Seamounts in the southeastern Pacific Ocean and biodiversity on Juan Fernandez seamounts, Chile/Montes submarinos en el oceano Pacifico suroriental y biodiversidad en el cordon de Juan Fernandez, Chile.
INTRODUCTIONThe marine environment is currently under serious depletion as a result of overfishing, contamination, and the direct and indirect impacts of climate changes. The anthropogenic and climate impacts observed in many places have caused dramatic changes in ecosystems. This is the case of seamounts, vulnerable marine ecosystems in which a decrease of biostructure-forming species and a collapse of oceanic fisheries have been observed. The vulnerability of these ecosystems is related to the possibility that a population, community, or habitat will experience a substantial alteration, which may be irreversible or of slow restoration (FAO, 2007). The international information on seamount biodiversity and ecology is limited, especially for those at depths exceeding 300 m (Tracey et al., 2004). Therefore, although thousands of seamounts are estimated to exist around the world, only around 200 have been biologically sampled, in most cases, during commercial fishing activities (Probert et al., 1997; Galvez et al., 2006).
In Chile, there is lack of information for an undetermined number of seamounts in the Economic Exclusive Zone (EEZ). Research on seamount biodiversity along the Chilean coast has been carried out since 1950, mainly by the Russian government on the Nazca and Salas and Gomez ridges, beyond the EEZs of Chile and Peru (Parin et al., 1997). The information on the Juan Fernandez Archipelago (33[degrees]S-78[degrees]W) is limited to the H.M.S. Challenger scientific expedition (1873-1876), the Pacific Swedish expedition (19161917), and the B/I Anton Bruun expedition (1966) (Rozbaczylo & Castilla, 1987), as well as the oceanographic cruises MARCHILE VIII and IX of 1972 and 1973, respectively (Cerda, 1977), the CIMAR 5 and 6 Oceanic Islands cruises in 1999 and 2000 (Rojas et al., 2004), and the scientific survey of B/I Koyo Maru in 2004 (Zuleta & Hamano, 2004). Furthermore, information has been systematically collected on fauna associated with bottom dredges over Chilean seamounts (Galvez et al., 2006).
The objective of this work, considering the international demand for information on vulnerable marine ecosystems such as seamounts (Resolution 59/25 of the ONU General Assembly), is to determine the geographical distribution of seamounts in the Chilean EEZ, including a biodiversity and fishing impact study on some seamounts of the Juan Fernandez Archipelago.
MATERIALS AND METHODS
The geographical seamount identification and distribution was determined through the analysis of images generated using 2' x 2' resolution satellite altimetry data (Smith & Sandwell, 1997) and 1' x 1' resolution sounding data (GEBCO, 2003), according to the Kitchingman & Lai methodology (2004). Furthermore, in situ assessments were carried out on two seamounts of the Juan Fernandez Archipelago--Juan Fernandez 1 (JF1) and Juan Fernandez 2 (JF2)--through two exploratory campaigns at 247 and 292 m depth, the respective depths of their tops. The first was executed aboard the PAM Portugal II in July-August 2007, and the second was carried out aboard two artisanal boats in November-December 2007: Boat No. 58 Cumberland and L/M Alborada. All the relatively flat area accessible for fishing and sampling systems (over 700 m deep) was systematically gridded (0.5 x 0.5 tenths of degrees), and a grid was randomly selected for sampling.
Three different depth strata were analyzed: pelagic, demersal, and benthic. Different fishing systems were also used: vertical longlines (1,264 hooks), handlines (12 hooks), fishing pots (108 traps), surface longlines (440 hooks), zooplankton nets (10 haul), dredging (5 haul), submarine camera observations (4 observation periods), and oceanographic surveys of the water column (CTD and Niskin Bottles). The surface oceanographic characteristics were analyzed using satellite information (NOAA, TOPEX, SeaWins, SeaWifs).
Additionally, a bibliographical analysis was done to determine the different species previously collected during surveys, cruises, and commercial fishing activities carried out on these seamounts. Finally, an evaluation of the fishing effects index (FEI) (O'Driscoll & Clark, 2005) was done in the same area of study. This index involves data on the fishing effort executed on each seamount, the direction of the trawling, and the seamount area. On one hand, this index measures the fishing density on a seamount as a proportion of its area; on the other hand, it reflects a scale factor that is proportional to the directions the seamount was trawled. A high FEI value may be explained through a heavy effort relative to the seamount size and the fact it was trawled in all directions. The information used for this analysis corresponds to data from fishing binnacles of the industrial trawling fleet operating over orange roughy (Hoplostethus atlanticus) and alfonsino (Beryx splendens) between 2000 and 2006. The same data was used to analyze the spatial structure dynamics of the resources in 2001 and 2003 through geostatistical techniques.
RESULTS
A total of 118 seamounts were identified in seven areas of the Chilean EEZ (Fig. 1): 35 around Easter Island (25[degrees]-30[degrees]S, 105[degrees]-112[degrees]W) (Fig. 2), 21 near San Felix Island (24[degrees]-29[degrees]S, 76[degrees]-84[degrees]W) (Fig. 3), 21 off northern Chile (18[degrees]-30[degrees]S, 71[degrees]-75[degrees]W) (Fig. 4), 15 around the Juan Fernandez Archipelago (30[degrees]-35[degrees]S, 76[degrees]-82[degrees]W) (Fig. 5), eight in the central area of the country (30[degrees]-40[degrees]S, 71[degrees]-76[degrees]W) (Fig. 6), nine in the southern area (40[degrees]-50[degrees]S, 73[degrees]-79[degrees]W) (Fig. 7), and 10 off far-southern Chile (50[degrees]-58[degrees]S, 70[degrees]-77[degrees]W) (Fig. 8). This identification included the geographical location, surface area, and depth of these seamount tops and the designation of codified names (see Yanez et al. 2008 for details).
[FIGURE 1 OMITTED]
Seamounts JF1 and JF2 have volcanic substrate, which is mainly constituted by bare rock and sand. These seamounts are influenced by several water masses: Subtropical Water (STW), Subantarctic Water (SAAW), Equatorial Subsurface Water (ESSW), and Antarctic Intermediate Water (AAIW), but are predominantly influenced by SAAW and STW (Fig. 9). The vertical distribution of dissolved oxygen showed a two-layer structure. The well-oxygenated surface structure of approximately 100 m with concentrations greater than 5 mL [L.sup.-1] (90-100% saturation) is the result of oxygen-atmosphere exchange and primary production in the area. Beneath this layer and at approximately 200 to 300 m depth, the dissolved oxygen was quickly reduced to concentrations of less than 1 mL [L.sup.-1] (5-20% saturation); the latter drop was caused by the presence of ESSW coming from off Peru (Fig. 10). A slight current system was observed in July-August (winter) with sea surface temperature (SST) anomalies that were negative at JF1 and positive at JF2. The SST showed a typical cold condition of 10[degrees] to 17[degrees]C, surface salinity of approximately 34.3, and chlorophyll concentrations between 0.09 and 1 mg [m.sup.-3]. In November-December (spring), however, a greater amount of mesoscale structures such as shifts and currents were observed. The STW showed a cold condition that is typical of the season, with SST of 13 to 18[degrees]C; surface salinity close to 34.1, and a chlorophyll-[alpha] concentration around 4 mg [m.sup.-3].
