Printer Friendly

Sensors Address Critical Healthcare Needs: Innovative sensors key to trend toward patient-centric care.

Anumber of key trends in the healthcare business has increased the need for sensors to not only monitor patient conditions but also link to centralized data systems to help medical personnel better make informed healthcare decisions. For one, an aging population is raising pressure on healthcare systems to care for an increasing number of citizens vulnerable to chronic disease. At the same time, the healthcare industry is seeking to better manage costs while improving patient outcomes.

Another key trend is the increased use of "big data," which is allowing medical providers to analyze much larger population bases to identify areas for medical research. This is occurring hand-in-hand with opportunities presented by the Internet of Things (IoT), which in the development of smart devices, promises to make healthcare easier, more effective and more efficient.

As a result of these trends, Fortune 500 companies and healthcare organizations are developing medical devices that help patients and clinicians make better decisions while exploring new healthcare frontiers. From devices that serve lower hospital readmission rates, to solutions that not only introduce cost-efficiencies but better serve patients living in remote areas, sensors are at the heart of changing healthcare dynamics.

The critical role of sensors in med tech

Electronic systems in medical equipment devices and probes rely on sensor signals as a basis to control activities, provide accurate diagnosis and inform treatment. In hospital settings, sensors monitor various patient issues and play a pivotal role in acute medical situations such as post-op recovery, or when patients are transitioned from one hospital department to another. For instance, TE Connectivity's photo optic emitter assembly is used for acute medical situations like post-op recovery. This helps to address major concerns over patient safety and medical errors, which according to the World Health Organization (WHO) results in approximately one in 10 hospitalized patients experiencing harm due to errors.

Sensors are also helping to create advancements in self-patient monitoring. Medical equipment is being designed for home healthcare use by incorporating sensors to not only keep track of the patient, but to also help the machine keep track of itself In addition, IoT driven healthcare services and wearable medical devices feature sensors, actuators, and other mobile communication methods to allow patient data to be continuously monitored and transmitted via cloud-based platforms. As a result of these trends, some industry analysts expect remote monitoring systems on a global basis to reach a staggering $46 billion in value by 2020.

Sensors measure a host of health-related issues including temperature, ECG, EEG, oxygenation, blood pressure and glucose levels. What's more, sensors are used in both invasive and non-invasive procedures. The sidebar following the story shows how an oxygenation sensor works.

For example, intravascular blood pressure is most accurately measured by incorporating a sensor as part of an invasive arterial procedure that usually places a cannula needle in a radial, femoral, dorsalis pedis, or brachial artery. The success of this arterial pressure measurement is leading to new blood pressure applications, specifically for intra-cranial pressure and urine pressure detection.

Optical components are a key part of measuring blood oxygenation (Sp[O.sub.2]) level on a non-invasive basis. Sensors for pulse oximetry applications must provide clear accuracy in oxygen level detection and provide flexibility to accommodate multiple wavelength options, in which various medical device manufacturers utilize differing proprietary algorithms to calculate oxygen levels.

Successful medical sensor applications are also leading to new developments. For example, a Pulse Index Continuous Cardiac Output (PICCO) measures the performance of the heart by injecting cold saline into it and uses both temperature and pressure sensors to understand the status of the lungs or heart in monitoring the body's response to the procedure. Fractional Flow Reserve measurement (FFR) determines the ratio between the maximum achievable blood flow in a diseased coronary artery and the theoretical maximum flow in a normal coronary artery. Pressure sensors help check for the seriousness of arterial blocks, inform health practitioners if surgical intervention is required, and measure the success of a surgery if it is conducted.

Choosing the right sensor

Fundamental to choosing the right sensor is its ability to deliver the highest degree of precision, durability and performance. Arguably, this is exacerbated in the medical devices field where measurements are not only conducted in highly complex environments, but the outputs directly impact the delivery of quality care to ensure human life does not hang in the balance.

As a result, device manufacturers must have confidence in the sensor provider when working with companies regarded for high reliability and near flawless quality. Scalable, value-added manufacturing capabilities may be another consideration in choosing to work with a sensor provider that not only offers components but complete sensor connectivity.

Product flexibility is also key to ensure device compatibility. For example, in measuring blood oxygenation (Sp[O.sub.2]), device manufacturers benefit from choosing a sensor with the ability to provide red LED wavelength tolerance up to 660 nm [+ or -] 2 nm, and which offers an emitter with multiple IR LED wavelength choices: 660 nm, 880 nm, 905 nm and 940 nm. In addition, SpO2 sensors (Figure 2)--offered as either reusable or disposable--should not only be manufactured to ensure maximum patient comfort but be latex-free and biocompatibility tested in meeting industry standards.

By Susan Zaks, Product Manager, TE Connectivity
COPYRIGHT 2018 Advantage Business Media
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2018 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Applying Tech Photo-optic sensors
Author:Zaks, Susan
Publication:Medical Design Technology
Date:Aug 1, 2018
Previous Article:Microcables Open Up New Dimensions In Invasive Surgery: Micro-extrusion process now enables minimally invasive medical cables to be manufactured with...
Next Article:How A Blood Oxygenation Sensor Works.

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters