Printer Friendly

SEROPREVALENCIA E INFLUENCIA DE LA EXPOSICION A LOS AGENTES CAUSANTES DE LA ENFERMEDAD REPRODUCTIVA BOVINA EN LA PRENEZ Y SUPERVIVENCIA DE LA CRIA DE WAPITI EN EL PREDESTETE (ARTIODACTYLA: CERVIDAE).

SEROPREVALENCE TO AND INFLUENCE OF EXPOSURE TO BOVINE REPRODUCTIVE DISEASE CAUSATIVE AGENTS ON PREGNANCY AND PREWEANING CALF SURVIVAL OF ELK (ARTIODACTYLA: CERVIDAE)

INTRODUCTION

Recent introductions of elk (Cervus elaphus Linnaeus 1758) in Mexico (e.g., McKinney & Villalobos, 2014) necessitate better understanding of elk-livestock disease interactions, both to increase likelihood of successful introductions and to minimize conflicts with Mexico's cattle industry. Productivity (i.e., production and survival of calves) of elk populations is declining in several areas of the USA (Noyes et al., 2002; Rearden, 2005; Piasecke, 2006). Disease is a potential contributing factor to decreased elk productivity, particularly where they are sympatric with cattle, but aside from malnutrition (Cook et al., 2004; Bender & Cook, 2005) and brucellosis (Cheville et al., 1998; Thorne, 2001) has received little evaluation. Elk are sympatric with cattle throughout most of their range, and are potential hosts for a variety of diseases that may affect elk and cattle (Thorne et al., 2002). Of these, the most important are diseases that affect the reproductive output of each species, as these have the greatest potential to impact recreational or economic returns from either population.

Several diseases can affect pregnancy, cause abortion, and influence calf survival in elk and cattle, particularly brucellosis, leptospirosis, infectious bovine rhinotracheitis (IBR), bovine viral diarrhea (BVD), and neosporosis (Thorne et al., 2002), and these diseases are included in most bovine abortion profiles (i.e., exposure assessments). Each of these can interfere with reproductive function, primarily by causing abortions (Kahrs, 1981; Van Campen et al., 2001; Thorne et al., 2002; Baszler, 2003; Cook et al., 2004), although some can also cause fetal malformation, stillbirth, and nonviable neonates, among many other manifestations (e.g., Van Campen et al., 2001). Through these impacts, these diseases can potentially compromise individual reproduction, and thus decrease reproductive output of the population. Even diseases that are usually rare in wild elk populations and that occur in only specific local areas, such as brucellosis and leptospirosis, can be a significant concern because of potential impacts to cattle (Bender & Hall, 1996; Thorne et al., 2002; Peel et al., 2010; Milian-Suazo et al., 2016). However, the cattle industry is advantaged in that vaccines are available for most reproductive diseases (Castro, 2001; Thorne, 2001; Leighton & Kuiken, 2001; Van Campen et al., 2001; Segura-Correa et al., 2016), although vaccines may always be effective (Xue et al., 2011). In contrast, vaccination of free-ranging wildlife is largely impossible, so shared diseases are likely to disproportionately affect elk. Increasing public demand for "natural" (i.e., unvaccinated) beef, however, is increasing the number of vaccine-free cattle operations worldwide.

Our goal was to test whether exposure as indicated by positive serology to causative agents of diseases associated with reproductive failure in cattle affected productivity of elk, specifically pregnancy and survival of calves to weaning. Positive serology indicates presence of antibodies to an agent, which includes previous exposure or past infection, not necessarily active infection (Calisher & Taylor, 1993). However, high seroprevalence or longitudinal persistence in positive serology can indicate disease presence (Calisher & Taylor, 1993; Bender et al., 2003), and thus serological surveys are commonly used to evaluate the potential presence of, and risk factors associated with, disease in populations (e.g., Bender et al., 2003; Milian-Suazo et al., 2016; Segura-Correa et al., 2016). Therefore, we assessed seroprevalence to causative agents of bovine reproductive diseases in multiple elk populations throughout the western USA. We compared serological prevalence with previously published data, and modeled exposure effects on pregnancy and preweaning calf survival of elk. We also identify disease risks for both elk and cattle associated with introductions or translocations of elk in Mexico.

MATERIALS AND METHODS

Study populations. Our study populations covered a variety of locations throughout the United States (Table 1). Chaco Culture National Historic Park (CC) is located in northwestern New Mexico (approximately 36[degrees] 00' N, 108[degrees] 00' W). This site is a desert grass and shrubland with scattered pinyon (Pinus edulis)-juniper (Juniperus spp.) woodlands. Fort Riley is a 403 [km.sup.2] military training facility located in the Flint Hills of northeastern Kansas (approximately 39[degrees] 06' N, 96[degrees] 48' W). The area is primarily rolling tallgrass prairie of big bluestem (Andropogon gerardii) and other tallgrass natives with scattered wooded areas along riparian corridors and lowlands, interspersed with agricultural fields and wildlife plantings.

Rocky Mountain National Park (RMNP) covers 1,076 [km.sup.2] in the Rocky Mountain Front Range of northcentral Colorado (approximately 40[degrees] 23' N, 105[degrees] 38' W). The site consists primarily of montane forest interspersed with grassland, shrublands, and open tundra occur at higher elevations. Lincoln National Forest (LNF) is located in the Sacramento Mountains of southcentral New Mexico (approximately 32[degrees] 51' N, 105[degrees] 44' W). This study area was primarily semiarid woodland and montane forest interspersed with small grassy meadows at high elevations. The Forks study site was located in the coastal hills of western Washington state (approximately 47[degrees] 54' N, 124[degrees] 35' W). Land-use in this area is primarily industrial tree farms of Douglas-fir (Pseudotsuga menziesii) and western hemlock (Tsuga heterophylla). The Valles Caldera National Preserve was located in the Jemez Mountains of northcentral New Mexico (approximately 35[degrees] 55' N, 106[degrees] 31' W). This study area consists of high elevation mesic montane grasslands and mixed conifer forest.

Capture. We captured cow elk [greater than or equal to] 1.5 years old in autumn (November) and late-winter (March-April). Elk were darted from a Bell 206B Jet Ranger helicopter (or from vehicles along roads in RMNP) using carfentanil citrate and xylazine hydrochloride (3.6 mg carfentanil + 100 mg xylazine/elk) as sedatives, and blindfolded to reduce stress and prevent eye injury (Kreeger, 1996; Bender, 2015). We also treated each elk with penicillin, vitamin E/selenium, vitamin B, and an 8-way Clostridium bacterin to reduce physiological stress and trauma of capture. Captured elk were aged to yearling or adult using presence or absence of deciduous teeth (Quimby & Gaab, 1957). Immobilants were antagonized with 300 mg naltrexone (half intravenous and half subcutaneous) and 800 mg tolazoline (delivered intravenously) (Kreeger, 1996; Bender, 2015).

Disease screening. We obtained whole blood samples for the bovine abortion profile and pregnancy testing from immobilized elk through jugular venal puncture. Whole blood samples were transferred to serology tubes, which were spun (4,500 rpm; 8-10 min) to separate serum shortly after collection. Serum samples were then frozen until analysis.

We determined pregnancy status from pregnancy-specific placental protein B (PSPB) (BioTracking, Moscow, Idaho, USA). Elk from which autumn PSPB results were uncertain were corroborated using serum progesterone (Colorado State University Endocrinology Lab, Fort Collins, Colorado, USA). Progesterone levels of [greater than or equal to] 1.0 ng/ml and [less than or equal to] 93% binding of elk antiserum to PSPB (Noyes et al., 1997; Bender et al., 2002) indicated pregnancy. We determined lactation status for cows by checking the udder for milk, which indicated survival of a calf to within [less than or equal to] 3-11 days (Bender et al., 2002). We could not determine lactation status from spring captures because most calves are weaned by this time (Johnson, 1951).

A bovine abortion profile was performed on serum samples from individual elk to detect exposure to causative agents of profiled diseases (New Mexico Department of Agriculture Veterinary Diagnostic Laboratory, Albuquerque, New Mexico, USA; Washington Animal Disease Diagnostic Lab, Pullman, Washington, USA). Serology included the card test for brucellosis (Brucella abortus; Alton et al., 1988), virus neutralization for BVD (bovine viral diarrhea virus [BVDV]) and IBR (bovine herpesvirus 1 [BHV-1] (Carbrey et al. 1971), the microscopic agglutination test for leptospirosis (including Leptospira interrogans serovars pomona, hardjo, grippo-typhosa, ictero-hemorrhagiae, bratislava, canicola) (Gouchenour et al., 1958), and an enzyme-linked immunosorbent assay (ELISA) for neosporosis (Neospora caninum; Shares et al., 2001). Serology was considered negative at <1:4 for BVDV and BHV-1, <1:100 for Leptospira serovars, no agglutination for B. abortus, and ELISA values <30% for N. caninum.

Data analysis. We compared seroprevalence to causative agents among populations using Fisher's exact tests (Zar, 1996). We used hierarchical logistic regression to model the dichotomous outcomes of pregnancy and lactation (i.e., pregnant/not pregnant, lactating/not lactating) at the individual level as a function of population and whether each cow elk was exposed to a particular agent or not (Hosmer & Lemeshow, 1989; Kuss, 2004). If the serological result from either autumn or spring during pregnancy was positive, we classed these as positive exposure for pregnancy modeling. For lactation modeling, we used only serological results from the autumn after the calf was born, i.e., when the cow was lactating. For analyses of lactation, we excluded yearling elk because they are never lactating (Raedeke et al., 2002).

RESULTS

Among populations, we tested 177-194 cow elk for pregnancy and exposure to disease causative agents, and 107-122 cow elk for lactation status and exposure to causative agents. Seroprevalence to causative agents varied among populations (Fisher's exact P < 0.01) with the exception of B. abortus, for which we did not detect exposure in any population (Table 2).

Pregnancy averaged 0.84 (SE = 0.04; range 0.73-0.96) and lactation averaged 0.50 (SE = 0.06; range = 0.40-0.67) among populations. Pregnancy varied by population in all contrasts (P < 0.016) but not by exposure to any agent (P > 0.213) (Table 3). Proportion of cow elk lactating in autumn did not vary among populations (P > 0.247) nor by exposure to any agent (P > 0.281) (Table 3). One cow that was definitively pregnant when tested in autumn was found to be not pregnant when subsequently recaptured and retested again in late winter. She was negative for all screened causative agents.

DISCUSSION

The primary risk factors associated with transmission of most bovine reproductive diseases among elk include high elk densities and co-occurrence of elk and cattle (Thorne, 2001; Thorne et al., 2002). Seroprevalence of screened agents in our populations was reflective of the range of exposure seen in elk throughout North America (Table 2), highlighting the potential for exposure of elk to reproductive diseases of cattle (and vice versa) wherever elk and cattle co-occur. Despite high seroprevalence to certain agents, however, exposure was not related to pregnancy or preweaning calf survival in our study populations (Table 3), even though several of these populations showed relatively low pregnancy rates and calf survival (Table 1; Piasecke, 2006). Although our index of calf survival (lactation status) assessed only preweaning survival (Bender et al., 2002) and not survival of a calf to recruitment, once a calf has survived to weaning it has passed the peak of juvenile mortality and will most likely survive to reproductive age (Guinness et al., 1978; Taber et al., 1982; Clutton-Brock et al., 1988). These results, as well as the negative exposure result for the 1 cow that lost its fetus, indicates that past or current exposure to common reproductive diseases of cattle likely has negligible effects on population productivity of elk. The exception to this is brucellosis, which can cause significant declines in elk productivity where endemic in North America (Cheville et al., 1998; Thorne, 2001).

Exposure to cattle reproductive disease causative agents is relatively widespread in Mexico, both in dairy (Milian-Suazo et al., 2016) and beef (Segura-Correa et al., 2016) cattle. For example, Milian-Suazo et al. (2016) recently surveyed multiple dairy operations throughout Mexico and found seroprevalence of 4-15% (depending upon test used), 37%, 79%, and 73% to agents for brucellosis, neosporosis, BVD, and IBR, respectively. Segura-Correa et al. (2016) also recently surveyed beef operations in Tamaulipas and found seroprevalence of 48% and 68% for agents of BVD and IBR, respectively. Certain risk factors for exposure were common to both studies, and included herd size and introduction of new cattle to the herd. High seroprevalence in elk to several of these disease causative agents suggests that introduction or co-occurrence of elk may be an additional risk factor for unvaccinated herds in Mexico.

For example, IBR was the only disease for which the causative agent (BHV-1) showed exposure in all elk populations (Table 2). While potentially affecting a variety of systems in cattle, IBR is primarily of concern because of the potential to cause abortions regardless of the severity of disease or whether the disease is present in respiratory or ocular form (Fraser & Mays, 1986). Because wild ruminants frequently do not display clinical signs of IBR infection, the disease is primarily considered a concern only for sympatric cattle (Castro, 2001). Our data supports this conclusion; despite a wide range of exposure (4-43%), hierarchical logistical analysis indicated that probability of pregnancy and calf survival to weaning were both unrelated to exposure to BHV-1. However, because exposure to BHV-1 was seen in all tested elk populations, it has the highest likelihood of the agents we surveyed of being present in elk and potentially transferred to cattle. While seroprevalence to BHV-1 is high and widespread in cattle in Mexico (Milian-Suazo et al., 2016, Segura-Correa et al., 2016), it appears less common in areas near the central and western USA border (Milian-Suazo et al., 2016) where introductions of elk are most likely.

