT in river water can be as low as 0.015ng/ml [177].

LODs in this study showed thousands of orders for different analytes and sensors. Among all the sensors been checked, the most sensitive sensor was developed by Kumar et al. [131], in which the indirect detection of malathion through an enzyme-based fluorometric method was applied. This system can achieve an ultrasensitive LOD which is as low as 1.84 * [10.sup.-7] ng/ml and can be spiked for lake water and agricultural runoff water [131]. By contrast, some sensors are relatively "insensitive" with the LODs at the level of 100 ng/ml [50, 122, 141]. Although, the average LOD for herbicide sensors is higher than that of insecticides and fungicides, there is no significant difference among the three categories of pesticides ([F.sub.2,176] = 2.717, P = 0.069, Figure 1). The sensitivity of sensors collected in this paper is similar to that of previous review papers [34, 178]. Only 22 cases (12.22%) were related to fungicide sensors. This extremely low percentage indicated the urgency to improve the monitoring of fungicides in freshwaters, because fungicides are widely occurring in freshwaters and are highly toxic to numerous aquatic organisms [15, 179]. For the sensor types, we found a similar pattern (Table 1) as some previous review papers that electrochemical [180], optical [33, 35], and biological [181] sensors are among the most widely used sensors for the detection of pesticides in freshwaters. Regarding the sensitivity of different types of sensors, biosensors showed the highest sensitivity compared with other sensors, while the biooptical and electrochemical optical sensors indicated the lowest sensitivity ([F.sub.9,169] = 7.239, P <0.001, Figure 2). Biosensors have been widely used in the environmental monitoring [5], given the advantages of biosensors in detecting pesticides and other pollutants over conventional methods: high stability (e.g., they can operate at high temperature), inexpensiveness, possibility for real-time monitoring, high electivity, and disposability, just to name some of them

[181-183]. Biosensors could be a promising direction for pesticide detection in freshwaters. For example, diatoms, which were popular for the assessment of water quality [184], may be a suitable tool for biosensors.

3.2. Heavy Metal Sensors

3.2.1. Heavy Metals in Freshwaters. Heavy metals refer to metallic elements that have a high atomic weight and with a density of at least five times greater than that of water [185]. Aquatic ecosystems can be polluted by heavy metals through multiple ways such as mining, weathering of soils and rocks, industrial wastewater, and surface runoff [186-188]. Natural concentrations of Pb and Cd are less than 0.003 ng/ml in streams [189]. However, heavy metal concentrations may be two or three orders of the natural concentrations or even higher in polluted waterbodies [190, 191]. The most common heavy metal pollutants found in aquatic ecosystems are As, Cd, Cr, Cu, Ni, Pb, Hg, and Zn [192]. For instance, Cu, Fe, Zn, Mn, and Cr were the top five heavy metals of concern in freshwaters in Bohai Region, China, while Hg showed the lowest risk [193]. The concentrations of many heavy metals in the river Ganga water and sediment exceeded the acceptable concentrations and threatened human health and aquatic organisms [194]. Three countries, i.e., the United States, Germany, and Russia, consume 3/4 of the world's most widely used metals. Human health and aquatic ecosystems can be threatened by heavy metals especially by Pb, Cd, Hg, and As [195, 196]. For example, groundwaters contaminated by As threatened millions of people's drinking water safety in developing countries such as India, Cambodia, and Vietnam [4]. Aquatic organisms still suffer from the toxic effects of heavy metals even though upstream mining activities ceased for decades [197]. Due to the high toxicity and them commonly found in freshwaters [198, 199], heavy metals are among the most important indices when monitoring water quality [45, 200].

3.2.2. Sensitivity of Heavy Metal Sensors. Altogether, 61 publications were selected during the years 2017-2019 (the data were updated until October 2019), with nine types of sensors used for the detection of 13 heavy metals in freshwaters (Table 3). The average LOD for all sensors is 65.36 [+ or -] 47.51 ng/ml (n = 117, mean [+ or -] SE). The sensitivity of sensors differed among the detected heavy metals ([F.sub.9,104] = 2.289, P = 0.022, Figure 3). Sensors targeted on Ag had the highest sensitivity while the sensors used to detect Fe and Cr showed the lowest sensitivity. The sensitivity of many sensors can satisfy the requirements for drinking water and wild life protection. The LODs of some sensors were still higher than CMCs or MCLs. Especially for mercury sensors, 30% of the collected sensors failed to satisfy the CMC or MCL requirements. It reminds us that higher sensitivity sensors should be developed to protect human health and aquatic organisms. In addition, the CMC/MCL may be changed due to the national regulation [201, 202] which means that the higher sensitivity sensors may be needed to detect lower concentrations of heavy metals. As mentioned above, As, Cr, Ni, and Zn are among the highest concentrations of heavy metals in freshwaters [192]. However, limited sensors were developed to detect these heavy metals. Therefore, more diverse sensors should be developed to analyze these heavy metals.

Regarding the sensor types, more than half of the heavy metal sensors were based on electrochemical methods, while few studies applied biological ways (Table 3). The sensitivity of sensors for heavy metal detection varied among sensor types ([F.sub.8,108] = 12.5, P < 0.001, Figure 4). Bioelectrochemical sensors had the highest sensitivity, while bioelectronical sensors showed the lowest sensitivity. The most sensitive sensor was a bioelectrochemical sensor which was developed by Zhang et al. [251] for the detection of silver in tap and lake water, and the LOD was as low as 5.0 * [10.sup.-8] ng/ml. On the contrary, a pigment-based whole-cell biosensor developed for the analysis of copper in pond and tap water showed the highest LOD (5547.6 ng/ml) [262]. The average LOD of heavy metals based on electrochemical methods was 12.187 [+ or -] 5.446ng/ml (n = 65, mean [+ or -] SE). The LOD of electrochemical sensors in this review is higher than the LODs of electrochemical sensors in previous review papers [210, 263, 264]. This probably is because the LODs of four electrochemical sensors were higher than 50 ng/ml which increased the average LOD. Electrochemical sensors have the advantages such as easy to manipulate, cheap, suitable for field monitoring, and portable which make it suitable for heavy metal detection [263]. However, the optical sensors in this review did not show higher sensitivity than electrochemical sensors as mentioned in a previous study [263]. This is caused by two studies which used colorimetric and luminescent detection; the LODs in these two studies are 30-300 ng/ml [209, 255].

4. Conclusion

This review presents the general information on sensors for the detection of pesticides and heavy metals in freshwaters. The studied sensors covered less than 10% of all registered pesticides/ingredients. Most of the selected pesticide sensors were used to analyze insecticides and herbicides while limited studies were focused on fungicides. The LODs of ~30% of the pesticide sensors failed to meet the maximum permissible concentrations for aquatic life and drinking water. Biosensors showed the highest sensitivity and appeared to be a promising technology in future development for the detection of pesticides in freshwaters. The average LOD of sensors for the detection of heavy metals is 65.36 ng/ml during the last three years. The LODs of a small fraction of sensors such as mercury sensors were higher than the upper threshold concentrations for the protection of wild life and drinking water safety. Most of the heavy metal sensors were designed to detect mercury, cadmium, lead, and copper based on electrochemical methods. These results imply us that higher sensitivity sensors should be developed in the future. In addition, future sensors should cover more pesticides and heavy metals (e.g., glyphosate and zinc) which are commonly detected in waterbodies and are highly toxic to aquatic organisms and human health.

Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.


This work was supported by the National Natural Science Foundation of China (grant numbers 41501566 and 41601576), Fundamental Research Funds for the Central Universities (grant number 2412018JC002), Program of Introducing Talents of Discipline to Universities (grant number B16011), Foundation of Education Department of Jilin Province (grant number 2014 B050), and Basal Research Fund for Undergraduate Universities of Heilongjiang Province of China (grant number 2019-KYYWF-0598).


[1] J. Mateo-Sagasta, S. M. Zadeh, H. Turral, and J. Burke, Water Pollution from Agriculture: A Global Review, the Food and Agriculture Organization of the United Nations; the Water Land and Ecosystems research program, Rome, Italy; Colombo, Sri Lanka, 2017.

[2] K. Li, Z. Zhang, H. Yang et al., "Effects of instream restoration measures on the physical habitats and benthic macroinvertebrates in an agricultural headwater stream," Ecological Engineering, vol. 122, pp. 252-262, 2018.

[3] T. Mani, S. Primpke, C. Lorenz, G. Gerdts, and P. Burkhardt-Holm, "Microplastic pollution in benthic midstream sediments of the Rhine River," Environmental Science & Technology, vol. 53, no. 10, pp. 6053-6062, 2019.

[4] R. P. Schwarzenbach, T. Egli, T. B. Hofstetter, U. von Gunten, and B. Wehrli, "Global water pollution and human health," Annual Review of Environment and Resources, vol. 35, no. 1, pp. 109-136, 2010.

[5] M. Gavrilescu, K. Demnerova, J. Aamand, S. Agathos, and F. Fava, "Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation," New Biotechnology, vol. 32, no. 1, pp. 147-156, 2015.

[6] UNEP, A Snapshot of the World's Water Quality: Towards a Global Assessment, Nairobi, United Nations Environment Programme, 2016.

[7] EPA, Water Quality Assessment and TMDL Information, United States Environmental Protection Agency, 2015.

[8] D. Hou, G. Li, and P. Nathanail, "An emerging market for groundwater remediation in China: policies, statistics, and future outlook," Frontiers of Environmental Science & Engineering, vol. 12, no. 1, p. 16, 2018.

[9] B. Grizzetti, D. Lanzanova, C. Liquete, A. Reynaud, and A. C. Cardoso, "Assessing water ecosystem services for water resource management," Environmental Science & Policy, vol. 61, pp. 194-203, 2016.

[10] J. Turunen, J. Markkula, M. Rajakallio, and J. Aroviita, "Riparian forests mitigate harmful ecological effects of agricultural diffuse pollution in medium-sized streams," Science of the Total Environment, vol. 649, pp. 495-503, 2019.

[11] H. M. Valett and D. T. Ely, "Acidification, stress, and detrital processing: implications for ecosystem function in headwater streams," Hydrobiologia, vol. 826, no. 1, pp. 233-246, 2019.

[12] K. Li, C. He, J. Zhuang et al., "Long-term changes in the water quality and macroinvertebrate communities of a subtropical river in South China," Water, vol. 7, no. 12, pp. 63-80, 2015.

[13] Z. Zhang, H. Yang, H. Yang, Y. Li, and T. Wang, "The impact of roadside ditches on juvenile and sub-adult Bufo melanostictus migration," Ecological Engineering, vol. 36, no. 10, pp. 1242-1250, 2010.

[14] P. A. Green, C. J. Vorosmarty, I. Harrison, T. Farrell, L. Saenz, and B. M. Fekete, "Freshwater ecosystem services supporting humans: pivoting from water crisis to water solutions," Global Environmental Change, vol. 34, pp. 108-118, 2015.

[15] J. P. Zubrod, M. Bundschuh, G. Arts et al., "Fungicides: an overlooked pesticide class?," Environmental Science & Technology, vol. 53, no. 7, pp. 3347-3365, 2019.

[16] K. Sekabira, H. O. Origa, T. A. Basamba, G. Mutumba, and E. Kakudidi, "Assessment of heavy metal pollution in the urban stream sediments and its tributaries," International Journal of Environmental Science & Technology, vol. 7, no. 3, pp. 435-446, 2010.

[17] G. Woodward, M. O. Gessner, P. S. Giller et al., "Continental-scale effects of nutrient pollution on stream ecosystem functioning," Science, vol. 336, no. 6087, pp. 1438-1440, 2012.

[18] WWAP, The United Nations World Water Development Report 2017: Wastewater, the Untapped Resource, In Place de Fontenoy Paris, France, 2017.

[19] C. Yu, X. Huang, H. Chen et al., "Managing nitrogen to restore water quality in China," Nature, vol. 567, no. 7749, pp. 516-520, 2019.

[20] M. Le Moal, C. Gascuel-Odoux, A. Menesguen et al., "Eutrophication: a new wine in an old bottle?," Science of the Total Environment, vol. 651, pp. 1-11, 2019.

[21] V. H. Smith, "Eutrophication of freshwater and coastal marine ecosystems a global problem," Environmental Science and Pollution Research, vol. 10, no. 2, pp. 126-139, 2003.

[22] Z. Zhang, L. Cao, Z. Zhu et al., "Evaluation on soil bioengineering measures in agricultural areas: poorer durability of wooden structures and better aboveground habitat improvements," Ecological Engineering, vol. 129, pp. 1-10, 2019.

[23] L. L. Osborne and D. A. Kovacic, "Riparian vegetated buffer strips in water-quality restoration and stream management," Freshwater Biology, vol. 29, no. 2, pp. 243-258, 1993.

[24] J. S. Bash and C. M. Ryan, "Stream restoration and enhancement projects: is anyone monitoring?," Environmental Management, vol. 29, no. 6, pp. 877-885, 2002.

[25] S. C. Mukhopadhyay and A. Mason, Smart Sensors for Real-Time Water Quality Monitoring, Springer, 2013.

[26] M. V. Storey, B. van der Gaag, and B. P. Burns, "Advances in on-line drinking water quality monitoring and early warning systems," Water Research, vol. 45, no. 2, pp. 741-747, 2011.

[27] J. Bartram and R. Ballance, Water Quality Monitoring: A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes, CRC Press, 1996.

[28] P. Kruse, "Review on water quality sensors," Journal of Physics D: Applied Physics, vol. 51, no. 20, p. 25, 2018.

[29] L. Parra, G. Lloret, J. Lloret, and M. Rodilla, "Physical sensors for precision aquaculture: a review," IEEE Sensors Journal, vol. 18, no. 10, pp. 3915-3923, 2018.

[30] M. Farre, L. Kantiani, S. Perez, D. Barcelo, and D. Barcelo, "Sensors and biosensors in support of EU Directives," TrAC Trends in Analytical Chemistry, vol. 28, no. 2, pp. 170-185, 2009.

[31] N. A. Cloete, R. Malekian, and L. Nair, "Design of smart sensors for real-time water quality monitoring," IEEE Access, vol. 4, pp. 3975-3990, 2016.

[32] N. de Acha, C. Elosua, J. M. Corres, and F. J. Arregui, "Fluorescent sensors for the detection of heavy metal ions in aqueous media," Sensors, vol. 19, no. 3, p. 599, 2019.

[33] E. J. Llorent-Martinez, P. Ortega-Barrales, M. L. Fernandez-de Cordova, and A. Ruiz-Medina, "Trends in flow-based analytical methods applied to pesticide detection: a review," Analytica Chimica Acta, vol. 684, no. 1-2, pp. 30-39, 2011.

[34] G. A. Ibanez and G. M. Escandar, "Luminescence sensors applied to water analysis of organic pollutants--an update," Sensors, vol. 11, no. 12, pp. 11081-11102, 2011.

[35] S. A. Nsibande and P. B. C. Forbes, "Fluorescence detection of pesticides using quantum dot materials--a review," Analytica Chimica Acta, vol. 945, pp. 9-22, 2016.

[36] A. Gahlaut, A. Gothwal, A. K. Chhillar, and V. Hooda, "Electrochemical biosensors for determination of organophosphorus compounds: review," Open Journal of Applied Biosensor, vol. 1, no. 1, pp. 1-8, 2012.

[37] Z. Yuan and H. Y. H. Chen, "Global trends in senesced-leaf nitrogen and phosphorus," Global Ecology and Biogeography, vol. 18, no. 5, pp. 532-542, 2009.

[38] J. Liu, C. Feng, D. Wang, L. Wang, B. J. Wilsey, and Z. Zhong, "Impacts of grazing by different large herbivores in grassland depend on plant species diversity," Journal of Applied Ecology, vol. 52, no. 4, pp. 1053-1062, 2015.

[39] B. Rashid, T. Husnain, and S. Riazuddin, "Herbicides and pesticides as potential pollutants: a global problem," in Plant Adaptation and Phytoremediation, M. Ashraf, M. Ozturk, and M. S. A. Ahmad, Eds., pp. 427-447, Springer Netherlands, Dordrecht, 2010.

[40] W. Zhang, "Global pesticide use: profile, trend, cost/benefit and more," Proceedings of the International Academy of Ecology and Environmental Sciences, vol. 8, no. 1, pp. 1-27, 2018.

[41] D. Atwood and C. Paisley-Jones, Pesticides Industry Sales and Usage: 2008-2012 Market Estimates, US Environmental Protection Agency, Washington, DC, USA, 2017.

[42] W. W. Stone, R. J. Gilliom, and K. R. Ryberg, "Pesticides in U.S. streams and rivers: occurrence and trends during 1992-2011," Environmental Science & Technology, vol. 48, no. 19, pp. 11025-11030, 2014.

[43] P. Palma, M. Kuster, P. Alvarenga et al., "Risk assessment of representative and priority pesticides, in surface water of the Alqueva reservoir (south of Portugal) using on-line solid phase extraction-liquid chromatography-tandem mass spectrometry," Environment International, vol. 35, no. 3, pp. 545-551, 2009.

[44] J. Robles-Molina, B. Gilbert-Lopez, J. F. Garcia-Reyes, and A. Molina-Diaz, "Monitoring of selected priority and emerging contaminants in the Guadalquivir River and other related surface waters in the province of Jaen, South East Spain," Science of the Total Environment, vol. 479-480, pp. 247-257, 2014.

[45] S. Zgheib, R. Moilleron, and G. Chebbo, "Priority pollutants in urban stormwater: part 1 - case of separate storm sewers," Water Research, vol. 46, no. 20, pp. 6683-6692, 2012.

[46] P. Joshi, A. Bisht, T. Tyagi, S. Mehtab, and M. Zaidi, "Electrochemical sensor for the detection of pesticides in environmental sample: a review," IJCS, vol. 6, no. 2, pp. 3199-3205, 2018.

[47] C. Steffens, J. Steffens, A. Marcia Graboski, A. Manzoli, and F. Lima Leite, "16- nanosensors for detection of pesticides in water," in New Pesticides and Soil Sensors, A. M. Grumezescu, Ed., pp. 595-635, Academic Press, 2017.

[48] E. A. O. Pereira, V. F. Melo, G. Abate, and J. C. Masini, "Determination of glyphosate and aminomethylphosphonic acid by sequential-injection reversed-phase chromatography: method improvements and application in adsorption studies," Analytical and Bioanalytical Chemistry, vol. 411, no. 11, pp. 2317-2326, 2019.

[49] L. B. Jennings, S. Shuvaev, M. A. Fox, R. Pal, and D. Parker, "Selective signalling of glyphosate in water using europium luminescence," Dalton Transactions, vol. 47, no. 45, pp. 16145-16154, 2018.

[50] H. Kwon, K. M. Chan, and E. T. Kool, "DNA as an environmental sensor: detection and identification of pesticide contaminants in water with fluorescent nucleobases," Organic & Biomolecular Chemistry, vol. 15, no. 8, pp. 1801-1809, 2017.

[51] R. Annett, H. R. Habibi, and A. Hontela, "Impact of glyphosate and glyphosate-based herbicides on the freshwater environment," Journal of Applied Toxicology, vol. 34, no. 5, pp. 458-479, 2014.

[52] N. M. van Straalen and J. Legler, "Decision-making in a storm of discontent," Science, vol. 360, no. 6392, pp. 958-960, 2018.

[53] W. Zhang, F. Jiang, and J. Ou, "Global pesticide consumption and pollution: with China as a focus," Proceedings of the International Academy of Ecology and Environmental Sciences, vol. 1, no. 2, pp. 125-144, 2011.

[54] S. Y. Wee and A. Z. Aris, "Ecological risk estimation of organophosphorus pesticides in riverine ecosystems," Chemosphere, vol. 188, pp. 575-581, 2017.

[55] L. Tang, G.-M. Zeng, G.-L. Shen, Y.-P. Li, Y. Zhang, and D.L. Huang, "Rapid detection of picloram in agricultural field samples using a disposable immunomembrane-based electrochemical sensor," Environmental Science & Technology, vol. 42, no. 4, pp. 1207-1212, 2008.

[56] H. G. Zuo, J. X. Zhu, C. R. Zhan et al., "Preparation of malathion MIP-SPE and its application in environmental analysis," Environmental Monitoring and Assessment, vol. 187, no. 7, p. 394, 2015.

[57] Z.-L. Shen, D. Yuan, Q.-D. Su et al., "Selective solid-phase extraction using molecularly imprinted polymer for analysis of methamidophos in water and soil samples," Bioscience, Biotechnology, and Biochemistry, vol. 75, no. 3, pp. 473-479, 2011.

[58] X. Zhu, J. Yang, Q. Su, J. Cai, and Y. Gao, "Selective solid-phase extraction using molecularly imprinted polymer for the analysis of polar organophosphorus pesticides in water and soil samples," Journal of Chromatography A, vol. 1092, no. 2, pp. 161-169, 2005.

[59] R. P. Cerejeira, C. Delerue-Matos, and C. M. Vaz, "Development of an FIA system with amperometric detection for determination of bentazone in estuarine waters," Analytical and Bioanalytical Chemistry, vol. 373, no. 4-5, pp. 295-298, 2002.

[60] R. Solna, S. Sapelnikova, P. Skladal et al., "Multienzyme electrochemical array sensor for determination of phenols and pesticides," Talanta, vol. 65, no. 2, pp. 349-357, 2005.

[61] M. G. F. Sales, M. C. V. F. Vaz, C. Delerue-Matos, S. A. A. Almeida, M. F. Barroso, and H. A. O. Ferreira, "Flow amperometric determination of carbofuran and fenobucarb," International Journal of Environmental Analytical Chemistry, vol. 88, no. 1, pp. 37-49, 2008.

[62] C. La Rosa, F. Pariente, L. Hernandez, and E. Lorenzo, "Amperometric flow-through biosensor for the determination of pesticides," Analytica Chimica Acta, vol. 308, no. 13, pp. 129-136, 1995.

[63] G. Istamboulie, R. Durbiano, D. Fournier, J.-L. Marty, and T. Noguer, "Biosensor-controlled degradation of chlorpyrifos and chlorfenvinfos using a phosphotriesterase-based detoxification column," Chemosphere, vol. 78, no. 1, pp. 1-6, 2010.

[64] F. Svorc, M. Rievaj, and D. Bustin, "Green electrochemical sensor for environmental monitoring of pesticides: determination of atrazine in river waters using a boron-doped diamond electrode," Sensors and Actuators B: Chemical, vol. 181, pp. 294-300, 2013.

[65] L. B. O. dos Santos, M. S. P. Silva, and J. C. Masini, "Developing a sequential injection-square wave voltammetry (SI-SWV) method for determination of atrazine using a hanging mercury drop electrode," Analytica Chimica Acta, vol. 528, no. 1, pp. 21-27, 2005.

[66] L. B. O. dos Santos, G. Abate, and J. C. Masini, "Determination of atrazine using square wave voltammetry with the hanging mercury drop electrode (HMDE)," Talanta, vol. 62, no. 4, pp. 667-674, 2004.

[67] C. M. P. Vaz, S. Crestana, S. A. S. Machado, L. H. Mazo, and L. A. Avaca, "Electroanalytical determination of the herbicide atrazine in natural waters," International Journal of Environmental Analytical Chemistry, vol. 62, no. 1, pp. 65-76, 1996.

[68] D. De Souza, R. A. de Toledo, A. Galli et al., "Determination of triazine herbicides: development of an electroanalytical method utilizing a solid amalgam electrode that minimizes toxic waste residues, and a comparative study between voltammetric and chromatographic techniques," Analytical and Bioanalytical Chemistry, vol. 387, no. 6, pp. 2245-2253, 2007.

[69] L. C. S. Figueiredo-Filho, D. C. Azzi, B. C. Janegitz, and O. Fatibello-Filho, "Determination of atrazine in natural water samples by differential pulse adsorptive stripping voltammetry using a bismuth film electrode," Electroanalysis, vol. 24, no. 2, pp. 303-308, 2012.

[70] G. Jeanty, A. Wojciechowska, J.-L. Marty, and M. Trojanowicz, "Flow-injection amperometric determination of pesticides on the basis of their inhibition of immobilized acetylcholinesterases of different origin," Analytical and Bioanalytical Chemistry, vol. 373, no. 8, pp. 691-695, 2002.

[71] A. H. Kamel, F. T. C. Moreira, S. A. A. Almeida, and M. G. F. Sales, "Novel potentiometric sensors of molecular imprinted polymers for specific binding of chlormequat," Electroanalysis, vol. 20, no. 2, pp. 194-202, 2008.

[72] S. Suwansa-ard, P. Kanatharana, P. Asawatreratanakul, C. Limsakul, B. Wongkittisuksa, and P. Thavarungkul, "Semi disposable reactor biosensors for detecting carbamate pesticides in water," Biosensors and Bioelectronics, vol. 21, no. 3, pp. 445-454, 2005.

[73] P. Mulchandani, W. Chen, and A. Mulchandani, "Flow injection amperometric enzyme biosensor for direct determination of organophosphate nerve agents," Environmental Science & Technology, vol. 35, no. 12, pp. 2562-2565, 2001.

[74] B. Bucur, M. Dondoi, A. Danet, and J.-L. Marty, "Insecticide identification using a flow injection analysis system with biosensors based on various cholinesterases," Analytica Chimica Acta, vol. 539, no. 1-2, pp. 195-201, 2005.

[75] M. A. Gonzalez-Martinez, A. Maquieira, and R. Puchades, "Analysis of atrazine in water and vegetables using immunosensors working in organic media," International Journal of Environmental Analytical Chemistry, vol. 83, no. 7-8, pp. 633-642, 2003.

[76] P. Pulido-Tofino, J. M. Barrero-Moreno, and M. C. Perez-Conde, "Flow-through fluoroimmunosensor for isoproturon determination in agricultural foodstuff: evaluation of antibody immobilization on solid support," Analytica Chimica Acta, vol. 417, no. 1, pp. 85-94, 2000.

[77] M. A. Gonzalez-Martinez, S. Morais, R. Puchades, A. Maquieira, A. Abad, and A. Montoya, "Development of an automated controlled-pore glass flow-through immunosensor for carbaryl," Analytica Chimica Acta, vol. 347, no. 1-2, pp. 199-205, 1997.

[78] E. J. Llorent-Martmez, J. F. Garda-Reyes, P. Ortega-Barrales, and A. Molina-Diaz, "Flow-through fluorescencebased optosensor with on-line solid-phase separation for the simultaneous determination of a ternary pesticide mixture," Journal of AOAC International, vol. 88, no. 3, pp. 860-865, 2005.

[79] I. Sanchez-Barragan, K. Karim, J. M. Costa-Fernandez, S. A. Piletsky, and A. Sanz-Medel, "A molecularly imprinted polymer for carbaryl determination in water," Sensors and Actuators B: Chemical, vol. 123, no. 2, pp. 798-804, 2007.

[80] J. F. Garcia Reyes, E. J. Llorent Martinez, P. Ortega Barrales, and A. Molina Diaz, "Multiwavelength fluorescence based optosensor for simultaneous determination of fuberidazole, carbaryl and benomyl," Talanta, vol. 64, no. 3, pp. 742-749, 2004.

[81] E. J. Llorent-Martmez, P. Ortega-Barrales, and A. Molina-Diaz, "Multi-commutated flow-through multi-optosensing: a tool for environmental analysis," Spectroscopy Letters, vol. 39, no. 6, pp. 619-629, 2006.

[82] G. N. Piccirilli, G. M. Escandar, F. C. Canada, I. D. Meras, and A. M. de la Pena, "Flow-through photochemically induced fluorescence optosensor for the determination of linuron," Talanta, vol. 77, no. 2, pp. 852-857, 2008.

[83] J. Lopez Flores, M. L. Fernandez de Cordova, and A. Molina Diaz, "Flow-through optosensing device implemented with photochemically-induced fluorescence for the rapid and simple screening of metsulfuron methyl in environmental waters," Journal of Environmental Monitoring, vol. 11, no. 5, pp. 1080-1085, 2009.

[84] A. Dommguez-Vidal, P. Ortega-Barrales, and A. Molina-Diaz, "Environmental water samples analysis of pesticides by means of chemometrics combined with fluorimetric multioptosensing," Journal of Fluorescence, vol. 17, no. 3, pp. 271 -277, 2007.

[85] S. Herranz, J. Ramon-Azcon, E. Benito-Pena, M. D. Marazuela, M. P. Marco, and M. C. Moreno-Bondi, "Preparation of antibodies and development of a sensitive immunoassay with fluorescence detection for triazine herbicides," Analytical and Bioanalytical Chemistry, vol. 391, no. 5, pp. 18011812, 2008.

[86] G. N. Piccirilli and G. M. Escandar, "A novel flow-through fluorescence optosensor for the determination of thiabendazole," Analytica Chimica Acta, vol. 601, no. 2, pp. 196-203, 2007.

[87] R. Badfa and M. E. Dfaz-Garda, "Cyclodextrin-based optosensor for the determination of warfarin in waters," Journal of Agricultural and Food Chemistry, vol. 47, no. 10, pp. 4256-4260, 1999.

[88] J. L. Flores, M. L. Fernandez De Cordova, and A. Molina Diaz, "Simultaneous flow-injection solid-phase fluorometric determination of thiabendazole and metsulfuron methyl using photochemical derivatization," Analytical Sciences, vol. 25, no. 5, pp. 681-686, 2009.

[89] A. Salinas-Castillo, J. F. Fernandez-Sanchez, A. Segura-Carretero, and A. Fernandez-Gutierrez, "A facile flowthrough phosphorimetric sensing device for simultaneous determination of naptalam and its metabolite 1-naphthylamine," Analytica Chimica Acta, vol. 522, no. 1, pp. 1924, 2004.

[90] G. N. Piccirilli and G. M. Escandar, "Flow injection analysis with on-line nylon powder extraction for room- temperature phosphorescence determination of thiabendazole," Analytica Chimica Acta, vol. 646, no. 1-2, pp. 90-96, 2009.

[91] E. Mauriz, A. Calle, A. Abad et al., "Determination of carbaryl in natural water samples by a surface plasmon resonance flow-through immunosensor," Biosensors and Bioelectronics, vol. 21, no. 11, pp. 2129-2136, 2006.

[92] J. L. Guzman Mar, L. Lopez Martinez, P. L. Lopez de Alba, J. E. Castrejon Duran, and V. Cerda Martin, "Optical fiber reflectance sensor coupled to a multisyringe flow injection system for preconcentration and determination of 1-naphthylamine in water samples," Analytica Chimica Acta, vol. 573-574, pp. 406-412, 2006.

[93] M. Agudo, A. Rios, and M. Valcarcel, "Automatic continuous-flow determination of paraquat at the subnanogram per millilitre level," Analytica Chimica Acta, vol. 281, no. 1, pp. 103-109, 1993.

[94] Q.-Q. Bian, Y.-F. Liu, and J.-S. Yu, "CdTe/CdS semiconductor quantum dots as a highly sensitive sensor for pesticide paraquat," Chemical Journal of Chinese Universities, vol. 6, 2010.

[95] G. M. Duran, A. M. Contento, and A. Rios, "Use of Cdse/ZnS quantum dots for sensitive detection and quantification of paraquat in water samples," Analytica Chimica Acta, vol. 801, pp. 84-90, 2013.

[96] F. Maya, J. M. Estela, and V. Cerda, "Improved spectrophotometric determination of paraquat in drinking waters exploiting a multisyringe liquid core waveguide system," Talanta, vol. 85, no. 1, pp. 588-595, 2011.

[97] N. Mai, X. Liu, W. Wei, S. Luo, and W. Liu, "Electrochemical determination of paraquat using a DNA-modified carbon ionic liquid electrode," Microchimica Acta, vol. 174, no. 1-2, pp. 89-95, 2011.

[98] Y. Li, G. Yao, C. Ma, M. Gong, C. Yu, and N. Jie, "Determination of paraquat in water, rice, and urine samples by resonance light scattering technique with DNA," Analytical Letters, vol. 44, no. 4, pp. 709-716, 2011.

[99] L. C. S. de Figueiredo-Filho, V. B. dos Santos, B. C. Janegitz et al., "Differential pulse voltammetric determination of paraquat using a bismuth-film electrode," Electroanalysis, vol. 22, no. 11, pp. 1260-1266, 2010.

[100] L. B. O. dos Santos, C. M. C. Infante, and J. C. Masini, "Development of a sequential injection-square wave voltammetry method for determination of paraquat in water samples employing the hanging mercury drop electrode," Analytical and Bioanalytical Chemistry, vol. 396, no. 5, pp. 1897-1903, 2010.

[101] C. M. C. Infante, A. Morales-Rubio, M. de la Guardia, and F. R. P. Rocha, "A multicommuted flow system with solenoid micro-pumps for paraquat determination in natural waters," Talanta, vol. 75, no. 5, pp. 1376-1381, 2008.

[102] M. Takino, S. Daishima, and K. Yamaguchi, "Determination of diquat and paraquat in water by liquid chromatography/clectrospray-mass spectrometry using volatile ion-pairing reagents," Analytical Sciences, vol. 16, no. 7, pp. 707-711, 2000.

[103] V. Y. Taguchi, S. W. D. Jenkins, P. W. Crozier, and D. T. Wang, "Determination of diquat and paraquat in water by liquid chromatography-(electrospray ionization) mass spectrometry," Journal of the American Society for Mass Spectrometry, vol. 9, no. 8, pp. 830-839, 1998.

[104] J. C. Marr and J. B. King, "A simple high performance liquid chromatography/ionspray tandem mass spectrometry method for the direct determination of paraquat and diquat in water," Rapid Communications in Mass Spectrometry, vol. 11, no. 5, pp. 479-483, 1997.

[105] Y. Fan, L. Liu, D. Sun et al., ""Turn-off" fluorescent data array sensor based on double quantum dots coupled with chemometrics for highly sensitive and selective detection of multicomponent pesticides," Analytica Chimica Acta, vol. 916, pp. 84-91, 2016.

[106] X. Wu, Y. Song, X. Yan et al., "Carbon quantum dots as fluorescence resonance energy transfer sensors for organophosphate pesticides determination," Biosensors and Bioelectronics, vol. 94, pp. 292-297, 2017.

[107] M. Amjadi and R. Jalili, "Molecularly imprinted mesoporous silica embedded with carbon dots and semiconductor quantum dots as a ratiometric fluorescent sensor for diniconazole," Biosensors and Bioelectronics, vol. 96, pp. 121-126, 2017.

[108] N. Shams, H. N. Lim, R. Hajian et al., "A promising electrochemical sensor based on Au nanoparticles decorated reduced graphene oxide for selective detection of herbicide diuron in natural waters," Journal of Applied Electrochemistry, vol. 46, no. 6, pp. 655-666, 2016.

[109] M. S. Kim, G. W. Kim, and T. J. Park, "A facile and sensitive detection of organophosphorus chemicals by rapid aggregation of gold nanoparticles using organic compounds," Biosensors and Bioelectronics, vol. 67, pp. 408-412, 2015.

[110] F. Arduini, S. Cinti, V. Caratelli, L. Amendola, G. Palleschi, and D. Moscone, "Origami multiple paper-based electrochemical biosensors for pesticide detection," Biosensors and Bioelectronics, vol. 126, pp. 346-354, 2019.

[111] M. Khadem, F. Faridbod, P. Norouzi et al., "Modification of carbon paste electrode based on molecularly imprinted polymer for electrochemical determination of diazinon in biological and environmental samples," Electroanalysis, vol. 29, no. 3, pp. 708-715, 2017.

[112] R. Selesovska, L. Janikova, and J. Chylkova, "Green electrochemical sensors based on boron-doped diamond and silver amalgam for sensitive voltammetric determination of herbicide metamitron," Monatshefte fur Chemie-Chemical Monthly, vol. 146, no. 5, pp. 795-805, 2015.

[113] X. Wang, T. Hou, S. Dong, X. Liu, and F. Li, "Fluorescence biosensing strategy based on mercury ion-mediated DNA conformational switch and nicking enzyme-assisted cycling amplification for highly sensitive detection of carbamate pesticide," Biosensors and Bioelectronics, vol. 77, pp. 644-649, 2016.

[114] A. Wong, M. V. Foguel, S. Khan, F. M.. Oliveira, C. R. T. Tarley, and M. D. P. T. Sotomayor, "Development of an electrochemical sensor modified with MWCNT-COOH and MIP for detection of diuron," Electrochimica Acta, vol. 182, pp. 122-130, 2015.

[115] P. B. Deroco, B. C. Lourencao, and O. Fatibello-Filho, "The use of modified electrode with carbon black as sensor to the electrochemical studies and voltammetric determination of pesticide mesotrione," Microchemical Journal, vol. 133, pp. 188-194, 2017.

[116] T. Nasir, G. Herzog, M. Hebrant, C. Despas, L. Liu, and A. Walcarius, "Mesoporous silica thin films for improved electrochemical detection of paraquat," ACS Sensors, vol. 3, no. 2, pp. 484-493, 2018.

[117] M. Brycht, S. Skrzypek, J. Robaket al., "Ultra trace level determination of fenoxanil by highly sensitive square wave adsorptive stripping voltammetry in real samples with a renewable silver amalgam film electrode," Journal of Electroanalytical Chemistry, vol. 738, pp. 69-76, 2015.

[118] B. Kaur, R. Srivastava, and B. Satpati, "Nanocrystalline titanosilicate-acetylcholinesterase electrochemical biosensor for the ultra-trace detection of toxic organophosphate pesticides," ChemElectroChem, vol. 2, no. 8, pp. 1164-1173, 2015.

[119] M. Khadem, F. Faridbod, P. Norouzi, A. R. Foroushani, M. R. Ganjali, and S. J. Shahtaheri, "Biomimetic electrochemical sensor based on molecularly imprinted polymer for dicloran pesticide determination in biological and environmental samples," Journal of the Iranian Chemical Society, vol. 13, no. 11, pp. 2077-2084, 2016.

[120] N. Shams, H. N. Lim, R. Hajian et al., "Electrochemical sensor based on gold nanoparticles/ethylenediamine-reduced graphene oxide for trace determination of fenitrothion in water," RSC Advances, vol. 6, no. 92, pp. 89430-89439, 2016.

[121] Q. J. Luo, Y. X. Li, M. Q. Zhang, P. Qiu, and Y. H. Deng, "A highly sensitive, dual-signal assay based on rhodamine B covered silver nanoparticles for carbamate pesticides," Chinese Chemical Letters, vol. 28, no. 2, pp. 345-349, 2017.

[122] E. Caballero-Diaz, S. Benitez-Martinez, and M. Valcarcel, "Rapid and simple nanosensor by combination of graphene quantum dots and enzymatic inhibition mechanisms," Sensors and Actuators B: Chemical, vol. 240, pp. 90-99, 2017.

[123] N. F. M. Rodrigues, S. Y. Neto, R. D. C. S. Luz, F. S. Damos, and H. Yamanaka, "Ultrasensitive determination of malathion using acetylcholinesterase immobilized on chitosan-functionalized magnetic iron nanoparticles," Biosensors, vol. 8, no. 1, p. 16, 2018.

[124] D. J. E. Costa, J. C. S. Santos, F. A. C. Sanches-Brandao, W. F. Ribeiro, G. R. Salazar-Banda, and M. C. U. Araujo, "Borondoped diamond electrode acting as a voltammetric sensor for the detection of methomyl pesticide," Journal of Electroanalytical Chemistry, vol. 789, pp. 100-107, 2017.