[FIGURE 2 OMITTED]
[FIGURE 3 OMITTED]
[FIGURE 4 OMITTED]
[FIGURE 5 OMITTED]
[FIGURE 6 OMITTED]
[FIGURE 7 OMITTED]
[FIGURE 8 OMITTED]
[FIGURE 9 OMITTED]
[FIGURE 10 OMITTED]
The phytoplankton collected on the surveyed seamounts involved seven classes of organisms that were classified into 31 genera, 23 species, and other non-identified species. Fifty percent of the organisms were classified as "other flagellates", another 40% corresponded to the Dinophyceae class, and the remaining 7% included the Bacillariophyceae (3.3%), Ciliata (2.1%), Cianophyceae (1.4%), Dictyochophyceae (0.15%), Chlorophyceae (0.04%), and Acantharia (0.01%) (Table 1). Meanwhile, a total of 52,309 organisms were identified as zooplankton; these were distributed among 16 taxonomic groups belonging to the phyla Cnidaria, Ctenophora, Chaetognatha, Annelida, Nemertina, Arthropoda, Tunicata, and Vertebrata. An 87.8% of the organisms were chitinous (euphausiids, mysids, amphipods, ostracods, copepods, cirripedia, decapod crustacean larvae), 11.6% were gelatinous and semi-gelatinous (jellyfish, siphonophores, ctenophores, chaetognaths, salps, appendicularians, polychaetes, nemertins) and the remaining 0.6% corresponded to ichthyoplankton (Hygophum brunni, Sardinops sagax) (Table 2).
The fishing methods allowed catches of two pelagic species, blue shark (Prionace glauca) and snoek (Thyrsites atun); two demersal species, croaker (Helicolenus lengerichi) and depth conger (Pseudoxenomystax nielseni); and two crustacean species, golden crab (Chaceon chilensis) and Juan Fernandez king crab (Paromola rathbuni). A total of 409 invertebrates were collected using a dredge. These represented important groups of species such as Echinoidea (Echinacea), Polychaeta, Porifera, Actinaria, and Asteroidea (Table 3). Due to the complexity of the identification, only two taxa have been identified to this date: 1) Asteroidea new species of Smilasterias and 2) Gorgonia species Callogorgia kinoshitae (Kukenthal, 1913). Only preliminary results are available for other species.
The bibliographical review established that, during the 2001 to 2006 fishing activities, a total of 82 species were collected from the JF1 and JF2 seamounts; these belonged to four phyla (Chordata, Arthropoda, Mollusca, Echinodermata) and the families Macrouridae (9), Moridae (6), and Dalatiidae (4) stood out. The presence of black coral species (Parantipahes fernandenzii, Trisopathes spp., Leiopathes spp.) in lobster traps used around the Juan Fernandez Archipelago deserve mention (Arana et al., 2006).
Submarine images of the JF1 and JF2 marine substrate showed characteristics ascribed to the impact of bottom dredges, coinciding with the information from the trawling fleet, whose activity was primarily executed on the flat surface area of the seamounts (Galvez et al., 2006). When analyzed, this information revealed that the fishing activity was mainly concentrated on the JF2 seamount, reaching 4,667 km of trawling; in comparison, trawling on the JF1 and JF4 seamounts reached values of 1,526 km and 906 km, respectively. In spite of these results, the FEI showed higher values for seamounts JF4 and JF2 (10.5 [km.sup.-1] and 11.7 [km.sup.-1], respectively) than for JF1. Although heavy fishing activity was executed on the latter, its FEI was 2.51 [km.sup.-1] due to its larger area, which is estimated to be 608 [km.sup.2] (Table 4).
In general terms, the fishing effort, measured as the total trawling distance, increased considerably in 2002, 2003, and 2005, with values that exceeded the 500 km of trawling. Later, a considerable decrease was observed by the end of the analyzed period (2001-2006), followed by the same values observed at the beginning of the fishing activity. The high level of observed fishing effort seems to have modified the spatial structure of the resource aggregates exploited at the JF2 seamount. In 2001, the aggregates at this seamount showed a symmetrical spatial distribution up to 4 km; however, that value that did not exceed 1 km in 2003 (Fig. 11). The spatial variability was affected by a decrease in the relative abundance of the resources exploited on this seamount (orange roughy and alfonsino) (Fig. 12).
[FIGURE 11 OMITTED]
[FIGURE 12 OMITTED]
DISCUSSION
A total of 118 seamounts were identified in the continental and insular EEZ of Chile. A method similar to that used by Kitchingman & Lai (2004) was put into practice, considering statistical (standard deviation, filters, hillshading) and visual (judgment, 3D cartography) analyses for the identification of potential seamounts. The number of identified seamounts is influenced by the depth standard deviation as well as filter size and type (kernel 5 * 5 nearest-neighbor) and visual analysis criteria. Furthermore, the identification sensitivity is directly affected by the spatial resolution of the bathymetric data.
The information on the diversity of the phytoplankton organisms collected in the area, along with the data analyzed by Pizarro et al. (2006), allow the preliminary inference that the nano- and microplankton structure detected with the analysis of the water samples collected in late winter 2007 indicate the presence of a clearly oligotrophic environment. Small organisms predominate such environments and the systems are mainly supported by regenerated production and the probable entry of allochthonous nutrients from adjacent islands or elements advected from the seamounts or the coastal areas of Chile through large upwelling plumes that are generally observed on satellite images. Regarding the diversity of zooplankton organisms, most species and/or genera identified around the seamounts corresponded to organisms that are characteristic of the oceanic waters of the Humboldt Current System, which are found in low densities off the coast. The taxonomic composition of the zooplankton in this area is characterized by the presence of copepods (84.4% zooplankton), which coincides with results for oceanic waters in similar ecosystems of other oceans (Schnack-Schiel & Mizdalski, 2002). The quantity of zooplankton was quite scarce, in agreement with the low densities reported around the Juan Fernandez Archipelago (Palma, 1985) and the oceanic waters along the Chilean coast (Palma & Silva, 2006), and with other studies that have shown low densities on seamounts with abrupt topographies. This contradicts the results of Schwartz (2005) for seamounts from the Eastern Central Pacific. In fact, the biomass values were quite low compared to those detected in Chile's coastal waters.
The diversity of pelagic, demersal, and benthic organisms from this area was restricted to four fish species and two crustacean species. This was basically due to the fishing systems used in the surveys, which prioritized direct, non-intrusive sampling methods such as submarine images and gears like traps and longlines. One fish was the blue shark (Prionace glauca), a species considered to be epipelagic and of circumpolar distribution (Compagno, 1984). This shark is abundant in the southeastern Pacific and is captured by multiple fleets using surface longlines. The sawfish (Thyrsites atun), on the other hand, is considered to be a benthopelagic fish with a well-known distribution on continental shelves or around islands (Nakamura & Parin, 1993). Among demersal fish, the croaker (Helicolenus lengerichi) has been cited as one of the five species of the Scorpaenidae family present around the Juan Fernandez Archipelago (Pequeno & Saez, 2000), whereas the conger Bassanago albescens has been caught with a low incidence (Lillo et al., 1999) as part of the by-catch of orange roughy fishing activities on Juan Fernandez seamounts.