Similarly, reproductive diseases can be transmitted to elk from cattle. Of greatest concern in Mexico would be brucellosis, as it is widely distributed in Mexico (Peel et al., 2010; Milian-Suazo et al., 2016), has demonstrated negative impacts on elk productivity, and once infected elk can serve as a reservoir for the disease, increasing the difficulty of erradication programs (Cheville et al., 1998; Thorne, 2001). Presence of brucellosis in cattle thus can compromise the success of elk introductions or translocations. Similarly, elk that are translocated from areas where brucellosis is endemic in Mexico to areas that are free of brucellosis should be tested for the presence of B. abortus, and translocations should not proceed if brucellosis is present in elk. Such movements may complicate ongoing efforts to eradicate brucellosis in Mexico (Milian-Suazo et al., 2016).

Last, as previously noted, positive serology indicates antibody presence and thus exposure to a disease causative agent, not necessarily active infection (Calisher & Taylor, 1993). Consequently, the lack of effect of screened bovine reproductive diseases on elk productivity that we observed may have been due to past exposure or past infection, and not current infection. However, longitudinal persistence in positive serology is indicative of disease presence (Calisher & Taylor, 1993; Bender et al., 2003), and several of our study populations (i.e., CC, LNF) have shown long-term persistence of positive serology. Moreover, high seroprevalence where vaccination is not present suggests that the actual prevalence of the disease is high (Milian-Suazo et al., 2016). For example, Morales et al. (2001) found that cattle herds in Mexico with higher seroprevalence for neosporosis had a greater number of abortions; seroprevalence was 72% for herds with >13% abortions, but 36% for herds with <12% abortions. Thus, while a lack of observed effect of exposure to bovine reproductive diseases may have been due to lack of active infection, high longitudinal seroprevalence in many populations suggests that it is likely that the causative agents in the bovine abortion screen did not impact pregnancy or calf survival in free-ranging elk. Again, the exception to this would be brucellosis, which was not present in our study populations as it is endemic only to the greater Yellowstone area in North America (Cheville et al., 1998).

DOI: https://doi.org/10.21829/azm.2018.3411178

ACKNOWLEDGEMENTS. We thank the U.S. Department of Defense-Ft. Riley, U.S. Forest Service-Lincoln National Forest and Valles Caldera National Preserve, U.S. National Park service-Chaco Culture National Historical Park and Rocky Mountain National Park, Washington Department of Fish and Wildlife, New Mexico Department of Game and Fish, U.S. Geological Survey, and the Quileute Nation for funding this project. The New Mexico State University, Agricultural Experiment Station and Cooperative Extension Service provided additional financial support. All activities were in compliance with NMSU IACUC # 2001-205, 2002-027, 2003-023, and 2009-205.

LITERATURE CITED

Adrian, W. J. & Keiss, R. E. (1977) Survey of Colorado's wild ruminants for serologic titers to brucellosis and leptospirosis. Journal of Wildlife Diseases, 13, 429-431.

Alton, G. G., Jones, L. M.., Angus, R. D. & Verger, J. M. (1988) Techniques for the brucellosis laboratory. Institut National de la Recherche Agronomic, Paris, France, 190 pp.

Barber-Meyer, S. M., White, P. J. & Mech, L. D. (2007) Survey of selected pathogens and blood parameters of northern Yellowstone elk: wolf sanitation effect implications. American Midland Naturalist, 158, 369- 381.

Baszler, T. (2003) Bovine neosporosis. Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, Washington (http://www.vetmed.wsu.edu/depts_waddl/Neosporosis. asp).

Bender, L. C. (2015) Does body condition affect immediate post-capture survival of ungulates? Human-Wildlife Interactions, 9,191-197.

Bender, L. C. & Hall, P. B. (1996) Leptospira interrogans exposure in free-ranging elk in Washington. Journal of Wildlife Diseases, 32, 121-124.

Bender, L. C., Carlson, E., Schmitt, S. M. & Haufler, J. B. (2002) Production and survival of elk (Cervus elaphus) calves in Michigan. American Midland Naturalist, 148, 163-171.

Bender, L. C., Li, H., Thompson, B., Morrow, P. & Valdez, R. (2003) Infectious disease survey of gemsbok in New Mexico. Journal of Wildlife Diseases, 39, 772-778.

Bender, L. C. & Cook, J. G. (2005) Nutritional condition of elk in Rocky Mountain National Park. Western North American Naturalist, 65, 329-334.

Calisher, C. H. & Taylor, D. E. (1993) Serologic evidence that bluetongue, epizootic hemorrhagic disease, and Malpais Springs viruses are persistently transmitted to wild and feral deer, oryx, and pronghorn in central New Mexico. Pp. 223-226. In: M. F. Ureh, & B. H. Kay (Eds.). Arbovirus research in Australia: Proceedings sixth symposium. Q.I.M.R., Brisbane, Australia.

Canadian Wildlife Service. (1966) Parasites and diseases of Cervidae. Canadian Wildlife Service, Ottawa, Canada.

Carbrey, E. A., Brown, N. L., Chow, T. L., Kahrs, R. F., McKercher, D. G., Smithies, L. K. & Tamoglia, T. W. (1971) Recommended standard laboratory techniques for diagnosing infectious bovine rhinotracheitis, bovine viral diarrhea and shipping fever (parainfluenza-3). Proceedings of the United States Animal Health Association, 75, 629-648.

Castro, A. E. (2001) Other herpesviruses. Pp. 175-178. In: E. S. Williams & I.K. Barker (Eds.). Infectious Diseases of Wild Mammals. Iowa State University Press, Ames, USA.

Cheville, N. F., McCullough, D. R. & Paulson, L. R. (1998) Brucellosis in the greater Yellowstone area. National Academy Press, Washington D. C., USA.

Clutton-Brock, T. H., Albon, S. D. & Guinness, F. E. (1988) Reproductive success in male and female red deer. Pp. 325-343. In: T. H. Clutton-Brock (Ed.). Reproductive success: studies of individual variation in contrasting breeding systems. University of Chicago Press, Chicago.

Cook, W. E., Williams, E. S. & Dubay, S. A. (2004) Disappearance of bovine fetuses in northwestern Wyoming. Wildlife Society Bulletin, 32, 254-259.

Cook, J. G., Johnson, B. K., Cook, R. C., Riggs, R. A., Delcurto, T., Bryant, L. D. & Irwin, L. L. (2004). Effects of summer-autumn nutrition and parturition date on reproduction and survival of elk. Wildlife Monographs No. 155.

Corn, J. L., Cartwright, M. E., Alexy, K. J., Cornish, T.E., Manning, J. B., Cartoceti, A. N. & Fischer, J. R. (2010) Surveys for disease agents in introduced elk in Arkansas and Kentucky. Journal of Wildlife Diseases, 46, 186-194.

Cover, M. A., Hygnstrom, S. E., Groepper, S. R., Oates, D. W., Hams, K. M. & VerCauteren, K. C. (2011) Surveillance of selected diseases in free-ranging elk (Cervus elaphus nelson) in Nebraska, 1995-2009. Great Plains Research, 21, 145-151.

Denney, R. N. (1965) Study of diseases and parasites (elk-deer). Job Completion Report, Federal Aid in Wildlife Restoration Project W-38-2-18, Colorado Department of Game, Fish, and Parks, Denver.

Etter, R. P. & Drew, M. L. (2006). Brucellosis in elk of eastern Idaho. Journal of Wildlife Diseases, 42, 271-278.

Ferrari, M. J. & Garrott, R. A. (2002) Bison and elk: brucellosis seroprevalence on a shared winter range. Journal of Wildlife Management, 66, 1246-1254.

Fraser, C. M. & Mays, A. (1986) The Merck veterinary manual. Sixth edition. Merck & Company, Rahway, New Jersey.

Gouchenour, W. S., Gleiser, C. A. & Ward, N. K. (1958) Laboratory diagnosis of leptospirosis. Annals of the New York Academy of Sciences, 70, 421-426.

Guinness, F. E., Clutton-Brock, T. H. & Albon, S. D. (1978) Factors affecting calf mortality in red deer (Cervus elaphus). Journal of Animal Ecology, 47, 817-832.

Johnson, D. E. (1951) Biology of the elk calf, Cervus canadensis nelson. Journal of Wildlife Management, 15, 396-410.

Hein, R. G., Musser, J. L. & Bracken, E. F. (1991) Serologic, parasitic, and pregnancy survey of the Colockum elk herd in Washington. Northwest Science, 65, 217-222.

Hosmer, D. W. & Lemeshow, S. (1989) Applied logistic regression. John Wiley and Sons, New York.

Kahrs, R. F. (1981) Viral diseases of cattle. Iowa State University Press, Ames.

Kingscote, B. F., Yates, W. D. G. & Tiffin, G. B. (1987) Diseases of wapiti utilizing cattle range in southwestern Alberta. Journal of Wildlife Diseases, 23, 86-91.

Kreeger, T. J. (1996) Handbook of wildlife chemical immobilization. Wildlife Pharmaceuticals, Ft. Collins, Colorado.

Kuss, O. (2004) How to use SAS for logistic regression with correlated data. Paper 261-27, SAS Users Group International, Cary, North Carolina.

Leighton, F. L. & Kuiken, T. (2001) Leptospirosis. Pp. 498-502. In: E. S. Williams & Barker, I. K. (Eds.). Infectious Diseases of Wild Mammals. Iowa State University Press, Ames.

McKinney, B. R. & Villalobos, J. D. (2014) Overview of El Carmen Project, Maderas del Carmen, Coahuila, Mexico. Pp. 37-45. In: C. A. Hoyt & J. Karges (Eds.). Proceedings of the Sixth Symposium on the Natural Resources of the Chihuahuan Desert Region. Chihuahuan Desert Research Institute, Fort Davis, Texas.

Merrell, C. L. & Wright, D. N. (1978) A serologic survey of mule deer and elk in Utah. Journal of Wildlife Diseases, 14, 471-478.

Milian-Suazo, F., Hernandez-Ortiz, R., Hernandez-Andrade, L., Alvarado-Islas, A., Diaz-Aparicio, E., Mejia-Estrada, F., Palomares-Resendiz, E. G., Barcenas Reyes, I. & Zendejas-Martinez, H. (2016) Seroprevalence and risk factors for reproductive diseases in dairy cattle in Mexico. Journal of Veterinary Medicine and Animal Health, 8, 89-98.

Morales E, Trigo, T. F., Ibarra, F., Puente, C. E. & Santacruz, M. (2001) Seroprevalence study of bovine neosporosis in Mexico. Journal of Veterinary Diagnostic Investigation, 13, 413-415.

Noyes, J. H., Sasser, R. G., Johnson, B. K., Bryant, L. D. & Alexander, B. (1997) Accuracy of pregnancy detection by serum protein (PSPB) in elk. Wildlife Society Bulletin, 25, 695-698.

Noyes, J. H., Johnson, B. K., Dick, B. L. & Kie, J. G. (2002) Effects of male age and female nutritional condition on elk reproduction. Journal of Wildlife Management, 66, 1301-1307.

Peel, D. S., Johnson, R. J. & Matthews, K. H., Jr. (2010) Cow-calf beef production in Mexico. United States Department of Agriculture Economic Research Service Report LDP-M-196-01.

Piasecke, J. R. (2006) Relationships among condition, health, and reproduction in free-ranging elk (Cervus elaphus) populations throughout the United States. M.S. Thesis, New Mexico State University, Las Cruces.

Proffitt, K. M., Anderson, N., Lukacs, P., Riordan, M. A., Gude, J. A. & Shamhart, J. (2015) Effects of elk density on elk aggregation patterns and exposure to brucellosis. Journal of Wildlife Management, 79, 373-383.

Pruvot, M., Kutz, S., van der Meer, F., Musiani, M., Barkema, H. W. & Orsel, K. (2014). Pathogens at the livestock-wildlife interface in western Alberta: does transmission route matter? Veterinary Research, 45, 18.

Quimby, D. C. & Gaab, J. E. (1957) Mandibular dentition as an age indicator in Rocky Mountain elk. Journal of Wildlife Management, 21, 435-451.

Raedeke, K. J., Millspaugh, J. J. & Clark, P. E. (2002) Population characteristics. Pp. 449-491. In: D. E. Toweill & Thomas, J. W. (Eds.). North American elk: ecology and management. Smithsonian Institution Press, Washington, D.C.

Rearden, S. (2005) Elk calf survival in northeastern Oregon: preliminary results. Northwestern Naturalist, 86, 113.

Schares, G., Wenzel, U., Muller, T., Coranths, F. J. & Mueller, T. (2001) Serological evidence for naturally occurring transmission of Neospora caninum among foxes (Vulpes vulpes). International Journal for Parasitology, 31, 418-423.

Segura-Correa, J. C., Zapata-Campos, C. C., Jasso-Obregon, J. O., Martinez-Burnes, J & Lopez-Zavala, R. (2016) Seroprevalence and risk factors associated with bovine herpesvirus 1 and bovine viral diarrhea virus in North-Eastern Mexico. Open Veterinary Journal, 6, 143-149.

Taber, R. D., Raedeke, K. & McCaughran, D. A. (1982) Population characteristics. Pp. 279-298. In: J. W. Thomas & Toweill, D. E. (Eds.). Elk of North America: ecology and management. Stackpole Books, Harrisburg, Pennsylvania.

Thorne, E. T. (2001). Brucellosis. Pp. 372-395. In: E. S. Williams & Barker, I. K. (Eds.). Infectious Diseases of Wild Mammals. Iowa State University Press, Ames.

Thorne, E. T., Williams, E. S., Samuel, W. M. & Kistner, T. P. (2002) Diseases and parasites. Pp.351-387. In: D. E. Toweill, Thomas, J. W. (Eds.). North American elk: ecology and management. Smithsonian Institution Press, Washington, D.C.

Trainer, C. E. (1971) The relationship of physical condition and fertility of female Roosevelt elk (Cervus elaphus roosevelti) in Oregon. M.S. Thesis, Oregon State University, Corvallis.

Van Campen, H., Frolich, K. & Hofmann, M. (2001) Pestivirus infections. Pp. 232-244. In: E. S. Williams, & Barker, I. K (Eds.). Infectious Diseases of Wild Mammals. Iowa State University Press, Ames.

Vaughn, H. W., Knight, R. R. & Frank, F. W. (1973) A study of reproduction, disease and physiological blood and serum values in Idaho elk. Journal of Wildlife Diseases, 9, 296-301.

Weber, Y. B. (1973) Aspects of physiology and diseases of the North American elk. Ph.D. Dissertation, Portland State University, Portland, Oregon.

Weber, B. J., Wolfe, M. L. & White, G. C. (1982) Use of serum progesterone levels to detect pregnancy in elk. Journal of Wildlife Management, 46, 835-838.

Wolfe, G., Kocan, A. A., Thedford, T. R. & Barron, S. J. (1982) Hematologic and serum chemical values of adult female Rocky Mountain elk from New Mexico and Oklahoma. Journal of Wildlife Diseases, 18, 223-227.

Xue, W., Mattick, D. & Smith, L. (2011) Protection from persistent infection with a bovine viral diarrhea virus (BVDV) type 1b strain by a modified-live vaccine containing BVDV types 1a and 2, infectious bovine rhinotracheitis virus, parainfluenza 3 virus and bovine respiratory syncytial virus. Vaccine, 29, 4657-4662.

Zar, J. H. (1996) Biostatistical analysis. Third edition. Prentice Hall, Upper Saddle River, New Jersey.

Louis C. BENDER (1) and Octavio C. ROSAS-ROSAS (2,*)

(1) Extension Animal Sciences and Natural Resources, New Mexico State University, Las Cruces, New Mexico, U.S.A.

(2) Colegio de Postgraduados-Campus San Luis Potosi. Iturbide #73. Salinas de Hidalgo, S.L.P. 78621. Mexico.

* Corresponding author: <octaviocrr@colpos.mx>

Recibido: 28/02/2017; aceptado: 16/11/2017; publicado en linea: 16/03/2018

Editor responsable: Sonia Gallina
Table 1. Mean high temperature in July ([degrees]C; July high), mean
January low temperature ([degrees]C; Jan low), mean annual
precipitation (cm; Precip), elk population density (elk/[km.sup.2]),
proportion pregnant (Pregnant), proportion lactating (Lactation), and
number of population-years for each study population of elk.

                                                   Elk/
Population (1)   July high   Jan low   Precip   [km.sup.2]

CC                 32.2       -10.6      23        0.10
Ft. Riley          32.2       -9.4       87        2.7
RMNP (1)           26.1       -7.8       35        1.3
LNF                21.7       -8.3       67        0.7
Forks              22.4        1.8      304        4.0
VC                 31.6       -6.9      605       > 6.9

Population (1)   Pregnancy   Lactation   Pop-years

CC                 0.73        0.43          3
Ft. Riley          0.96        0.67          2
RMNP (1)           0.77         --           1
LNF                0.94        0.50          3
Forks              0.76        0.40          1
VC                 0.91         --           1

(1) CC = Chaco Culture National Historic Park; RMNP = Rocky Mountain
National Park; LNF = Lincoln National Forest; VC = Valles Caldera
National Preserve.

Table 2. Results from various studies, showing proportion of elk
testing positive for exposure to various disease processes, sample
sizes, location of study, and reference.

                Proportion
Disease (1)     Positive     N         Location (2)

Brucella        0.00-0.37    1-909     Greater
                                       Yellowstone
                                       Area
                0.00         28-2338   Colorado
                0.00         57        Idaho
                0.06         47        Utah
                0.00         403       Nebraska
                0.00         170       Arkansas
                0.00         54        Idaho
                0.00         52        New Mexico (CC)
                0.00         47        New Mexico (LNF)
                0.00         45        Washington
                0.00         31        Kentucky
                0.00         30        Colorado (RMNP)
                0.00         26        Ft. Riley
                0.00         23        Alberta
                0.00         22        VCNM
BVD             0.52         23        Alberta
                0.22         22        New Mexico (VC)
                0.05         346       Nebraska
                0.04         170       Arkansas
                0.04         25        New Mexico
                0.02         47        New Mexico (LNF)
                0.02         45        Washington
                0.00         52        New Mexico (CC)
                0.00         50        Idaho
                0.00         31        Kentucky
                0.00         30        Colorado (RMNP)
                0.00         26        Kansas (Ft. Riley)
IBR             0.45         22        Alberta
                0.43         30        Colorado (RMNP)
                0.38         45        Washington
                0.30         47        New Mexico (LNF)
                0.23         22        New Mexico (VC)
                0.19         31        Kentucky
                0.13         52        New Mexico (CC)
                0.04         170       Arkansas
                0.04         26        Kansas (Ft. Riley)
                0.00         50        Idaho
Leptospirosis   0.82         11        Washington
                0.38         24        Alberta
                0.34         38        Oregon
                0.29         17        Washington (Forks)
                < 0.26       31        Kentucky
                < 10         170       Arkansas
                0.10         30        Colorado (RMNP)
                0.09         22        New Mexico (VC)
                0.07         289       Nebraska
                0.00         331       Canada
                0.00         163       Colorado
                0.00         109       Oregon
                0.00         52        New Mexico (CC)
                0.00         39-50     Idaho
                0.00         47        New Mexico (LNF)
                0.00         45        Washington
                0.00         26        Ft. Riley
Neospora spp.   0.00-0.20    8-71      Alberta
                0.15         47        New Mexico (LNF)
                0.12         26        Kansas (Ft. Riley)
                0.05         22        New Mexico (VC)
                0.00         52        New Mexico (CC)
                0.00         30        Colorado (RMNP)