[125] E. H. Duarte, J. Casarin, E. R. Sartori, and C. R. T. Tarley, "Highly improved simultaneous herbicides determination in water samples by differential pulse voltammetry using boron-doped diamond electrode and solid phase extraction on cross-linked poly(vinylimidazole)," Sensors and Actuators B: Chemical, vol. 255, pp. 166-175, 2018.

[126] H. Li, X. Wei, Y. Xu et al., "A thin shell and "sunny shape" molecular imprinted fluorescence sensor in selective detection of trace level pesticides in river," Journal of Alloys and Compounds, vol. 705, pp. 524-532, 2017.

[127] K. Skrzypczynska, K. Kusmierek, and A. Swiqtkowski, "Carbon paste electrodes modified with various carbonaceous materials for the determination of 2,4-dichlorophenoxyacetic acid by differential pulse voltammetry," Journal of Electroanalytical Chemistry, vol. 766, pp. 8-15, 2016.

[128] E. Demir and R. Inam, "Square wave voltammetric determination of fomesafen herbicide using modified nanostructure carbon paste electrode as a sensor and application to food samples," Food Analytical Methods, vol. 10, no. 1, pp. 74-82, 2017.

[129] K. Sipa, M. Brycht, A. Leniart et al., "[beta]-Cyclodextrins incorporated multi-walled carbon nanotubes modified electrode for the voltammetric determination of the pesticide dichlorophen," Talanta, vol. 176, pp. 625-634, 2018.

[130] M. J. U. Toro, L. D. Marestoni, and M. D. P. T. Sotomayor, "A new biomimetic sensor based on molecularly imprinted polymers for highly sensitive and selective determination of hexazinone herbicide," Sensors and Actuators B: Chemical, vol. 208, pp. 299-306, 2015.

[131] D. N. Kumar, S. A. Alex, R. S. S. Kumar, N. Chandrasekaran, and A. Mukherjee, "Acetylcholinesterase inhibition-based ultrasensitive fluorometric detection of malathion using unmodified silver nanoparticles," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 485, pp. 111-117, 2015.

[132] J. Nebu, J. S. A. Devi, R. S. Aparna, B. Aswathy, G. M. Lekha, and G. Sony, "Fluorescence turn-on detection of fenitrothion using gold nanoparticle quenched fluorescein and its separation using superparamagnetic iron oxide nanoparticle," Sensors and Actuators B-Chemical, vol. 277, pp. 271-280, 2018.

[133] G. G. Gerent, C. Q. Gonsalves, P. S. da Silva, and A. Spinelli, "_In situ_ bismuth-film electrode for square-wave cathodic voltammetric detection of pendimethalin at nanomolar level," Electrochimica Acta, vol. 168, pp. 379-385, 2015.

[134] B. Kaur, B. Satpati, and R. Srivastava, "Zr[O.sub.2] supported nano-ZSM-5 nanocomposite material for the nanomolar electrochemical detection of metol and bisphenol A," RSC Advances, vol. 6, no. 70, pp. 65736-65746, 2016.

[135] R. Kaur and N. Kaur, "A novel cation ensembled fluorescent organic nanoparticle for selective detection of organophosphorus insecticides," Dyes and Pigments, vol. 139, pp. 310317, 2017.

[136] D. D. Thiare, A. Coly, D. Sarr et al., "Determination of the fenvalerate insecticide in natural waters by a photochemically-induced fluorescence method," Macedonian Journal of Chemistry and Chemical Engineering, vol. 34, no. 2, pp. 245-254, 2015.

[137] A. Ozcan, M. Gurbuz, and A. Ozbal, "Preparation of a double-step modified carbon paste electrode for the voltammetric determination of propham via bulk modification with fumed silica and drop-casting of maghemite-modified fumed silica nanocomposite," Sensors and Actuators B-Chemical, vol. 255, pp. 1517-1524, 2018.

[138] A. Ozcan, M. Gurbuz, and A. A. Ozcan, "Preparation of a disposable and low-cost electrochemical sensor for propham detection based on over-oxidized poly(thiophene) modified pencil graphite electrode," Talanta, vol. 187, pp. 125-132, 2018.

[139] M. B. Gholivand, N. Karimian, and M. Torkashvand, "A graphene-based electrochemical sensor for sensitive determination of cyanazine," Journal ofAnalytical Chemistry, vol. 70, no. 3, pp. 384-391, 2015.

[140] J. Wang, Y. Wang, H. Qiu et al., "A novel sensitive luminescence probe microspheres for rapid and efficient detection of [tau]-fluvalinate in Taihu Lake," Scientific Reports, vol. 7, no. 1, 2017.

[141] H. Wu, Y. Luo, C. Hou et al., "Rapid and fingerprinted monitoring of pesticide methyl parathion on the surface of fruits/leaves as well as in surface water enabled by gold nanorods based casting-and-sensing SERS platform," Talanta, vol. 200, pp. 84-90, 2019.

[142] J. Kang, Y. Zhang, X. Li et al., "Rapid and sensitive colorimetric sensing of the insecticide pymetrozine using melamine-modified gold nanoparticles," Analytical Methods, vol. 10, no. 4, pp. 417-421, 2018.

[143] W. D. A. Paiva, T. M. B. F. Oliveira, C. P. Sousa et al., "Electroanalysis of imidacloprid insecticide in river waters using functionalized multi-walled carbon nanotubes modified glassy carbon electrode," Journal of the Electrochemical Society, vol. 165, no. 10, pp. B431-B435, 2018.

[144] H. Li, X. Wang, Z. Wang et al., "A high-performance SERS-imprinted sensor doped with silver particles of different surface morphologies for selective detection of pyrethroids in rivers," New Journal of Chemistry, vol. 41, no. 23, pp. 14342-14350, 2017.

[145] R. Faramarzi, A. R. Taheri, and M. Roushani, "Determination of paraquat in fruits and natural water using Ni[(OH).sub.2] nanoparticles-carbon nanotubes composite modified carbon ionic liquid electrode," Analytical & Bioanalytical Electrochemistry, vol. 7, no. 6, pp. 666-683, 2015.

[146] A. Ozcan and M. Gurbuz, "Development of a modified electrode by using a nanocomposite containing acid- activated multi-walled carbon nanotube and fumed silica for the voltammetric determination of clopyralid," Sensors and Actuators B: Chemical, vol. 255, pp. 262-267, 2018.

[147] M. Brycht, O. Vajdle, K. Sipa et al., "[beta]-Cyclodextrin and multiwalled carbon nanotubes modified boron-doped diamond electrode for voltammetric assay of carbendazim and its corrosion inhibition behavior on stainless steel," Ionics, vol. 24, no. 3, pp. 923-934, 2018.

[148] N. G. Khare, R. A. Dar, and A. K. Srivastava, "Adsorptive stripping voltammetry for trace determination of quinalphos employing silicon carbide nanoparticles modified glassy carbon electrode," Electroanalysis, vol. 27, no. 2, pp. 503-509, 2015.

[149] S. Lan, X. Wang, Q. Liu et al., "Fluorescent sensor for indirect measurement of methyl parathion based on alkaline-induced hydrolysis using N-doped carbon dots," Talanta, vol. 192, pp. 368-373, 2019.

[150] X. Feng, G. Zhang, L. K. Chin, A. Q. Liu, and B. Liedberg, "Highly sensitive, label-free detection of 2,4-dichlorophenoxyacetic acid using an optofluidic chip," ACS Sensors, vol. 2, no. 7, pp. 955-960, 2017.

[151] A. Sinha, Y. Huang, and H. Zhao, "Preparation of 3D assembly of mono layered molybdenum disulfide nanotubules for rapid screening of carbamate pesticide diethofencarb," Talanta, vol. 204, pp. 455-464, 2019.

[152] M. Arvand and M. Dehsaraei, "Amperometric determination of diazinon by gold nanorods/ds-DNA/graphene oxide sandwich-modified electrode," Ionics, vol. 24, no. 8, pp. 2445-2454, 2018.

[153] M. Brycht, A. Leniart, J. Zavasnik et al., "Synthesis and characterization of the thermally reduced graphene oxide in argon atmosphere, and its application to construct graphene paste electrode as a naptalam electrochemical sensor," Analytica Chimica Acta, vol. 1035, pp. 22-31, 2018.

[154] L. Zhou, Y. Cao, B. Lin, S. Song, Y. Yu, and L. Shui, "In-situ visual and ultrasensitive detection of phosmet using a fluorescent immunoassay probe," Sensors and Actuators B: Chemical, vol. 241, pp. 915-922, 2017.

[155] J. Feng, G. Yang, Y. Mei et al., "Macroscopic visual detection of phoxim by calix[4]arene-based host-guest chemistry," Sensors and Actuators B: Chemical, vol. 271, pp. 264-270, 2018.

[156] A. Geto, J. S. Noori, J. Mortensen, W. E. Svendsen, and M. Dimaki, "Electrochemical determination of bentazone using simple screen-printed carbon electrodes," Environment International, vol. 129, pp. 400-407, 2019.

[157] N. Y. Sreedhar, M. S. Kumar, and K. Krishnaveni, "Enhanced electrocatalytic determination of fenitrothion at graphene and silver-zirconia nanosensor," Monatshefte fur Chemie Chemical Monthly, vol. 146, no. 9, pp. 1385-1393, 2015.

[158] W. Cheng, Z. Zheng, J. Yang et al., "The visible light-driven and self-powered photoelectrochemical biosensor for organophosphate pesticides detection based on nitrogen doped carbon quantum dots for the signal amplification," Electrochimica Acta, vol. 296, pp. 627-636, 2019.

[159] K. K. Masibi, O. E. Fayemi, A. S. Adekunle, E. S. M. Sherif, and E. E. Ebenso, "Electrocatalysis of lindane using antimony oxide nanoparticles based-SWCNT/PANI nanocomposites," Frontiers in Chemistry, vol. 6, 2018.

[160] J. Gajdar, J. Barek, and J. Fischer, "Electrochemical microcell based on silver solid amalgam electrode for voltammetric determination of pesticide difenzoquat," Sensors and Actuators B: Chemical, vol. 299, article 126931, 2019.

[161] N. A. Zambianco, T. A. Silva, H. Zanin, O. Fatibello-Filho, and B. C. Janegitz, "Novel electrochemical sensor based on nanodiamonds and manioc starch for detection of diquat in environmental samples," Diamond and Related Materials, vol. 98, article 107512, 2019.

[162] X. Hu, F. Wang, Q. Peng et al., "Construction of a luminescent sensor based on a lanthanide complex for the highly efficient detection of methyl parathion," RSC Advances, vol. 9, no. 23, pp. 13048-13053, 2019.

[163] P. Mandal, D. Sahoo, P. Sarkar, K. Chakraborty, and S. Das, "Fluorescence turn-on and turn-off sensing of pesticides by carbon dot-based sensor," New Journal of Chemistry, vol. 43, no. 30, pp. 12137-12151, 2019.

[164] X. C. Fu, C. Zhang, X. H. Li, J. Zhang, and G. Wei, "Mono-6-thio-[beta]-cyclodextrin-functionalized AuNP/two-dimensional TiO2nanosheet nanocomposite for the electrochemical determination of trace methyl parathion in water," Analytical Methods, vol. 11, no. 37, pp. 4751-4760, 2019.

[165] S. Zhou, H. Xu, Y. Wei et al., "Platelet nitrogen and sulfur codoped ordered mesoporous carbon with inexpensive methylene blue as a single precursor for electrochemical detection of herbicide amitrole," Nano, vol. 14, no. 8, article 1950104, 2019.

[166] J. Korram, L. Dewangan, R. Nagwanshi, I. Karbhal, K. K. Ghosh, and M. L. Satnami, "A carbon quantum dot-gold nanoparticle system as a probe for the inhibition and reactivation of acetylcholinesterase: detection of pesticides," New Journal of Chemistry, vol. 43, no. 18, pp. 6874-6882, 2019.

[167] A. Ozcan, D. Topcuogullari, and A. Atilir Ozcan, "Fenitrothion sensing with reduced graphene oxide decorated fumed silica nanocomposite modified glassy carbon electrode," Sensors and Actuators B-Chemical, vol. 284, pp. 179-185, 2019.

[168] J. G. M. Yanke, G. K. Dedzo, and E. Ngameni, "Solvent effect on the grafting of an organophilic silane onto smectite-type clay: application as electrode modifiers for pesticide detection," Electroanalysis, vol. 29, no. 8, pp. 1894-1902, 2017.

[169] H. Yi, Z. Yan, L. Wang et al., "Fluorometric determination for ofloxacin by using an aptamer and SYBR Green I," Microchimica Acta, vol. 186, no. 10, 2019.

[170] L. H. Nowell and E. A. Resek, "National standards and guidelines for pesticides in water, sediment, and aquatic organisms: application to water-quality assessments," in Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews, G. W. Ware, Ed., pp. 1-154, Springer New York, New York, NY, USA, 1994.

[171] Z. Li and A. Jennings, "Worldwide regulations of standard values of pesticides for human health risk control: a review," International Journal of Environmental Research and Public Health, vol. 14, no. 7, p. 826, 2017.

[172] L. Pisa, D. Goulson, E.-C. Yang et al., "An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems," Environmental Science and Pollution Research, 2017.