The golden crab (Chaceon chilensis) and the Juan Fernandez king crab (Paromola rathbuni) have been cited as two of the five decapod crustacean species captured during surveys and experimental trap fishing activities around Robinson Crusoe and Santa Clara islands (Retamal & Arana, 2000). The presence of the Juan Fernandez king crab was originally reported for the Juan Fernandez Archipelago (Retamal, 1981) and the Desventuradas Islands (Baez & Ruiz, 1985) and is considered to be endemic to this area of the southeastern Pacific. This decapod is distributed between 100 and 300 m depth, with a greater abundance at 200 m around Robinson Crusoe and Santa Clara islands (Retamal & Arana, 2000). Furthermore, the golden crab has been reported off Zapallar and Quintero, along the central coast of continental Chile (Baez & Andrade, 1977; Andrade & Baez, 1980; Andrade, 1987), the Juan Fernandez Archipelago and San Felix and San Ambrosio islands (Retamal, 1981; Chirino-Galvez & Manning, 1989), and along the undersea Nazca Ridge mainly at 90[degrees]W (Parin et al., 1997). The golden crab is generally distributed between 200 m and 2,000 m of depth (Dawson & Webber, 1991). It was found at depths of 400 and 800 m along the undersea Nazca Ridge (Parin et al., 1997) and was caught at 100 and 1,000 m around Robinson Crusoe and Santa Clara islands, with a greater abundance at 300 m and between 500 and 600 m (Arana, 2000).
The submarine images of the plains of seamounts JF1 and JF2 (up to 600 m approximately) suggest the presence of a marine substrate with similar characteristics to those reported in the literature for places that have been strongly impacted by trawling gears (FAO, 2007; Clark & Koslow, 2007).
Johnston & Santillo (2004) have suggested that sustainable seamount fisheries require good knowledge of the biology and ecology of the species to be exploited. Regarding the orange roughy fisheries on seamounts within the Chilean EEZ, there has been a trend towards increased global quotas in spite of the ignorance regarding the stock abundance at the Juan Fernandez Archipelago (Young et al., 2000; Galvez et al., 2006). Despite this increase, the quota has never been totally extracted and the landing proportion has been observed to decrease.
The FEI provides a measure of relative intensity of the trawling fishing activities on a seamount, thereby allowing the categorization of the seamounts according to trawling density and direction. Due to the fact that the trawling was reported to last close to a minute and the trawling velocity is generally constant, then the trawling length estimation offers an adequate indicator of the scanned area. The distribution of the trawling direction on the studied seamounts was not random, suggesting that the fishermen have some degree of knowledge and, thus, prefer certain areas (trawling routes), whereas other adjacent areas do not seem to be affected by fishing activities. O'Driscoll & Clark (2005) have suggested that the FEI cannot directly assess the fishing impact on a seamount. Therefore, it should be necessarily related to other ecological indexes in order to obtain an ecological impact index of the trawling fishing over the substrate and associated fauna that could vary according to the substrate and fishing intensity.
Furthermore, strong spatial variability of the relative densities of the fishing resources associated with seamount JF2 in 2001 and 2003 was observed. This spatial variability was associated with a decrease in the relative abundance of the two main fishing resources exploited on this seamount (orange roughy and alfonsino) and a strong spatial contraction of said resources, which was represented by a significant change in the variogram range. The effect of the commercial exploitation on seamount JF2 caused an 85% reduction in the range of values between 2001 and 2003. Pankhurst (1998) indicated that orange roughy aggregates in the same period and place on the seamounts of New Zealand, which makes it quite predictable. These dense aggregations cause an elevated backscattered acoustic amplitude that is easily identified. Thus, the resource is highly vulnerable to commercial fishing. Besides, it has also been suggested that, during productive periods, orange roughy aggregations tend to remain still during certain periods or even for many days (Bull et al., 2001).
One of the objectives of the current international approach for marine biodiversity conservation is the identification and protection of the discrete areas that are defined from the representativeness of the existing ecosystems and/or their role as an essential habitat for the conservation of vulnerable or threatened species. Therefore, the demand for the identification and prioritization of possible protected marine areas in the Chilean seamounts requires some knowledge of the structure and singularity of its communities and the role such areas play in the life cycle of the species identified as special conservation subjects. In this sense, the extent of the knowledge necessary for the adequate conservation of biodiversity on seamounts in the Chilean EEZ is huge and this study is just one step towards an increase in the available information. Obviously, most attention is directed towards those areas currently under fishing exploitation, where it is crucial to take conservation measures for the development of sustainable activities.
DOI: 10.3856/vol37-issue3-fulltext-20
ACKNOWLEDGEMENTS
The authors would like to thank the crews of PAM Portugal II, the L/M Alborada, and the boat Cumberland for their great disposition and assistance with the works carried out on board. Furthermore, we wish to thank the Fondo de Investigacion Pesquera de Chile for their support of FIP project No. 2006-57.
REFERENCES
Andrade, H. 1987. Distribucion batimetrica y geografica de macroinvertebrados del talud continental de Chile central. Cienc. Tecnol. Mar, 11: 61-94.
Andrade, H. & P. Baez. 1980. Crustaceos decapodos asociados a la pesqueria de Heterocarpus reedi Bahamonde 1955 en la zona central de Chile. Bol. Mus. Nac. Hist. Nat. Chil., 37: 261-267.
Arana, P. 2000. Pesca exploratoria con trampas alrededor de las islas Robinson Crusoe y Santa Clara, archipielago de Juan Fernandez, Chile. Invest. Mar., Valparaiso, 28: 39-52. Bull, B., I. Tracey & A. Hart. 2001. Diel
Arana, P., M. Ahumada, A. Guerrero, V. Espejo, E. Ya nez, C. Silva, B. Ernst & J.M. Orensanz. 2006. Evaluacion de stock y distribucion de la langosta y el cangrejo dorado en el archipielago de Juan Fernandez (Proyecto FIP N[degrees]2005-21). Informe final. Pont. Univ. Catolica Valparaiso, Estud. Doc., 27/2006: 257 pp.
Baez, P. & H. Andrade. 1977. Geryon affinis Milne Edwards & Bouvier, 1894, frente a las costas de Chile (Crustacea, Decapoda, Brachyura, Geryonidae). An. Mus. Hist. Nat., Valparaiso, 10: 215-219.
Baez, P. & R. Ruiz. 1985. Crustaceos de las islas oceanicas de Chile depositados en el Museo Nacional de Historia Natural de Santiago. In: P. Arana (ed.). Investigaciones marinas en el archipielago de Juan Fernandez. Escuela Ciencias del Mar, Universidad Cato lica de Valparaiso, Valparaiso, pp. 93-108.
Bull, B., I. Tracey & A. Hart. 2001. Diel variation in spawning orange roughy (Hoplostethus atlanticus) abundance over a seamount feature on the north-west Chatham Rise. N.Z. J. Mar. Freshw. Res., 35: 435-44.
Cerda, R. 1977. Pesca exploratoria con espineles en los montes submarinos situados entre Valparaiso y el archipielago de Juan Fernandez. Cienc. Tecnol. Mar, 3: 3-8.
Chirino-Galvez, L.A. & R.B. Manning. 1989. A new deep-sea crab of the genus Chaceon from Chile (Crustacea, Decapoda, Geryonidae). Proc. Biol. Soc. Wash., 102(2): 401-404.
Clark, M.R. & J.A. Koslow. 2007. Impacts of fisheries on seamounts. In: T.J. Pitcher, T. Morato, P.J.B. Hart, M.R. Clark, N. Haggan & R. Santos (eds.). Sea mounts: ecology, fisheries & conservation. Fish and Aquatic Resources Series, 12, Blackwell Publishing, Oxford, 527 pp.
Compagno, L. 1984. FAO species catalogue. Sharks of the world. Part. 2. Carcharhiniformes. FAO Fish. Synop., 125(4): 249 pp.
Dawson, E.W. & W.R. Webber. 1991. The deep-sea red crab Chaceon ("Geryon"): A guide to information and reference list of the Family Geryonidae. Nat. Mus. New Zealand, Misc. Ser., 24: 83 pp.
Organizacion de las Naciones Unidas para la Agricultura y la Alimentacion (FAO). 2007. Report and documentation of the Expert Consultation on Deep-sea Fisheries in the High Seas, Bangkok, Thailand, 21-23 November 2006. FAO Fish. Rep., 838: 203 pp.
Galvez, P., J. Sateler, J. Gonzalez & P. Toledo. 2006.
Programa de seguimiento del estado de situacion de las principales pesquerias nacionales: Pesqueria demersal centro-sur y aguas profundas, 2005. Informe SUBPESCA-IFOP: 70 pp.
General Bathymetric Chart of the Oceans (GEBCO). 2003. IHO-UNESCO, General Bathymetric Chart of the Oceans, Digital Edition. www.ngdc.noaa.gov/ mgg/gebco. Revised: 30 April 2009.
Johnston, P & D. Santillo. 2004. Conservation of seamount ecosystems: application of a marine protected areas concept. Arch. Fish. Mar. Res., 51: 305-319.
Kitchingman, A. & S. Lai. 2004. Inferences of potential seamount locations from mid-resolution bathymetric data. In: T. Morato & D. Pauly (eds.). Seamounts: biodiversity and fisheries. Fish. Centre Res. Rep., 12(5): 7-12.
Lillo, S., R. Bahamonde, B. Leiva, M. Rojas, M.A. Barbieri, M. Donoso & R. Gili. 1999. Prospeccion del recurso orange roughy (Hoplostethus spp.) y su fauna acompanante entre la I y la X Region. Informe Tecnico FIP 98-05: 141 pp.
Nakamura, I. & N.V. Parin. 1993. FAO species catalogue. Snake mackerels and cutlassfishes of the world (families Gempylidae and Trichiuridae). An annotated and illustrated catalogue of the snake mackerels, snoeks, escolars, gemfishes, sackfishes, domine, oil-fish, cutlassfishes, scabbardfishes, hairtails, and frost-fishes known to date. FAO Fish. Synop., 125(15): 1-136.
O'Driscoll, R.L. & M.R. Clark. 2005. Quantifying the relative intensity of fishing on New Zealand sea mounts. N.Z. J. Mar. Freshw. Res., 39: 839-850.
Palma, S. 1985. Plancton marino de las aguas circundantes al archipielago de Juan Fernandez. En: P. Arana (ed.). Investigaciones Marinas en el archipielago de Juan Fernandez. Escuela de Ciencias del Mar, Universidad Catolica de Valparaiso, Valparaiso, pp. 59-69.
Palma, S. & N. Silva. 2006. Epipelagic siphonophore assemblages associated with water masses along a transect between Chile and Easter Island (eastern South Pacific Ocean). J. Plankton Res., 28(12): 1143-1151.
Pankhurst, N. 1998. Spawning dynamics of orange roughy, Hoplostethus atlanticus in midslope waters of New Zealand. Environ. Biol. Fish., 21(2): 101-211.
Parin, N., A. Mironov & K. Nesis. 1997. Biology of the Nazca and Sala y Gomez submarine ridges, an outpost of the Indo-West Pacific fauna in the Eastern Pacific Ocean: Composition and distribution of the fauna, its communities and history. Adv. Mar. Biol., 32: 147-242.
Pequeno, G. & S. Saez. 2000. Los peces litorales del archipielago de Juan Fernandez (Chile): endemismo y relaciones ictiogeograficas. Invest. Mar., Valparaiso, 28: 27-37.
Pizarro, G., V. Montecino, R. Astoreca, G. Alarcon, G. Yuras & L. Guzman. 2006. Variabilidad espacial de condiciones bio-opticas de la columna de agua entre las costas de Chile insular y continental. Primavera 1999 y 2000. Cienc. Tecnol. Mar, 29(1): 45-58.
Probert, P., D. McKnight & S. Grove. 1997. Benthic invertebrate bycatch from a deep-water trawl fishery, Chatham Rise, New Zealand. Aquatic Conserv: Mar. Freshw. Ecosyst., 7: 27-40.
Retamal, M. 1981. Catalogo ilustrado de los crustaceos decapodos de Chile. Gayana Zool., 44: 1-110.
Retamal, M. & P. Arana. 2000. Descripcion y distribucion de cinco crustaceos decapodos recolectados en aguas profundas en torno a las islas Robinson Crusoe y Santa Clara (archipielago de Juan Fernandez, Chile). Invest. Mar., Valparaiso, 28:149-163.
Rojas, R., Y. Guerrero, J. Gonzalez & N. Silva. 2004. Datos del crucero oceanografico CIMAR 5 Islas Oceanicas. Centro Nacional de Datos Oceanograficos, Servicio Hidrografico y Oceanografico de la Armada de Chile, Valparaiso, CD-ROM.
Rozbaczylo, N. & J.C. Castilla. 1987. Invertebrados marinos del archipielago del archipielago de Juan Fernandez. In: J.C. Castilla (ed). Islas oceanicas chilenas: conocimiento cientifico y necesidades de investigaciones. Ediciones Universidad Catolica de Chile, Santiago, pp. 167-190.
Schwartz, R. 2005. The effect of deep seamount on zooplankton abundance and biodiversity. Sea Cruise S199 09 june 2005, 15 pp.
Schnack-Schiel, S. & E. Mizdalski. 2002. Occurrence and distribution pattern of copepods in the vicinity of the Great Meteor seamount, northeast Atlantic, in september 1998. Abstracts from Theme Session on Oceanography and Ecology of Seamounts-Indications of Unique Ecosystems (M). ICES CM:2002/M: 35 pp.
Smith, W. & D. Sandwell. 1997. Global seafloor topography from satellite altimetry and ship depth soundings, Science, 277: 1957-1962.
Tracey, D., B. Bull, M. Clark & K. Mackay. 2004. Fish species composition on seamounts and adjacent slope in New Zealand waters. N.Z. J. Mar. Freshw. Res., 38: 163-182.
Yanez, E., C. Silva, R. Vega, L. Alvarez, N. Silva, S. Palma, S. Salinas, E. Menschel, V. Haussermann, D. Soto & N. Ramirez. 2008. Biodiversidad de montes submarinos. Informe Final Proyecto FIP 2006-57: 246 pp.
Young, Z., A. Zuleta & R. Tasheri. 2000. Investigacion CTP de orange roughy. Subsecretaria de PescaInstituto de Fomento Pesquero, Valparaiso, 30 pp.
Zuleta, A. & A. Hamano. 2004. Exploracion cientifica del B/E Koyo-Maru al monte submarino bajo O'Higgins frente a Chile. Informe del Crucero, 22 pp.
Received: 11 May 2009; Accepted: 1 October 2009
Eleuterio Yanez (1), Claudio Silva (1), Rodrigo Vega (2), Fernando Espindola (3), Lorena Alvarez (1), Nelson Silva (1), Sergio Palma (1), Sergio Salinas (1), Eduardo Menschel (2), Verena Haussermann (4), Daniela Soto (1) & Nadin Ramirez (1)
(1) Pontificia Universidad Catolica de Valparaiso, P.O. Box 1020, Valparaiso, Chile
(2) Universidad Austral de Chile, P.O. Box 567, Valdivia, Chile
(3) Instituto de Fomento Pesquero, P.O. Box 8-V, Valparaiso, Chile
(4) Fundacion Huinay, P.O. Box 462, Puerto Montt, Chile
Table 1. Composition and abundance of nano-microplankton (cel [L.sup.-1]) on the seamounts Juan Fernandez 1 and Juan Fernandez 2. Only the mean of each taxonomic group is indicated. Tabla 1. Composicion y abundancia de nano-microplancton (cel [L.sup.-1]) en los montes submarinos Juan Fernandez 1 y Juan Fernandez 2. Se indica el promedio de cada grupo. Station 1 2 Depth (m) 0 50 0 50 Species Acantharia 0 20 0 0 Nasselaria 0 20 0 0 Bacillariophyceae 60 140 1040 180 Bacteriastrum sp. 0 0 0 0 Chaetoceros atlanticus 0 0 0 0 Chaetoceros peruvianus 0 0 0 0 Chaetoceros spp. 0 0 0 0 Cylindrotheca closterium 0 0 40 0 Dactyliosolen sp. 20 0 0 0 Nitszchia longissima 0 0 40 0 Nitszchia spp. 0 0 0 0 Pennadas indeterminates 20 80 80 40 Pleurosigma spp. 0 0 0 0 Pseudonitzschia spp. 0 60 840 140 Rhizosolenia alata 0 0 0 0 Rhizosolenia bergonii 0 0 40 0 Rhizosolenia spp. 20 0 0 0 Thalassiothrix sp. 0 0 0 0 Cianophyceae 0 0 480 1820 Ciliata 140 160 600 160 Acanthostomella 0 0 0 0 norvegica ? Ascampbeliella sp. 0 0 0 0 Ciliates (> 15 [micro]m) 40 60 200 140 Ciliates (< 15 [micro]m) 0 0 0 0 Dictiocysta elegans 0 20 40 20 Dictiocysta mitra 0 0 0 0 Dictiocysta sp. 40 0 80 0 Eutintinnus fraknoi 0 20 0 0 Eutintinnus lusus-undae 20 20 200 0 Laboea spp. 0 0 0 0 Parundela caudata 0 20 0 0 Protorhabdonella curta 0 0 0 0 Rhabdonella chilensis 20 0 40 0 Rhabdonella sp. 20 0 0 0 Salpinguella sp. 0 20 0 0 Steentrupiella pozzi 0 0 40 0 Undella sp. 0 0 0 0 Undella claparedei 0 0 0 0 Xystonella treforti 0 0 0 0 Dictyochophyceae 20 0 40 20 Dictyocha fibula 20 0 0 0 Dictyocha sp. 0 0 40 20 Dictyocha speculum 0 0 0 0 Dinophyceae 2039 5038 8677 8937 Ceratium extensum 0 0 0 0 Ceratium furca 40 40 0 40 Ceratium fusus 40 40 80 20 Ceratium tripos 0 0 0 0 Athecate dinoflagellates 100 280 200 380 (> 15 [micro]m) Athecate dinoflagellates 1839 4598 8277 8277 (< 15 [micro]m) Thecate dinoflagellates 0 0 0 20 Dinophysis sp. 0 0 0 0 Dissodinium sp. 0 0 40 0 Gonyaulax polygramma 0 20 0 0 Ornithocercus sp. 0 0 0 0 Oxytosum sp.1 20 60 40 100 Oxytosum sp.2 0 0 40 60 Podolampas sp. 0 0 0 40 Prorocentrum sp. 0 0 0 0 Protoperidinium conicum 0 0 0 0 Protoperidinium sp. 0 0 0 0 Scripsiella sp. 0 0 0 0 Flagellata 2759 2759 2759 4139 Flagellates/Ciliates 0 0 0 0 (< 10 [micro]m) Flagellates 2759 2759 2759 4139 (< 10 [micro]m) Station 3 4 Depth (m) 0 50 0 50 Species Acantharia 0 0 0 - Nasselaria 0 0 0 s/i Bacillariophyceae 880 960 320 - Bacteriastrum sp. 80 0 0 s/i Chaetoceros atlanticus 0 0 0 s/i Chaetoceros peruvianus 0 0 0 s/i Chaetoceros spp. 0 0 0 s/i Cylindrotheca closterium 0 0 0 s/i Dactyliosolen sp. 0 80 0 s/i Nitszchia longissima 40 0 0 s/i Nitszchia spp. 0 0 0 s/i Pennadas indeterminates 180 80 80 s/i Pleurosigma spp. 0 0 0 s/i Pseudonitzschia spp. 500 760 200 s/i Rhizosolenia alata 20 0 0 s/i Rhizosolenia bergonii 40 0 0 s/i Rhizosolenia spp. 0 40 0 s/i Thalassiothrix sp. 20 0 40 s/i Cianophyceae 0 0 780 s/i Ciliata 540 200 320 - Acanthostomella norvegica ? 0 0 0 s/i Ascampbeliella sp. 0 0 20 s/i Ciliates (> 15 [micro]m) 320 0 160 s/i Ciliates (< 15 [micro]m) 0 0 0 s/i Dictiocysta elegans 0 0 0 s/i Dictiocysta mitra 0 0 40 s/i Dictiocysta sp. 20 0 0 s/i Eutintinnus fraknoi 40 0 0 s/i Eutintinnus lusus-undae 80 160 40 s/i Laboea spp. 40 0 20 s/i Parundela caudata 0 0 0 s/i Protorhabdonella curta 0 0 0 s/i Rhabdonella chilensis 0 0 40 s/i Rhabdonella sp. 0 0 0 s/i Salpinguella sp. 40 40 0 s/i Steentrupiella pozzi 0 0 0 s/i Undella sp. 0 0 0 s/i Undella claparedei 0 0 0 s/i Xystonella treforti 0 0 0 s/i Dictyochophyceae 40 0 0 Dictyocha fibula 40 0 0 s/i Dictyocha sp. 0 0 0 s/i Dictyocha speculum 0 0 0 s/i Dinophyceae 7897 3959 10417 - Ceratium extensum 0 0 0 s/i Ceratium furca 40 40 0 s/i Ceratium fusus 80 80 120 s/i Ceratium tripos 0 0 0 s/i Athecate dinoflagellates 320 40 460 s/i (> 15 [micro]m) Athecate dinoflagellates 7357 3679 9657 s/i (< 15 [micro]m) Thecate dinoflagellates 0 0 0 s/i Dinophysis sp. 0 0 0 s/i Dissodinium sp. 0 0 0 s/i Gonyaulax polygramma 