[173] P. Nicolopoulou-Stamati, S. Maipas, C. Kotampasi, P. Stamatis, and L. Hens, "Chemical pesticides and human health: the urgent need for a new concept in agriculture," Frontiers in Public Health, vol. 4, no. 148, 2016.

[174] K.-H. Kim, E. Kabir, and S. A. Jahan, "Exposure to pesticides and the associated human health effects," Science of the Total Environment, vol. 575, pp. 525-535, 2017.

[175] L. Hunt, C. Bonetto, V. H. Resh et al., "Insecticide concentrations in stream sediments of soy production regions of South America," Science of the Total Environment, vol. 547, pp. 114-124, 2016.

[176] B. B. Prasad and D. Jauhari, "A dual-template biomimetic molecularly imprinted dendrimer-based piezoelectric sensor for ultratrace analysis of organochlorine pesticides," Sensors and Actuators B: Chemical, vol. 207, pp. 542-551, 2015.

[177] E. Mauriz, A. Calle, J. J. Manclus et al., "Optical immunosensor for fast and sensitive detection of DDT and related compounds in river water samples," Biosensors and Bioelectronics, vol. 22, no. 7, pp. 1410-1418, 2007.

[178] P. F. P. Barbosa, E. G. Vieira, L. R. Cumba et al., "Voltammetric techniques for pesticides and herbicides detection-an overview," International Journal of Electrochemical Science, vol. 14, pp. 3418-3433, 2019.

[179] T. A. McMahon, N. T. Halstead, S. Johnson et al., "Fungicide-induced declines of freshwater biodiversity modify ecosystem functions and services," Ecology Letters, vol. 15, no. 7, pp. 714-722, 2012.

[180] R. Ramachandran, V. Mani, S. M. Chen, G. G. Kumar, and M. Govindasamy, "Recent developments in electrode materials and methods for pesticide analysis-an overview," International Journal of Electrochemical Science, vol. 10, no. 1, pp. 859-869, 2015.

[181] S. Boulanouar, S. Mezzache, A. Combes, and V. Pichon, "Molecularly imprinted polymers for the determination of organophosphorus pesticides in complex samples," Talanta, vol. 176, pp. 465-478, 2018.

[182] J. Chouler and M. Di Lorenzo, "Water quality monitoring in developing countries; can microbial fuel cells be the answer?," Biosensors, vol. 5, no. 3, pp. 450-470, 2015.

[183] A. ElMekawy, H. M. Hegab, D. Pant, and C. P. Saint, "Bio-analytical applications of microbial fuel cell-based biosensors for onsite water quality monitoring," Journal of Applied Microbiology, vol. 124, no. 1, pp. 302-313, 2018.

[184] Y. Zhang, J. Tao, J. Wang et al., "Trends in diatom research since 1991 based on topic modeling," Microorganisms, vol. 7, no. 8, p. 213, 2019.

[185] P. B. Tchounwou, C. G. Yedjou, A. K. Patlolla, and D. J. Sutton, "Heavy metal toxicity and the environment," in Molecular, Clinical and Environmental Toxicology: Volume 3: Environmental Toxicology, A. Luch, Ed., pp. 133-164, Springer Basel, Basel, 2012.

[186] J. O. Duruibe, M. Ogwuegbu, and J. Egwurugwu, "Heavy metal pollution and human biotoxic effects," International Journal of Physical Sciences, vol. 2, no. 5, pp. 112-118, 2007.

[187] Y. Yi, Z. Yang, and S. Zhang, "Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin," Environmental Pollution, vol. 159, no. 10, pp. 2575-2585, 2011.

[188] C. Sun, Z. Zhang, H. Cao, M. Xu, and L. Xu, "Concentrations, speciation, and ecological risk of heavy metals in the sediment of the Songhua River in an urban area with petrochemical industries," Chemosphere, vol. 219, pp. 538-545, 2019.

[189] Y. Erel, J. J. Morgan, and C. C. Patterson, "Natural levels of lead and cadmium in a remote mountain stream," Geochimica et Cosmochimica Acta, vol. 55, no. 3, pp. 707-719, 1991.

[190] A. O'Sullivan, D. Wicke, and T. Cochrane, "Heavy metal contamination in an urban stream fed by contaminated air-conditioning and stormwater discharges," Environmental Science and Pollution Research, vol. 19, no. 3, pp. 903-911, 2012.

[191] M. S. Islam, M. K. Ahmed, M. Raknuzzaman, M. Habibullah-Al-Mamun, and M. K. Islam, "Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country," Ecological Indicators, vol. 48, pp. 282-291, 2015.

[192] V. Masindi and K. L. Muedi, "Environmental contamination by heavy metals," in Heavy Metals, pp. 115-133, IntechOpen, Aglan, France, 2018.

[193] C. Su, Y. Lu, A. C. Johnson et al., "Which metal represents the greatest risk to freshwater ecosystem in Bohai Region of China?," Ecosystem Health and Sustainability, vol. 3, no. 2, article e01260, 2017.

[194] D. Paul, "Research on heavy metal pollution of river Ganga: a review," Annals of Agrarian Science, vol. 15, no. 2, pp. 278-286, 2017.

[195] L. Jarup, "Hazards of heavy metal contamination," British Medical Bulletin, vol. 68, no. 1, pp. 167-182, 2003.

[196] M. S. Schuler and R. A. Relyea, "A review of the combined threats of road salts and heavy metals to freshwater systems," Bioscience, vol. 68, no. 5, pp. 327-335, 2018.

[197] H. Lefcort, J. Vancura, and E. L. Lider, "75 years after mining ends stream insect diversity is still affected by heavy metals," Ecotoxicology, vol. 19, no. 8, pp. 1416-1425, 2010.

[198] S. Cheng, "Heavy metal pollution in China: origin, pattern and control," Environmental Science and Pollution Research, vol. 10, no. 3, pp. 192-198, 2003.

[199] I. Razo, L. Carrizales, J. Castro, F. Diaz-Barriga, and M. Monroy, "Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico," Water, Air, and Soil Pollution, vol. 152, no. 1-4, pp. 129-152, 2004.

[200] G. Teijon, L. Candela, K. Tamoh, A. Molina-Diaz, and A. R. Fernandez-Alba, "Occurrence of emerging contaminants, priority substances (2008/105/CE) and heavy metals in treated wastewater and groundwater at Depurbaix facility (Barcelona, Spain)," Science of the Total Environment, vol. 408, no. 17, pp. 3584-3595, 2010.

[201] J. McKay and A. Moeller, "Are mandatory regulations required for water quality in Australia?," Water Policy, vol. 4, no. 2, pp. 95-118, 2002.

[202] F. W. Pontius, "Future directions in water quality regulations," Journal-AWWA, vol. 89, no. 3, pp. 40-54, 1997.

[203] J. Pan, Q. Li, D. Zhou, and J. Chen, "Ultrasensitive aptamer biosensor for arsenic (III) detection based on label- free triple-helix molecular switch and fluorescence sensing platform," Talanta, vol. 189, pp. 370-376, 2018.

[204] M. M. Marei, K. L. Kaht, T. J. Roussel, R. S. Keynton, and R. P. Baldwin, "Measurement of As(III) with in situ subtraction of background and interferent signals by double potential stepanodic stripping coulometry," Sensors and Actuators B: Chemical, vol. 301, article 127005, 2019.

[205] D. Qin, A. Chen, X. Mamat et al., "Double-shelled yolk-shell [email protected] microspheres based electrochemical sensor for determination of cadmium and lead ions," Analytica Chimica Acta, vol. 1078, pp. 32-41, 2019.

[206] X. Hu, H. Guo, T. Qi et al., "Miniaturized electrochemical sensor with micropillar array working electrode for trace lead online measurement in tap water," Journal of Micromechanics and Microengineering, vol. 29, no. 10, article 105005, 2019.

[207] Z. Liu, W. Jin, F. Wang et al., "Ratiometric fluorescent sensing of [Pb.sup.2+] and [Hg.sup.2+] with two types of carbon dot nanohybrids synthesized from the same biomass," Sensors and Actuators B: Chemical, vol. 296, p. 126698, 2019.

[208] P. Wei, Z. Zhu, R. Song, Z. Li, and C. Chen, "An ion-imprinted sensor based on chitosan-graphene oxide composite polymer modified glassy carbon electrode for environmental sensing application," Electrochimica Acta, vol. 317, pp. 93-101, 2019.

[209] F. Li, Y. Hu, Z. Li, J. Liu, L. Guo, and J. He, "Three-dimensional microfluidic paper-based device for multiplexed colorimetric detection of six metal ions combined with use of a smartphone," Analytical and Bioanalytical Chemistry, vol. 411, no. 24, pp. 6497-6508, 2019.

[210] Y. Chen, D. Zhang, D. Wang, L. Lu, X. Wang, and G. Guo, "A carbon-supported BiSn nanoparticles based novel sensor for sensitive electrochemical determination of Cd (II) ions," Talanta, vol. 202, pp. 27-33, 2019.

[211] N. Q. Giao, V. H. Dang, P. T. H. Yen et al., "Au nanodendrite incorporated graphite pencil lead as a sensitive and simple electrochemical sensor for simultaneous detection of Pb(II), Cu(II) and Hg(II)," Journal of Applied Electrochemistry, vol. 49, no. 8, pp. 839-846, 2019.

[212] S. Singh, A. Pankaj, S. Mishra, K. Tewari, and S. Pratap Singh, "Cerium oxide-catalyzed chemical vapor deposition grown carbon nanofibers for electrochemical detection of Pb(II) and Cu(II)," Journal of Environmental Chemical Engineering, vol. 7, no. 4, article 103250, 2019.

[213] W. Xiao, Y. Gao, Y. Zhang et al., "Enhanced 3D paper-based devices with a personal glucose meter for highly sensitive and portable biosensing of silver ion," Biosensors and Bioelectronics, vol. 137, pp. 154-160, 2019.

[214] W. Wu, M. Jia, Z. Zhang et al., "Sensitive, selective and simultaneous electrochemical detection of multiple heavy metals in environment and food using a lowcost [Fe.sub.3][O.sub.4] nanoparticles/fluorinated multi-walled carbon nanotubes sensor," Ecotoxicology and Environmental Safety, vol. 175, pp. 243-250, 2019.

[215] R. Yadav, V. Kushwah, M. S. Gaur et al., "Electrochemical aptamer biosensor for [As.sup.3+] based on apta deep trapped AgAu alloy nanoparticles-impregnated glassy carbon electrode," International Journal of Environmental Analytical Chemistry, pp. 1-12, 2019.

[216] X. Zhao, W. Bai, Y. Yan, Y. Wang, and J. Zhang, "Core-shell self-doped polyaniline coated metal-organic-framework (SPAN@ UIO-66-NH2) screen printed electrochemical sensor for [Cd.sup.2+] ions," Journal of the Electrochemical Society, vol. 166, no. 12, pp. B873-B880, 2019.

[217] S. Sajed, K. Vafaei, F. Arefi et al., "Instant sensitive measurement of Hg concentration using lab-on-a-phone colorimetry," Physica Status Solidi A, vol. 216, no. 14, article 1800871, 2019.

[218] B. Maleki, M. Baghayeri, M. Ghanei-Motlagh et al., "Polyamidoamine dendrimer functionalized iron oxide nanoparticles for simultaneous electrochemical detection of [Pb.sup.2+] and [Cd.sup.2+] ions in environmental waters," Measurement, vol. 140, pp. 81-88, 2019.

[219] A. Sanchez-Calvo, M. T. Fernandez-Abedul, M. C. Blanco-Lopez, and A. Costa-Garcia, "Paper-based electrochemical transducer modified with nanomaterials for mercury determination in environmental waters," Sensors and Actuators B: Chemical, vol. 290, pp. 87-92, 2019.

[220] M. Ghorbani, T. Pedramrad, M. Aghamohammadhasan, O. Seyedin, H. Akhlaghi, and N. Afshar Lahoori, "Simultaneous clean-up and determination of Cu(II), Pb(II) and Cr(III) in real water and food samples using a magnetic dispersive solid phase microextraction and differential pulse voltammetry with a green and novel modified glassy carbon electrode," Microchemical Journal, vol. 147, pp. 545-554, 2019.

[221] H. Fu, Q. Yin, H. Wang et al., "Target-triggered in situ autocatalysis in nanopore membrane for point-of-care testing of sub-nanomolar Ag+," Sensors and Actuators B: Chemical, vol. 287, pp. 290-295, 2019.

[222] S. Venkateswarlu, S. Govindaraju, R. Sangubotla, J. Kim, M.H. Lee, and K. Yun, "Biosynthesized highly stable Au/C nanodots: ideal probes for the selective and sensitive detection of Hg2+ ions," Nanomaterials, vol. 9, no. 2, p. 245, 2019.

[223] Y. Song, C. Bian, J. Hu et al., "Porous polypyrrole/graphene oxide functionalized with carboxyl composite for electrochemical sensor of trace cadmium (II)," Journal of the Electrochemical Society, vol. 166, no. 2, pp. B95-B102, 2019.

[224] R. Tekenya, K. Pokpas, N. Jahed, and E. I. Iwuoha, "Enhanced specificity and sensitivity for the determination of nickel(II) by square-wave adsorptive cathodic stripping voltammetry at disposable graphene-modified pencil graphite electrodes," Analytical Letters, vol. 52, no. 2, pp. 373-398, 2019.