0 0 0 s/i Ornithocercus sp. 0 0 0 s/i Oxytosum sp.1 80 0 20 s/i Oxytosum sp.2 20 120 160 s/i Podolampas sp. 0 0 0 s/i Prorocentrum sp. 0 0 0 s/i Protoperidinium conicum 0 0 0 s/i Protoperidinium sp. 0 0 0 s/i Scripsiella sp. 0 0 0 s/i Flagellata 5058 4598 13795 - Flagellates/Ciliates (< 10 [micro]m) 0 0 0 s/i Flagellates 5058 4598 13795 s/i (< 10 [micro]m) Station 5 6 Depth (m) 0 50 0 50 Species Acantharia 0 0 0 0 Nasselaria 0 0 0 0 Bacillariophyceae 620 540 20 160 Bacteriastrum sp. 0 0 0 0 Chaetoceros atlanticus 120 0 0 0 Chaetoceros peruvianus 0 0 0 0 Chaetoceros spp. 40 0 0 0 Cylindrotheca closterium 20 20 0 0 Dactyliosolen sp. 20 0 0 0 Nitszchia longissima 0 0 0 0 Nitszchia spp. 0 0 0 0 Pennadas indeterminates 40 320 20 40 Pleurosigma spp. 0 0 0 0 Pseudonitzschia spp. 140 0 0 40 Rhizosolenia alata 0 0 0 0 Rhizosolenia bergonii 20 0 0 0 Rhizosolenia spp. 220 200 0 80 Thalassiothrix sp. 0 0 0 0 Cianophyceae 0 0 0 0 Ciliata 1837 3299 560 80 Acanthostomella 0 0 0 0 norvegica ? Ascampbeliella sp. 0 0 0 0 Ciliates (> 15 [micro]m) 740 440 500 80 Ciliates (< 15 [micro]m) 920 2759 0 0 Dictiocysta elegans 0 0 0 0 Dictiocysta mitra 40 40 0 0 Dictiocysta sp. 0 0 0 0 Eutintinnus fraknoi 0 0 0 0 Eutintinnus lusus-undae 20 40 0 0 Laboea spp. 0 0 20 0 Parundela caudata 40 0 20 0 Protorhabdonella curta 0 0 0 0 Rhabdonella chilensis 0 0 0 0 Rhabdonella sp. 0 0 0 0 Salpinguella sp. 0 0 0 0 Steentrupiella pozzi 20 20 20 0 Undella sp. 0 0 0 0 Undella claparedei 20 0 0 0 Xystonella treforti 0 0 0 0 Dictyochophyceae 20 20 60 0 Dictyocha fibula 0 20 0 0 Dictyocha sp. 0 0 40 0 Dictyocha speculum 20 0 20 0 Dinophyceae 11456 16336 6438 5958 Ceratium extensum 0 20 20 0 Ceratium furca 20 40 20 20 Ceratium fusus 40 160 0 80 Ceratium tripos 20 0 0 0 Athecate dinoflagellates 240 380 580 300 (> 15 [micro]m) Athecate dinoflagellates 11036 11956 5518 5518 (< 15 [micro]m) Thecate dinoflagellates 20 0 0 0 Dinophysis sp. 20 0 0 0 Dissodinium sp. 0 0 0 0 Gonyaulax polygramma 20 0 0 0 Ornithocercus sp. 0 0 0 0 Oxytosum sp.1 20 40 160 20 Oxytosum sp.2 0 40 140 20 Podolampas sp. 0 0 0 0 Prorocentrum sp. 0 0 0 0 Protoperidinium conicum 20 0 0 0 Protoperidinium sp. 0 0 0 0 Scripsiella sp. 0 0 0 0 Flagellata 22072 203249 4598 22992 Flagellates/Ciliates 0 46904 0 0 (< 10 [micro]m) Flagellates 22072 156346 4598 22992 (< 10 [micro]m) Station 7 8 Depth (m) 0 50 0 50 Species Acantharia 0 0 0 80 Nasselaria 0 0 0 80 Bacillariophyceae 0 240 2720 1760 Bacteriastrum sp. 0 0 320 0 Chaetoceros atlanticus 0 0 0 0 Chaetoceros peruvianus 0 0 40 0 Chaetoceros spp. 0 0 160 40 Cylindrotheca closterium 0 0 320 160 Dactyliosolen sp. 0 20 280 200 Nitszchia longissima 0 0 0 0 Nitszchia spp. 0 0 0 0 Pennadas indeterminates 0 20 320 160 Pleurosigma spp. 0 0 0 0 Pseudonitzschia spp. 0 160 1040 1200 Rhizosolenia alata 0 0 0 0 Rhizosolenia bergonii 0 0 0 0 Rhizosolenia spp. 0 40 240 0 Thalassiothrix sp. 0 0 0 0 Cianophyceae 0 0 0 0 Ciliata 300 420 240 960 Acanthostomella 0 0 0 0 norvegica ? Ascampbeliella sp. 0 0 0 0 Ciliates (> 15 [micro]m) 280 340 120 600 Ciliates (< 15 [micro]m) 0 0 0 0 Dictiocysta elegans 0 0 0 0 Dictiocysta mitra 0 60 0 0 Dictiocysta sp. 0 0 0 40 Eutintinnus fraknoi 0 0 0 0 Eutintinnus lusus-undae 0 20 0 40 Laboea spp. 0 0 0 0 Parundela caudata 20 0 120 80 Protorhabdonella curta 0 0 0 40 Rhabdonella chilensis 0 0 0 0 Rhabdonella sp. 0 0 0 40 Salpinguella sp. 0 0 0 80 Steentrupiella pozzi 0 0 0 0 Undella sp. 0 0 0 40 Undella claparedei 0 0 0 0 Xystonella treforti 0 0 0 0 Dictyochophyceae 20 0 80 80 Dictyocha fibula 0 0 0 0 Dictyocha sp. 20 0 80 0 Dictyocha speculum 0 0 0 80 Dinophyceae 14495 10756 13616 15215 Ceratium extensum 40 0 0 0 Ceratium furca 120 20 0 0 Ceratium fusus 160 60 0 40 Ceratium tripos 0 0 40 0 Athecate dinoflagellates 340 380 1840 560 (> 15 [micro]m) Athecate dinoflagellates 13795 10116 11496 14255 (< 15 [micro]m) Thecate dinoflagellates 0 0 0 0 Dinophysis sp. 0 40 0 0 Dissodinium sp. 0 0 0 0 Gonyaulax polygramma 0 0 0 0 Ornithocercus sp. 0 0 40 0 Oxytosum sp.1 20 120 120 120 Oxytosum sp.2 20 20 80 0 Podolampas sp. 0 0 0 0 Prorocentrum sp. 0 0 0 40 Protoperidinium conicum 0 0 0 0 Protoperidinium sp. 0 0 0 40 Scripsiella sp. 0 0 0 160 Flagellata 12876 32189 1839 6898 Flagellates/Ciliates 0 0 0 0 (< 10 [micro]m) Flagellates 12876 32189 1839 6898 (< 10 [micro]m) Station Mean Depth (m) Species Acantharia 7 Nasselaria Bacillariophyceae 643 Bacteriastrum sp. Chaetoceros atlanticus Chaetoceros peruvianus Chaetoceros spp. Cylindrotheca closterium Dactyliosolen sp. Nitszchia longissima Nitszchia spp. Pennadas indeterminates Pleurosigma spp. Pseudonitzschia spp. Rhizosolenia alata Rhizosolenia bergonii Rhizosolenia spp. Thalassiothrix sp. Cianophyceae 205 Ciliata 654 Acanthostomella norvegica ? Ascampbeliella sp. Ciliates (> 15 [micro]m) Ciliates (< 15 [micro]m) Dictiocysta elegans Dictiocysta mitra Dictiocysta sp. Eutintinnus fraknoi Eutintinnus lusus-undae Laboea spp. Parundela caudata Protorhabdonella curta Rhabdonella chilensis Rhabdonella sp. Salpinguella sp. Steentrupiella pozzi Undella sp. Undella claparedei Xystonella treforti Dictyochophyceae 27 Dictyocha fibula Dictyocha sp. Dictyocha speculum Dinophyceae 9416 Ceratium extensum Ceratium furca Ceratium fusus Ceratium tripos Athecate dinoflagellates (> 15 [micro]m) Athecate dinoflagellates (< 15 [micro]m) Thecate dinoflagellates Dinophysis sp. Dissodinium sp. Gonyaulax polygramma Ornithocercus sp. Oxytosum sp.1 Oxytosum sp.2 Podolampas sp. Prorocentrum sp. Protoperidinium conicum Protoperidinium sp. Scripsiella sp. Flagellata 22839 Flagellates/Ciliates (< 10 [micro]m) Flagellates (< 10 [micro]m) Table 2. Composition and abundance of zooplankton (ind 1000 [m.sup.-3]) on the seamounts Juan Fernandez 1 and Juan Fernandez 2. Only the percentage of each taxonomic group is indicated. Tabla 2. Composicion y abundancia de zooplancton (ind 1000 [m.sup.-3]) en los montes submarinos Juan Fernandez 1 y Juan Fernandez 2. Se indica solamente el porcentaje de cada grupo taxonomico. Station 1 2 3 4 5 Stratum (m) Species (0-250) (0-250) (0-300) (0-300) (0-350) Euphausiacea 2 4 118 35 7 Euphausia gibba 0 0 12 0 0 Euphausia gibboides 0 0 20 11 0 Euphausia mucronata 2 0 47 13 7 Euphausia sp. 0 0 12 0 0 Nematoscelis sp. 0 4 27 11 0 Mysidacea 0 0 0 11 11 Amphipoda 12 49 71 19 22 Vibilia armata 12 41 67 13 11 Acanthoscina 0 4 4 3 7 acanthodes Platyscelus sp. 0 4 0 3 4 Ostracoda 0 3 32 52 54 Copepoda 337 864 4338 2490 8917 Acartia sp. 4 33 39 21 254 Haloptilus 0 0 0 0 60 longicornis Haloptilus spiniceps 0 0 0 0 30 Haloptilus sp. 4 0 0 0 0 Calanus sp. 0 0 0 0 0 Canthocalanus pauper 24 17 125 118 0 Nannocalanus sp. 20 33 0 0 0 Candacia curta 0 0 8 0 0 Candacia sp. 4 17 0 75 15 Corycaeus sp. 8 17 55 0 30 Eucalanus inermis 0 0 0 0 30 Eucalanus sp. 4 50 16 0 0 Rhincalanus sp. 0 0 424 172 119 Euchaeta sp. 4 0 133 172 45 Heterorhabdus sp. 28 116 55 11 851 Lucicutia sp. 4 17 24 43 30 Pleuromamma sp. 44 17 2031 0 2657 Pleuromamma 4 66 0 976 0 borealis Oncaea conifera 8 0 149 86 0 Oncaea sp. 4 17 0 0 149 Oithona sp. 8 17 71 21 149 Pontellina sp. 0 0 0 0 0 Clausocalanus sp. 161 364 643 236 3000 Sapphirina sp. 4 50 0 32 15 Acrocalanus sp. 0 0 0 32 0 Paracalanus sp. 0 33 0 86 0 Euaetideus sp. 0 0 0 0 75 Euchirella sp. 0 0 149 161 478 Gaudius sp. 0 0 165 139 239 Scaphocalanus sp. 0 0 251 97 687 Scolecithrix sp. 0 0 0 12 4 Cirripedia 4 0 0 0 0 Decapoda (larvae) 0 0 0 3 4 Emerita analoga 0 0 0 3 4 Medusae 0 0 0 3 8 Cunina peregrina 0 0 0 3 0 Obelia spp. 0 0 0 0 4 Rophalonema velatum 0 0 0 0 4 Siphonophorae 6 4 59 59 34 Abylopsis tetragona 0 0 16 5 4 Eudoxoides spiralis 2 0 0 0 0 Dimophyes arctica 0 0 8 3 0 Lensia conoidea 0 0 0 3 7 Lensia hotspur 0 0 0 0 4 Lensia leloupi 0 0 0 0 4 Lensia sp. 0 0 0 0 4 Praya sp. 0 0 0 32 0 Sphaeronectes 2 0 35 16 11 gracilis Sulculeolaria chuni 2 0 0 0 0 Sulculeolaria 0 4 0 0 0 quadrivalvis Ctenophora 0 8 8 0 0 Beroe cucumis 0 4 0 0 0 Pleurobrachia bachei 0 4 8 0 0 Chaetognatha 88 141 393 249 198 Eukrohnia hamata 8 21 71 32 93 Sagitta decipiens 0 0 0 48 0 Sagitta enflata 30 62 129 113 0 Sagitta hexaptera 8 0 12 0 19 Sagitta minima 0 0 118 5 19 Sagitta tasmanica 0 0 4 8 30 Juvenil individuals 42 58 59 43 37 Salpida 38 62 537 21 70 Ihlea magalhanica 28 17 110 21 63 Pegea confoederata 10 45 427 0 7 Appendicularia 8 8 4 8 45 Polychaeta 8 0 55 56 56 Nemertina 0 0 0 0 0 Pisces (eggs 0 74 4 42 7 and larvae) Hygophum bruuni 0 0 4 8 0 Sardinops sagax 0 74 0 21 7 Myctophidae 0 0 0 13 0 Total 986 2423 11147 5969 18700 Station 6 7 8 Total Stratum (m) Species (0-268) (0-250) (0-250) Euphausiacea 9 158 9 342 Euphausia gibba 0 0 0 12 Euphausia gibboides 0 14 0 45 Euphausia mucronata 0 77 9 155 Euphausia sp. 0 24 0 36 Nematoscelis sp. 9 43 0 94 Mysidacea 0 5 0 27 Amphipoda 28 62 77 340 Vibilia armata 23 62 77 306 Acanthoscina 0 0 0 18 acanthodes Platyscelus sp. 5 0 0 16 Ostracoda 19 9 12 181 Copepoda 1429 2766 1165 22306 Acartia sp. 28 38 0 417 Haloptilus 37 0 0 97 longicornis Haloptilus spiniceps 18 0 0 48 Haloptilus sp. 0 0 17 21 Calanus sp. 65 19 51 135 Canthocalanus pauper 0 0 0 284 Nannocalanus sp. 0 0 0 53 Candacia curta 0 0 26 34 Candacia sp. 18 0 0 129 Corycaeus sp. 0 10 0 120 Eucalanus inermis 28 0 0 58 Eucalanus sp. 9 77 17 173 Rhincalanus sp. 0 0 0 715 Euchaeta sp. 0 29 9 392 Heterorhabdus sp. 65 220 197 1543 Lucicutia sp. 111 134 77 440 Pleuromamma sp. 562 1148 308 6767 Pleuromamma 0 0 0 1046 borealis Oncaea conifera 9 19 26 297 Oncaea sp. 0 0 0 170 Oithona sp. 28 115 17 426 Pontellina sp. 0 19 0 19 Clausocalanus sp. 378 766 248 5796 Sapphirina sp. 18 19 120 258 Acrocalanus sp. 0 0 0 32 Paracalanus sp. 0 0 0 119 Euaetideus sp. 0 0 0 75 Euchirella sp. 55 96 43 982 Gaudius sp. 0 57 9 609 Scaphocalanus sp. 0 0 0 1035 Scolecithrix sp. 0 0 0 16 Cirripedia 0 0 0 4 Decapoda (larvae) 0 0 0 7 Emerita analoga 0 0 0 7 Medusae 5 0 0 16 Cunina peregrina 0 0 0 3 Obelia spp. 0 0 0 4 Rophalonema velatum 5 0 0 9 Siphonophorae 23 101 13 299 Abylopsis tetragona 9 5 0 39 Eudoxoides spiralis 0 0 0 2 Dimophyes arctica 0 0 0 11 Lensia conoidea 0 0 0 10 Lensia hotspur 0 0 0 4 Lensia leloupi 0 5 0 9 Lensia sp. 0 5 4 13 Praya sp. 0 0 0 32 Sphaeronectes 14 86 9 173 gracilis Sulculeolaria chuni 0 0 0 2 Sulculeolaria 0 0 0 4 quadrivalvis Ctenophora 9 5 9 39 Beroe cucumis 0 0 0 4 Pleurobrachia bachei 9 5 9 35 Chaetognatha 216 153 119 1557 Eukrohnia hamata 37 19 17 298 Sagitta decipiens 0 0 0 48 Sagitta enflata 101 67 77 579 Sagitta hexaptera 0 0 0 39 Sagitta minima 0 5 0 147 Sagitta tasmanica 0 0 4 46 Juvenil individuals 78 62 21 400 Salpida 18 53 17 816 Ihlea magalhanica 9 53 0 301 Pegea confoederata 9 0 17 515 Appendicularia 9 5 4 91 Polychaeta 23 48 9 255 Nemertina 0 5 0 5 Pisces (eggs 0 24 0 151 and larvae) Hygophum bruuni 0 19 0 31 Sardinops sagax 0 0 0 102 Myctophidae 0 5 0 18 Total 3525 6716 2843 52309 Percentage Species (%) Euphausiacea 1.29 Euphausia gibba Euphausia gibboides Euphausia mucronata Euphausia sp. Nematoscelis sp. Mysidacea 0.10 Amphipoda 1.29 Vibilia armata Acanthoscina acanthodes Platyscelus sp. Ostracoda 0.68 Copepoda 84.38 Acartia sp. Haloptilus longicornis Haloptilus spiniceps Haloptilus sp. Calanus sp. Canthocalanus pauper Nannocalanus sp. Candacia curta Candacia sp. Corycaeus sp. Eucalanus inermis Eucalanus sp. Rhincalanus sp. Euchaeta sp. Heterorhabdus sp. Lucicutia sp. Pleuromamma sp. Pleuromamma borealis Oncaea conifera Oncaea sp. Oithona sp. Pontellina sp. Clausocalanus sp. Sapphirina sp. Acrocalanus sp. Paracalanus sp. Euaetideus sp. Euchirella sp. Gaudius sp. Scaphocalanus sp. Scolecithrix sp. Cirripedia 0.20 Decapoda (larvae) 0.03 Emerita analoga Medusae 0.06 Cunina peregrina Obelia spp. Rophalonema velatum Siphonophorae 1.13 Abylopsis tetragona Eudoxoides spiralis Dimophyes arctica Lensia conoidea Lensia hotspur Lensia leloupi Lensia sp. Praya sp. Sphaeronectes gracilis Sulculeolaria chuni Sulculeolaria quadrivalvis Ctenophora 0.15 Beroe cucumis Pleurobrachia bachei Chaetognatha 5.89 Eukrohnia hamata Sagitta decipiens Sagitta enflata Sagitta hexaptera Sagitta minima Sagitta tasmanica Juvenil individuals Salpida 3.09 Ihlea magalhanica Pegea confoederata Appendicularia 0.34 Polychaeta 0.96 Nemertina 0.02 Pisces (eggs 0.57 and larvae) Hygophum bruuni Sardinops sagax Myctophidae Total 100.0 Table 3. Invertebrate species collected with dredging. Tabla 3. Especies de invertebrados recolectados con rastra. Phylum/Class/Order Number of Phylum/Class/Order samples Asteroidea 25 Ophiuroidea/Phynophiurida Decapoda (spp.) 5 Polychaeta/Terebellidae Gastropoda (spp.) 6 Porifera + Ophiuroidea + Polychaeta Echinoidea 38 Actiniaria + Polychaeta Porifera (spp.) 34 Ophiuroidea Gorgonia (spp.) 5 Porifera + Bryozoan + Polychaeta Zoanthidea (spp.) 16 Lophophorates/Bryozoan Holothuroidea 6 Bivalvia/Paleoheterodonta Echinoidea/ 142 Crustacea/Caridea Echinacea (spp.) Actiniaria 27 Anthozoa/Actiniaria Polychaeta (spp.) 55 Bivalvia (shell) (spp.) Echinoidea + 6 Porifera + Polychaeta Ophiuroidea Gorgonia/ 10 Ophioroida Phylum/Class/Order Number of samples Asteroidea 3 Decapoda (spp.) 12 Gastropoda (spp.) 1 Echinoidea 1 Porifera (spp.) 1 Gorgonia (spp.) 1 Zoanthidea (spp.) 1 Holothuroidea 1 Echinoidea/ 1 Echinacea (spp.) Actiniaria 3 Polychaeta (spp.) 6 Echinoidea + 3 Ophiuroidea Gorgonia/ Ophioroida Table 4. Name, mean latitude and longitude, and the estimated area, effort, and relative fishing effect index (FEI) of six seamounts where extractive activity was conducted between 2000 and 2006. Tabla 4. Nombre del monte, latitud y longitud media, area estimada, esfuerzo estimado e indice relativo de pesca (FEI) de seis montes donde se efectuo actividad extractiva durante 2000-2006. Seamount Latitude Longitude Area (S) (W) ([km.sup.2]) JF1 33[degrees]39.0' 78[degrees]26.4' 608 JF2 33[degrees]33.6' 77[degrees]41.4' 443 JF3 33[degrees]23.4' 77[degrees]25.2' 62 JF4 33[degrees]26.4' 76[degrees]52.8' 91 JF5 33[degrees]43.8' 79[degrees]37.2' 17 JF6 34[degrees]04.8' 80[degrees]15.6' s/i Seamount Effort FEI (km) ([km.sup.-1]) JF1 1.526 2.51 JF2 4.667 10.54 JF3 395 6.42 JF4 906 11.70 JF5 50 1.52 JF6 s/i s/i