[225] L. Liu, K. Zhang, and Y. Wei, "A simple strategy for the detection of Cu(ii), Cd(ii) and Pb(ii) in water by a voltammetric sensor on a TC4A modified electrode," New Journal of Chemistry, vol. 43, no. 3, pp. 1544-1550, 2019.

[226] M. Lu, Y. Deng, Y. Luo et al., "Graphene aerogel-metalorganic framework-based electrochemical method for simultaneous detection of multiple heavy-metal ions," Analytical Chemistry, vol. 91, no. 1, pp. 888-895, 2019.

[227] J. P. Devadhasan and J. Kim, "A chemically functionalized paper-based microfluidic platform for multiplex heavy metal detection," Sensors and Actuators B: Chemical, vol. 273, pp. 18-24, 2018.

[228] M. Finsgar, D. Majer, U. Maver, and T. Maver, "Reusability of SPE and Sb-modified SPE sensors for trace Pb(II) determination," Sensors, vol. 18, no. 11, article 3976, 2018.

[229] D. Wu, Y. Huang, S. Hu, X. Yi, and J. Wang, "Sensitive [Hg.sup.2+] sensing via quenching the fluorescence of the complex between polythymine and 5, 10, 15, 20-tetrakis(N-methyl-4-pyridyl) porphyrin (TMPyP)," Sensors, vol. 18, no. 11, article 3998, 2018.

[230] S. Wang, B. Lin, L. Chen et al., "Branch-migration based fluorescent probe for highly sensitive detection of mercury," Analytical Chemistry, vol. 90, no. 20, pp. 11764-11769, 2018.

[231] W. Cai, S. Xie, J. Zhang, D. Tang, and Y. Tang, "Immobilizedfree miniaturized electrochemical sensing system for [Pb.sup.2+] detection based on dual [Pb.sup.2+]-DNAzyme assistant feedback amplification strategy," Biosensors and Bioelectronics, vol. 117, pp. 312-318, 2018.

[232] A. Aravind and B. Mathew, "Tailoring of nanostructured material as an electrochemical sensor and sorbent for toxic Cd (II) ions from various real samples," Journal of Analytical Science and Technology, vol. 9, no. 1, p. 22, 2018.

[233] X. Pang, L. Gao, H. Feng, X. Li, J. Kong, and L. Li, "A peptide-based multifunctional fluorescent probe for [Cu.sup.2+], [Hg.sup.2+] and biothiols," New Journal of Chemistry, vol. 42, no. 19, pp. 15770-15777, 2018.

[234] V. H. Dang, P. T. H. Yen, N. Q. Giao et al., "A versatile carbon fiber cloth-supported Au nanodendrite sensor for simultaneous determination of Cu(II), Pb(II) and Hg(II)," Electroanalysis, vol. 30, no. 10, pp. 2222-2227, 2018.

[235] L. Wang, G. Jing, and T. Cui, "Nafion coated flexible bismuth sensor for trace lead and cadmium determination," Microsystem Technologies, vol. 24, no. 9, pp. 3697-3704, 2018.

[236] S. Tang, J. Sun, Y. Li et al., "pH-dependent selective ion exchange based on (ethylenediamintetraacetic acid- nickel)layered double hydroxide to catalyze the polymerization of aniline for detection of [Cu.sup.2+] and [Fe.sup.3+]," Talanta, vol. 187, pp. 287-294, 2018.

[237] Q. Zhu, L. Liu, Y. Xing, and X. Zhou, "Duplex functional G-quadruplex/NMM fluorescent probe for label-free detection of lead(II) and mercury(II) ions," Journal of Hazardous Materials, vol. 355, pp. 50-55, 2018.

[238] W.-T. Tsai, M.-H. Nguyen, J.-R. Lai, H.-B. Nguyen, M.C. Lee, and F.-G. Tseng, "ppb-level heavy metal ion detection by electrochemistry-assisted nanoporous silicon (ECA-NPS) photonic sensors," Sensors and Actuators B: Chemical, vol. 265, pp. 75-83, 2018.

[239] P. Li, J. Li, M. Bian et al., "A redox route for the fluorescence detection of lead ions in sorghum, river water and tap water and a desk study of a paper-based probe," Analytical Methods, vol. 10, no. 26, pp. 3256-3262, 2018.

[240] J. Xu, X. Jie, F. Xie, H. Yang, W. Wei, and Z. Xia, "Flavonoid moiety-incorporated carbon dots for ultrasensitive and highly selective fluorescence detection and removal of [Pb.sup.2+]," Nano Research, vol. 11, no. 7, pp. 3648-3657, 2018.

[241] M. B. Gumpu, M. Veerapandian, U. M. Krishnan, and J. B. B. Rayappan, "Amperometric determination of As(III) and Cd(II) using a platinum electrode modified with acetylcholinesterase, ruthenium(II)-tris(bipyridine) and graphene oxide," Microchimica Acta, vol. 185, no. 6, p. 297, 2018.

[242] S. Liu, T. Wu, F. Li, Q. Zhang, X. Dong, and L. Niu, "Disposable graphene sensor with an internal reference electrode for stripping analysis of heavy metals," Analytical Methods, vol. 10, no. 17, pp. 1986-1992, 2018.

[243] M. Xiao, H. Shen, Q. Fu et al., "Practical immune-barometer sensor for trivalent chromium ion detection using gold core platinum shell nanoparticle probes," Analyst, vol. 143, no. 6, pp. 1426-1433, 2018.

[244] M. Sebastian and B. Mathew, "Ion imprinting approach for the fabrication of an electrochemical sensor and sorbent for lead ions in real samples using modified multiwalled carbon nanotubes," Journal of Materials Science, vol. 53, no. 5, pp. 3557-3572, 2018.

[245] L. Li, D. Liu, A. Shi, and T. You, "Simultaneous stripping determination of cadmium and lead ions based on the N-doped carbon quantum dots-graphene oxide hybrid," Sensors and Actuators B: Chemical, vol. 255, pp. 1762-1770, 2018.

[246] W. Ren, Y. Zhang, and M. J. Li, "Sensitive determination of [Zn.sup.2+], [Cd.sup.2+] and [Pb.sup.2+] at electrochemically reduced nanoporous graphene oxide/bismuth film electrode," International Journal of Electrochemical Science, vol. 13, no. 2, pp. 1331-1342, 2018.

[247] C. Topcu, G. Lacin, V. Yilmaz et al., "Electrochemical determination of copper(II) in water samples using a novel ionselective electrode based on a graphite oxide-imprinted polymer composite," Analytical Letters, vol. 51, no. 12, pp. 1890-1910, 2018.

[248] A. Zazoua, N. Khedimallah, and N. Jaffrezic-Renault, "Electrochemical determination of cadmium, lead, and nickel using a polyphenol-polyvinyl chloride--boron-doped diamond electrode," Analytical Letters, vol. 51, no. 3, pp. 336-347, 2018.

[249] Z. Lu, J. Zhang, W. Dai, X. Lin, J. Ye, and J. Ye, "A screen-printed carbon electrode modified with a bismuth film and gold nanoparticles for simultaneous stripping voltammetric determination of Zn(II), Pb(II) and Cu(II)," Microchimica Acta, vol. 184, no. 12, pp. 4731-4740, 2017.

[250] A. Maity, X. Sui, C. R. Tarman et al., "Pulse-driven capacitive lead ion detection with reduced graphene oxide field-effect transistor integrated with an analyzing device for rapid water quality monitoring," ACS Sensors, vol. 2, no. 11, pp. 1653-1661, 2017.

[251] Y. Zhang, H. Li, M. Chen et al., "Ultrasensitive electrochemical biosensor for silver ion based on magnetic nanoparticles labeling with hybridization chain reaction amplification strategy," Sensors and Actuators B: Chemical, vol. 249, pp. 431-438, 2017.

[252] D. Martin-Yerga, I. Alvarez-Martos, M. C. Blanco-Lopez, C. S. Henry, and M. T. Fernandez-Abedul, "Point-of-need simultaneous electrochemical detection of lead and cadmium using low-cost stencil-printed transparency electrodes," Analytica Chimica Acta, vol. 981, pp. 24-33, 2017.

[253] M. B. Gumpu, U. M. Krishnan, and J. B. B. Rayappan, "Design and development of amperometric biosensor for the detection of lead and mercury ions in water matrix--a permeability approach," Analytical and Bioanalytical Chemistry, vol. 409, no. 17, pp. 4257-4266, 2017.

[254] X. Qi, J. Qian, T. Chen, D. Lu, and B. Chen, "Electrochemical determination of Cu(II) ions based on Ag/Pd alloy for water quality early warning," International Journal of Electrochemical Science, vol. 12, no. 6, pp. 5511-5520, 2017.

[255] J. Liu, G. Lv, W. Gu, Z. Li, A. Tang, and L. Mei, "A novel luminescence probe based on layered double hydroxides loaded with quantum dots for simultaneous detection of heavy metal ions in water," Journal of Materials Chemistry C, vol. 5, no. 20, pp. 5024-5030, 2017.

[256] L.-R. Popescu Mandoc, I. Moldoveanu, R.-I. Stefan-van Staden, and E. M. Ungureanu, "Pattern recognition of Cu(II), Pb(II), Hg(II), and Cd(II) in waste waters," Microsystem Technologies, vol. 23, no. 5, pp. 1141-1145, 2017.

[257] N. Youngvises, K. Suwannasaroj, J. Jakmunee, and A. AlSuhaimi, "Multi-reverse flow injection analysis integrated with multi-optical sensor for simultaneous determination of Mn(II), Fe(II), Cu(II) and Fe(III) in natural waters," Talanta, vol. 166, pp. 369-374, 2017.

[258] G. Chen, J. Hai, H. Wang, W. Liu, F. Chen, and B. Wang, "Gold nanoparticles and the corresponding filter membrane as chemosensors and adsorbents for dual signal amplification detection and fast removal of mercury(ii)," Nanoscale, vol. 9, no. 9, pp. 3315-3321, 2017.

[259] W. Zhou, J. Ding, and J. Liu, "2-aminopurine-modified DNA homopolymers for robust and sensitive detection of mercury and silver," Biosensors and Bioelectronics, vol. 87, pp. 171-177, 2017.

[260] K. Tyszczuk-Rotko and K. Domanska, "Simple and sensitive voltammetric procedure for determination of Cd (II) and Pb (II) using bismuth-coated screen-printed carbon electrode prepared with mediator," Journal of the Electrochemical Society, vol. 164, no. 7, pp. H537-H544, 2017.

[261] M. B. Gumpu, M. Veerapandian, U. M. Krishnan, and J. B. B. Rayappan, "Simultaneous electrochemical detection of Cd(II), Pb(II), As(III) and Hg(II) ions using ruthenium(II)-textured graphene oxide nanocomposite," Talanta, vol. 162, pp. 574-582, 2017.

[262] P.-H. Chen, C. Lin, K.-H. Guo, and Y.-C. Yeh, "Development of a pigment-based whole-cell biosensor for the analysis of environmental copper," RSC Advances, vol. 7, no. 47, pp. 29302-29305, 2017.

[263] B. Bansod, T. Kumar, R. Thakur, S. Rana, and I. Singh, "A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms," Biosensors and Bioelectronics, vol. 94, pp. 443-455, 2017.

[264] D. Omanovic, C. Garnier, K. Gibbon-Walsh, and I. Pizeta, "Electroanalysis in environmental monitoring: tracking trace metals-a mini review," Electrochemistry Communications, vol. 61, pp. 78-83, 2015.

Hongyong Xiang [ID], (1,2) Qinghua Cai, (3) Yuan Li [ID], (4) Zhenxing Zhang, (1,5) Lina Cao, (6) Kun Li, (7) and Haijun Yang [ID] (1,2,8)

(1) Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin 130024, China

(2) Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650500, China

(3) State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China

(4) Northwest Land and Resources Research Center, Shaanxi Normal Northwest University, China

(5) State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun, Jilin 130024, China

(6) Ecology and Environment Department of Jilin Province, Changchun, Jilin 130024, China

(7) Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin 150080, China

(8) School of Life Science and Geology, Yili Normal University, Yili, Xinjiang 835000, China

Correspondence should be addressed to Zhenxing Zhang; and Haijun Yang;

Received 29 October 2019; Accepted 20 January 2020; Published 11 February 2020

Academic Editor: Alberto J. Palma

Caption: Figure 1: Averages of limit of detection of sensors for herbicides, insecticides, and fungicides. Values are the mean [+ or -] SE.

Caption: Figure 2: Averages of limit of detection of pesticide sensors based on different detection methods. Values are the mean [+ or -] SE. Different uppercase letters above each bar indicate significant differences after one-way ANOVA and post hoc Tukey (parameters with the same letter are not significantly different between sensors).

Caption: Figure 3: Averages of limit of detection of sensors for the detection of heavy metals in freshwaters. Values are the mean [+ or -] SE. Different uppercase letters above each bar indicate significant differences after one-way ANOVA and post hoc Tukey (parameters with the same letter are not significantly different between heavy metal sensors). Only one sensor was included in this review for the detection of Al, Mn, and Fe. Therefore, these three heavy metal sensors were excluded from the ANOVA. The data of [Cr.sup.3+] and [Cr.sup.6+] were combined for the ANOVA.

Caption: Figure 4: Averages of limit of detection of heavy metal sensors based on different methods. Values are the mean [+ or -] SE. Different uppercase letters above each bar indicate significant differences after one-way ANOVA and post hoc Tukey (parameters with the same letter are not significantly different between sensors).
Table 1: Summary of studies employing sensors for the detection of
pesticides in freshwaters.

Analytes                        Sensor types       LOD (ng/ml)

Picloram                     Bioelectrochemical         5
Malathion                         Biosensor             1
Methamidophos                     Biosensor           0.01
Monocrotophos                                         0.015
Mevinphos                         Biosensor           0.009
Phosphamidon                                          0.012
Omethoate                                             0.032
Bentazone                       Electronical          262.3
Carbaryl                                               5.3
Heptenophos                    Electrochemical         3.6
Fenitrothion                                           160
Carbofuran                      Electronical            2
Fenobucarb                                              2
Paraoxon                       Bioelectronical         2.8
Carbaryl                                               8.0
Chlorpyrifos                      Biosensor           0.004
Chlorfenvinfos                                        0.004
Atrazine                       Electrochemical         2.2
Atrazine                       Electrochemical         4.5
Atrazine                       Electrochemical         1.9
Atrazine                       Electrochemical         13
Atrazine                       Electrochemical         3.1
Ametryne                                               3.8
Atrazine                       Electrochemical        30.2
Chlorpyrifos oxon                                      1.1
Paraoxon                       Bioelectronical         30
Malaoxon                                               25
Chlormequat                    Bioelectronical       502.74
Carbofuran                     Bioelectronical         20
Carbaryl                                               300
Paraoxon                       Bioelectronical         5.5
Methyl parathion                                       5.8
Omethoate                      Bioelectronical        21.3
Atrazine                         Biooptical           0.15
Isoproturon                        Bio-Opt              3
Carbaryl                         Biooptical           0.029
Carbendazim                                            15
Carbofuran                       Biooptical            68
Benomyl                                                35
Carbaryl                         Biooptical           0.27
Fuberidazole                                          0.09
Carbaryl                         Biooptical             6
Benomyl                                                 9
Fuberidazole                     Biooptical           0.18
O-Phenylphenol                                         6.1
Linuron                          Biooptical            130
Metsulfuron methyl                 Optical            0.14
[alpha]-Naphthol                                        2
O-Phenylphenol                     Optical              2
Thiabendazole                                           2
Triazine                         Biooptical          0.0013
Thiabendazole                      Optical             2.8
Warfarin                           Optical              2
Thiabendazole                      Optical             2.5
Metsulfuron methyl                                     3.3
N-1-Naphthylphthlamic acid                             8.1
1-Naphthylamine                                       11.2
Thiabendazole                      Optical             4.5
Carbaryl                         Biooptical           1.38
1-Naphthylamine                    Optical             1.1
Paraquat                           Optical            0.11
Paraquat                           Optical             1.6
Paraquat                           Optical            0.003
Paraquat                           Optical             0.7
Paraquat                     Bioelectrochemical       0.926
Paraquat                         Biooptical           0.036
Paraquat                        Electronical          23.92
Paraquat                        Electronical            2
Paraquat                           Optical             22
Paraquat                         Ele-optical           0.1
Diquat                                                 0.2
Paraquat                         Ele-optical           0.2
Diquat                                                 0.1
Paraquat                         Ele-optical            5
Diquat                                                  1
Dipterex                                              5.152
Dursban                                               7.012
Paraquat                         Che-optical          5.143
Methyl thiophanate                                    6.84
Cartap                                                5.476
Paraoxon                           Optical            0.05
Diniconazole                     Biooptical            6.4
Diuron                         Electrochemical       0.00125
Diazinon                                              36.3
Iprobenfos                       Biooptical           53.6
Edifenphos                                            27.9
Paraoxon                                                2
2,4-D                          Bioelectronical         50
Atrazine                                               10
Diazinon                     Bioelectrochemical       0.039

Metamitron                     Electrochemical        7.28
Carbamate                        Biooptical            3.3
Diuron                       Bioelectrochemical        2.1
Mesotrione                     Electrochemical        8.822
Paraquat                       Electrochemical        3.086
Fenoxanil                       Electronical         0.0092
Malathion                                             0.01
Parathion methyl             Bioelectrochemical       0.02
Monocrotophos                Bioelectrochemical       0.01
Dichlorvos                                            0.01
Dicloran                     Bioelectrochemical       0.099
Fenitrothion                   Electrochemical        0.036
Carbamate                          Optical            0.023
Fenoxycarb                       Biooptical          949.221
Malathion                        Ele-optical         0.0991
Methomyl                        Electronical         126.192
Diuron                                               8.1585
2,4-D                           Electronical         26.405
Tebuthiuron                                          77.625
Pyrethroids                      Biooptical           42.64
2,4-D                           Electronical         44.008
Fomesafen                      Electrochemical         89
Glyphosate                                             338
Dimethoate                                           458.52
Atrazine                                             431.36
Cyanazine                                            481.39
Diuron                                                466.2
Imidacloprid                                         511.32
Malathion                                            660.72
Imazethapyr                      Biooptical            578
Mecoprop-P                                            429.3
2,4-D                                                440.08
Trifluralin                                          670.56
Paraquat                                             514.32
Metolachlor                                           567.6
Carbaryl                                             402.44
Acephate                                               366
Dichlorophen                    Electronical          3.768
Hexazinone                     Bioelectronical       0.00066
Malathion                          Optical         1.84 x 10-7
Fenitrothion                       Optical            1.677
Pendimethalin                   Electronical         10.408
Metol                          Electrochemical        0.344
Bisphenol A                                           0.685
Azinphos methyl                  Che-optical          0.549
Fenvalerate pyrethroid             Optical            0.01
Propham                        Electrochemical        0.789
Propham                        Electrochemical        0.179
Cyanazine                      Electrochemical        0.06
Tau-fluvalinate                  Biooptical           6.105
Methyl parathion                   Optical            291.3
Pymetrozine                        Optical            2.172
Imidacloprid                    Electronical          106.1
Pyrethroid                       Biooptical           6.568
Paraquat                        Electronical           0.8
Clopyralid                     Electrochemical        0.154
Carbendazim                     Electronical         37.473
Quinalphos                     Electrochemical        0.378
Methyl parathion                 Biooptical           1.87
2,4-D                              Optical           0.0045
Diethofencarb                   Electronical           320
Diazinon                     Bioelectrochemical      57.827
Naptalam                       Electrochemical        4.37
Phosmet                          Biooptical          0.0004
Phoxim                           Che-optical         298.298
Bentazone                      Electrochemical        8.918
Fenitrothion                    Electronical          0.155
Chlorpyrifos                 Bioelectrochemical       0.07
Lindane                          Ele-optical          0.585
Difenzoquat                    Electrochemical       102.225
Diquat                         Electrochemical       37.844
Methyl parathion                   Optical           27.674
Glyphosate                         Optical            5.07
Aminomethylphosphonic acid                            1.666
Atrazine                                             25.882
Chlorpyrifos                                         10.167
Lindane                      Opt-electrochemical     40.716
Tetradifon                                           14.242
Imidacloprid                                          3.322
Glyphosate                         Optical             845
Methyl parathion               Electrochemical        0.012
Amitrole                       Electrochemical       58.856
Paraoxon                                              0.014
Malathion                          Optical            0.033
Methamidophos                                         0.017
Carbaryl                                              0.026
Fenitrothion                    Electronical         0.0526
Carbendazim                    Electrochemical        5.736
Ofloxacin                          Optical            0.123

Analytes                                    Waterbodies

Picloram                                 Paddy field water
Malathion                                    Tap water
Methamidophos                                Tap water
                                            River water
Mevinphos                               River and tap water
Bentazone                                   River water
Heptenophos                                 Wastewater
Carbofuran                         Tap water and farmland water
Paraoxon                                   Lagoon water
Chlorpyrifos                                Lake water
Atrazine                                    River water
Atrazine                                    River water
Atrazine                                    River water
Atrazine                                    River water
Atrazine                                    River water
Atrazine                                  Natural waters
Chlorpyrifos oxon
Paraoxon                                    River water
Chlormequat                           River and ground water
Carbofuran                                  Well water
Paraoxon                                    Well water
Methyl parathion
Omethoate                                   Lake water
Atrazine                                Drinking, lake, and
                                      agricultural wastewater
Isoproturon                                 Well water
Carbaryl                                  Drinking water
Carbofuran                              Environmental water
Carbaryl                                    River water
Carbaryl                        River, well, dam, irrigation water
Fuberidazole                           River and well water
Linuron                                  Tap, underground,
                                     mineral, and river water
Metsulfuron methyl               River, well, and irrigation water
O-Phenylphenol                          Tap and river water
Triazine                                    River water
Thiabendazole                            Tap, underground,
                                     mineral, and river water
Warfarin                           River, lake, and spring water
Thiabendazole                    Well, river, and irrigation water
Metsulfuron methyl
N-1-Naphthylphthlamic acid          Drinking and mineral water
Thiabendazole                            Tap, underground,
                                     mineral, and river water
Carbaryl                         Groundwater, tap, and river water
1-Naphthylamine                   Well, tap, and urban wastewater
Paraquat                      Tap, well, lake, river, and rain water
Paraquat                                    Wastewater
Paraquat                       Tap, mineral, waste, and ground water
Paraquat                                  Drinking water
Paraquat                               River and groundwater
Paraquat                                    River water
Paraquat                                    River water
Paraquat                             Dam, river, and tap water
Paraquat                           River, dam, and mineral water
Paraquat                                    River water
Paraquat                                 Tap, lake, river,
Diquat                                 ground, and bog water
Paraquat                                    Wastewater
Methyl thiophanate
Paraoxon                                Tap and river water
Diniconazole                           River and wastewater
Diuron                                      Lake water
Iprobenfos                                  River water
2,4-D                                       River water
Diazinon                                      Tap and
                                         river wastewater
Metamitron                                  River water
Carbamate                                   Lake water
Diuron                                      River water
Mesotrione                              Lake and tap water
Paraquat                                    River water
Fenoxanil                                   River water
Parathion methyl                        Tap and river water
Dicloran                                Tap and river water
Fenitrothion                            Tap and lake water
Carbamate                                   River water
Fenoxycarb                                  River water
Malathion                                   Pond water
Methomyl                                River and tap water
2,4-D                                   Lake and well water
Pyrethroids                                 River water
2,4-D                                       River water
Fomesafen                                   Lake water
Imazethapyr                                 Lake water
Dichlorophen                                River water
Hexazinone                                  River water
Malathion                    Agricultural runoff water and lake water
Fenitrothion                        Well, river, and tap water
Pendimethalin                           Tap and river water
Metol                                       River water
Bisphenol A
Azinphos methyl                         Tap and river water
Fenvalerate pyrethroid                   Tao, river, well,
                                   distilled, and draining water
Propham                                     River water
Propham                                     River water
Cyanazine                          Tap, river, and ground water
Tau-fluvalinate                             Lake water
Methyl parathion                            Lake water
Pymetrozine                             Tap and lake water
Imidacloprid                                River water
Pyrethroid                                  River water
Paraquat                                    River water
Clopyralid                                  River water
Carbendazim                                 River water
Quinalphos                              Tap and lake water
Methyl parathion                            River water
2,4-D                               Tap, bottle, and lake water
Diethofencarb                               River water
Diazinon                                    River water
Naptalam                                    River water
Phosmet                                     Lake water
Phoxim                                      River water
Bentazone                              Lake and ground water
Fenitrothion                                Well water
Chlorpyrifos                                Lake water
Lindane                                 River and tap water
Difenzoquat                          River and deionized water
Diquat                               River and drinking water
Methyl parathion                            Pond water
Glyphosate                                  Lake water
Aminomethylphosphonic acid
Lindane                                     River water
Glyphosate                                  River water
Methyl parathion                            River water
Amitrole                                    River water
Malathion                               Tap and river water
Fenitrothion                                River water
Carbendazim                                 River water
Ofloxacin                               River and tap water

Analytes                     Ref.

Picloram                     [55]
Malathion                    [56]
Methamidophos                [57]
Mevinphos                    [58]
Bentazone                    [59]
Heptenophos                  [60]
Carbofuran                   [61]
Paraoxon                     [62]
Chlorpyrifos                 [63]
Atrazine                     [64]
Atrazine                     [65]
Atrazine                     [66]
Atrazine                     [67]
Atrazine                     [68]
Atrazine                     [69]
Chlorpyrifos oxon
Paraoxon                     [70]
Chlormequat                  [71]
Carbofuran                   [72]
Paraoxon                     [73]
Methyl parathion
Omethoate                    [74]
Atrazine                     [75]
Isoproturon                  [76]
Carbaryl                     [77]
Carbofuran                   [78]
Carbaryl                     [79]
Carbaryl                     [80]
Fuberidazole                 [81]
Linuron                      [82]
Metsulfuron methyl           [83]
O-Phenylphenol               [84]
Triazine                     [85]
Thiabendazole                [86]
Warfarin                     [87]
Thiabendazole                [88]
Metsulfuron methyl
N-1-Naphthylphthlamic acid   [89]
Thiabendazole                [90]
Carbaryl                     [91]
1-Naphthylamine              [92]
Paraquat                     [93]
Paraquat                     [94]
Paraquat                     [95]
Paraquat                     [96]
Paraquat                     [97]
Paraquat                     [98]
Paraquat                     [99]
Paraquat                     [100]
Paraquat                     [101]
Paraquat                     [102]
Paraquat                     [103]
Paraquat                     [104]
Paraquat                     [105]
Methyl thiophanate
Paraoxon                     [106]
Diniconazole                 [107]
Diuron                       [108]
Iprobenfos                   [109]
2,4-D                        [110]
Diazinon                     [111]
Metamitron                   [112]
Carbamate                    [113]
Diuron                       [114]
Mesotrione                   [115]
Paraquat                     [116]
Fenoxanil                    [117]
Parathion methyl             [118]
Dicloran                     [119]
Fenitrothion                 [120]
Carbamate                    [121]
Fenoxycarb                   [122]
Malathion                    [123]
Methomyl                     [124]
2,4-D                        [125]
Pyrethroids                  [126]
2,4-D                        [127]
Fomesafen                    [128]
Imazethapyr                  [50]
Dichlorophen                 [129]
Hexazinone                   [130]
Malathion                    [131]
Fenitrothion                 [132]
Pendimethalin                [133]
Metol                        [134]
Bisphenol A
Azinphos methyl              [135]
Fenvalerate pyrethroid       [136]
Propham                      [137]
Propham                      [138]
Cyanazine                    [139]
Tau-fluvalinate              [140]
Methyl parathion             [141]
Pymetrozine                  [142]
Imidacloprid                 [143]
Pyrethroid                   [144]
Paraquat                     [145]
Clopyralid                   [146]
Carbendazim                  [147]
Quinalphos                   [148]
Methyl parathion             [149]
2,4-D                        [150]
Diethofencarb                [151]
Diazinon                     [152]
Naptalam                     [153]
Phosmet                      [154]
Phoxim                       [155]
Bentazone                    [156]
Fenitrothion                 [157]
Chlorpyrifos                 [158]
Lindane                      [159]
Difenzoquat                  [160]
Diquat                       [161]
Methyl parathion             [162]
Glyphosate                   [48]
Aminomethylphosphonic acid
Lindane                      [163]
Glyphosate                   [49]
Methyl parathion             [164]
Amitrole                     [165]
Malathion                    [166]
Fenitrothion                 [167]
Carbendazim                  [168]
Ofloxacin                    [169]

Table 2: Criterion maximum concentration and maximum
contaminant concentration of some pesticides and heavy metals in
freshwaters in the United States.

                    CMCs (ng/ml)   MCLs (ng/ml)

Carbaryl                2.1             --
Chlorpyrifos           0.083            --
Diazinon                0.17            --
Parathion              0.065            --
Dieldrin                0.24            --
Lindane                 0.95           0.2
Atrazine                 --             3
2,4-D                    --             70
Diquat                   --             20
Heavy metals
Arsenic              340 (1.0)          10
Cadmium              1.8 (1.14)         5
[Chromium.sup.3+]   570 (0.316)         50
[Chromium.sup.6+]    16 (0.982)         50
Copper                -(0.96)          130
Lead                 82 (1.46)          15
Mercury              1.4 (0.85)         2
Nickel              470 (0.998)         --
Silver               3.2 (0.85)        100
Zinc                120 (0.978)        500

Note: CMC: criterion maximum concentration for the recommended aquatic
life in the United States. Numbers in parentheses of CMCs for heavy
metals are conversion factors for dissolved metals. MCL: maximum
contaminant limit concentration for drinking water in the United

Table 3: Summary of sensors used to detect heavy metals in freshwaters
during the year 2017-2019.

Analytes               Sensors            LOD (ng/ml)

[As.sup.3+]           Biosensor              0.005
[As.sup.3+]        Electrochemical            75
[Cd.sup.2+]        Electrochemical           0.068
[Pb.sup.2+]                                  0.105
[Pb.sup.2+]        Electrochemical           0.15
[Pb.sup.2+]            Optical               0.029
[Hg.sup.2+]                                  0.044
[Cu.sup.2+]        Electrochemical           9.532
[Fe.sup.3+]                                   200
[Ni.sup.2+]                                   300
[Cr.sup.6+]            Optical                100
[Cu.sup.2+]                                   30
[Al.sup.3+]                                   80
[Zn.sup.2+]                                   40
[Cd.sup.2+]        Electrochemical           0.337
[Pb.sup.2+]                                   0.2
[Cu.sup.2+]        Electrochemical            0.2
[Hg.sup.2+]                                   0.2
[Pb.sup.2+]        Electrochemical            0.6
[Cu.sup.2+]                                   0.3
[Ag.sup.+]            Biosensor              0.006
[Cd.sup.2+]                                 0.0056
[Pb.sup.2+]        Electrochemical          0.0166
[Cu.sup.2+]                                  0.001
[Hg.sup.2+]                                  0.010
[As.sub.3+]   Electrochemical biosensor    0.000003
[Cd.sup.2+]        Electrochemical           0.17
[Hg.sup.2+]            Optical                0.6
[Pb.sup.2+]        Electrochemical           0.17
[Cd.sup.2+]                                  0.21
[Hg.sup.2+]        Electrochemical           6.018
[Cu.sup.2+]                                  0.02
[Pb.sup.2+]         Electronical             0.03
[Cr.sup.3+]                                  0.15
[Ag.sup.+]         Electrochemical           0.098
[Hg.sup.2+]        Biofluorescent            0.261
[Cd.sup.2+]        Electrochemical           0.05
[Ni.sup.2+]        Electrochemical           0.12
[Cu.sup.2+]                                    3
[Cd.sup.2+]        Electrochemical             4
[Pb.sup.2+]                                   2.5
[Cd.sup.2+]                                  1.012
[Pb.sup.2+]        Electrochemical           0.207
[Cu.sup.2+]                                  0.508
[Hg.sup.2+]                                  0.181
[Ni.sup.2+]                                   240
[Cr.sup.6+]        Electrochemical            180
[Hg.sup.2+]                                   190
[Pb.sup.2+]        Electrochemical            0.5
[Hg.sup.2+]            Optical               0.261
[As.sup.3+]          Biooptical              0.005
[Hg.sup.2+]          Biooptical              0.241
[Pb.sup.2+]      Bioelectrochemical        0.000001
[Cd.sup.2+]        Electrochemical           3.372
[Hg.sup.2+]            Optical               7.422
[Cu.sup.2+]                                  6.672
[Pb.sup.2+]                                  0.15
[Cu.sup.2+]        Electrochemical           0.07
[Hg.sup.2+]                                  0.13
Pb                 Electrochemical           1.68
Cd                                           1.24
[Cu.sup.2+]            Optical              0.0064
[Fe.sup.3+]                                  0.056
[Pb.sup.2+]          Biooptical              1.036
[Hg.sup.2+]                                  3.731
[Cd.sup.2+]        Electrochemical           1.16
[Pb.sup.2+]            Optical               0.216
[Pb.sup.2+]            Optical               0.011
[As.sup.3+]        Bioelectronical           2.248
[Cd.sup.2+]                                  7.869
[Cd.sup.2+]                                   0.5
[Pb.sup.2+]        Electrochemical             1
[Cu.sup.2+]                                    5
[Cr.sup.3+]           Biosensor              0.35
[Pb.sup.2+]        Electrochemical           4.144
[Cd.sup.2+]        Electrochemical           7.45
[Pb.sup.2+]                                  1.17
[Zn.sup.2+]                                  0.327
[Cd.sup.2+]        Electrochemical           0.225
[Pb.sup.2+]                                  0.166
[Cu.sup.2+]        Electrochemical          25.418
[Cd.sup.2+]                                 0.0025
[Pb.sup.2+]        Electrochemical          0.0518
[Ni.sup.2+]                                 0.0002
[Zn.sup.2+]                                  0.05
[Pb.sup.2+]        Electrochemical           0.02
[Cu.sup.2+]                                  0.03
[Pb.sup.2+]        Electrochemical           2.486
[Ag.sup.+]       Bioelectrochemical       0.00000005
[Cd.sup.2+]        Electrochemical            0.2
[Pb.sup.2+]                                   0.3
[Pb.sup.2+]        Bioelectronical           3.937
[Hg.sup.2+]                                  3.611
[Cu.sup.2+]        Electrochemical          19.064
[Pb.sup.2+]                                 192.696
[Cr.sup.3+]            Optical              48.356
[Hg.sup.2+]                                 186.549
[Cd.sup.2+]                                  0.001
[Cu.sup.2+]           Chemical               0.006
[Hg.sup.2+]                                  0.020
[Pb.sup.2+]                                  0.021
[Mn.sup.2+]                                   16
[Fe.sup.2+]            Optical                11
[Cu.sup.2+]                                   12
[Fe.sup.3+]                                   50
[Hg.sup.2+]            Optical               0.233
[Hg.sup.2+]                                  0.509
[Hg.sup.2+]          Biooptical              0.602
[Ag.sup.+]                                   0.324
[Cd.sup.2+]     Optical-electronical         0.152
[Pb.sup.2+]                                  0.029
[Cd.sup.2+]                                  0.315
[Pb.sup.2+]        Electrochemical           0.292
[As.sup.3+]                                  0.172
[Hg.sup.2+]                                  0.321
[Cu.sup.2+]          Biooptical            5547.566

Analytes                  Waterbodies                Ref.

[As.sup.3+]        Tap, lake, and pond water         [203]
[As.sup.3+]               River water                [204]
[Cd.sup.2+]            Tap and lake water            [205]
[Pb.sup.2+]            Tap and lake water            [206]
[Pb.sup.2+]               River water                [207]
[Cu.sup.2+]           Tap and river water            [208]
[Cr.sup.6+]            Tap and lake water            [209]
[Cd.sup.2+]               River water                [210]
[Cu.sup.2+]                Lake water                [211]
[Pb.sup.2+]               River water                [212]
[Ag.sup.+]    Tap, drinking, pond, and soil water    [213]
[Pb.sup.2+]               River water                [214]
[As.sub.3+]           Lake and well water            [215]
[Cd.sup.2+]                Lake water                [216]
[Hg.sup.2+]                Tap water                 [217]
[Pb.sup.2+]       River, lake, and wastewater        [218]
[Hg.sup.2+]               River water                [219]
[Pb.sup.2+]        River, tap, and well water        [220]
[Ag.sup.+]    Pond, tap, drinking, and soil water    [221]
[Hg.sup.2+]               River water                [222]
[Cd.sup.2+]        Tap, pond, and river water        [223]
[Ni.sup.2+]           Tap and river water            [224]
[Cd.sup.2+]               River water                [225]
[Pb.sup.2+]               River water                [226]
[Cr.sup.6+]                Lake water                [227]
[Pb.sup.2+]               River water                [228]
[Hg.sup.2+]           Tap and river water            [229]
[As.sup.3+]               Groundwater                [203]
[Hg.sup.2+]         Lake and deionized water         [230]
[Pb.sup.2+]               River water                [231]
[Cd.sup.2+]                Lake water                [232]
[Hg.sup.2+]               River water                [233]
[Cu.sup.2+]           Lake and river water           [234]
Pb                     Tap and lake water            [235]
[Cu.sup.2+]               River water                [236]
[Pb.sup.2+]                Lake water                [237]
[Cd.sup.2+]                Lake water                [238]
                        Deionized water
[Pb.sup.2+]           River and tap water            [239]
[Pb.sup.2+]               River water                [240]
[As.sup.3+]        River, tap, and wastewater        [241]
[Pb.sup.2+]               River water                [242]
[Cr.sup.3+]           River and tap water            [243]
[Pb.sup.2+]      Lake and mining effluent water      [244]
[Cd.sup.2+]            Lake and tap water            [245]
[Cd.sup.2+]           Tap and river water            [246]
[Cu.sup.2+]        River, tap, and dam water         [247]
[Pb.sup.2+]                                          [248]
[Pb.sup.2+]                Lake water                [249]
[Pb.sup.2+]        Tap, lake, and river water        [250]
[Ag.sup.+]             Tap and lake water            [251]
[Cd.sup.2+]               River water                [252]
[Pb.sup.2+]               River water                [253]
[Cu.sup.2+]           Tap and river water            [254]
[Cr.sup.3+]                Lake water                [255]
[Cu.sup.2+]                Wastewater                [256]
[Fe.sup.2+]               River water                [257]
[Hg.sup.2+]           River and tap water            [258]
[Hg.sup.2+]                Lake water                [259]
[Cd.sup.2+]               River water                [260]
[Pb.sup.2+]           River and tap water            [261]
[Cu.sup.2+]           Pond wand tap water            [262]
COPYRIGHT 2020 Hindawi Limited
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2020 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Xiang, Hongyong; Cai, Qinghua; Li, Yuan; Zhang, Zhenxing; Cao, Lina; Li, Kun; Yang, Haijun
Publication:Journal of Sensors
Geographic Code:7ISRA
Date:Mar 1, 2020
Previous Article:The Chemresistive Properties of SiC Nanocrystalline Films with Different Conductivity Type.
Next Article:Optimized Cluster-Based Dynamic Energy-Aware Routing Protocol for Wireless Sensor Networks in Agriculture Precision.

Terms of use | Privacy policy | Copyright © 2021 Farlex, Inc. | Feedback | For webmasters |