                Proportion
Disease (1)     Positive     Source

Brucella        0.00-0.37    Ferrari & Garrott, 2002
                             Etter & Drew, 2006
                             Barber-Meyer et al., 2007
                             Proffitt et al., 2015
                0.00         Adrian & Keiss, 1977
                0.00         Ferrari & Garrott, 2002
                0.06         Merrell & Wright, 1978
                0.00         Cover et al., 2011
                0.00         Corn et al., 2010
                0.00         Vaughn et al., 1973
                0.00         This study
                0.00         This study
                0.00         Hein et al., 1991
                0.00         Corn et al., 2010
                0.00         This study
                0.00         This study
                0.00         Kingscote et al., 1987
                0.00         This study
BVD             0.52         Kingscote et al, 1987
                0.22         This study
                0.05         Cover et al., 2011
                0.04         Corn et al., 2010
                0.04         Wolfe et al, 1982
                0.02         This study
                0.02         Hein et al., 1991
                0.00         This study
                0.00         Vaughn et al., 1973
                0.00         Corn et al, 2010
                0.00         This study
                0.00         This study
IBR             0.45         Kingscote et al, 1987
                0.43         This study
                0.38         Hein et al., 1991
                0.30         This study
                0.23         This study
                0.19         Corn et al., 2010
                0.13         This study
                0.04         Corn et al., 2010
                0.04         This study
                0.00         Vaughn et al., 1973
Leptospirosis   0.82         Bender & Hall, 1996
                0.38         Kingscote et al, 1987
                0.34         Weber, 1973
                0.29         This study
                < 0.26       Corn et al, 2010
                < 10         Corn et al, 2010
                0.10         This study
                0.09         This study
                0.07         Cover et al., 2011
                0.00         Canadian Wildlife Service, 1966
                0.00         Denney, 1965
                0.00         Trainer, 1971
                0.00         This study
                0.00         Vaughn et al, 1973
                0.00         This study
                0.00         Hein et al., 1991
                0.00         This study
Neospora spp.   0.00-0.20    Pruvot et al., 2014
                0.15         This study
                0.12         This study
                0.05         This study
                0.00         This study
                0.00         This study

(1) BVD = bovine viral diarrhea; IBR = infectious bovine
rhinotracheitis.

(2) GYA = greater Yellowstone area; CC = Chaco Culture National
Historic Park, New Mexico; LNF = Lincoln National Forest,
New Mexico; VC = Valles Caldera National Preserve, New Mexico.

Table 3. Results of hierarchical logistic regression modeling of
probability of pregnancy and lactation in elk lactation as related to
population and exposure to bovine reproductive diseases, including
results of likelihood ratio [chi square] test and odds ratio and 95% CI
of odds ratio associated with successful pregnancy or successfully
raising a calf to weaning if exposed to disease.

                                      Population

Test            Disease (1)    [chi square]     P     N

Pregnancy        Neospora          10.9       0.028   4
                    IBR            11.7       0.020   4
                    BVD            12.2       0.016   4
               Leptospirosis       11.1       0.050   5
* Lactation      Neospora          4.1        0.247   3
                    IBR            3.4        0.330   3
                    BVD            3.3        0.343   3
               Leptospirosis       3.8        0.431   4

                                        Exposure

Test            Disease (1)    [chi square]     P     Odds

Pregnancy        Neospora          0.7        0.409   0.4
                    IBR            1.2        0.268   4.9
                    BVD            1.6        0.213   0.5
               Leptospirosis       0.7        0.408   0.5
* Lactation      Neospora          0.03       0.872   1.2
                    IBR            0.08       0.784   1.2
                    BVD           <0.01       0.987   10.0
               Leptospirosis       1.2        0.281   0.3

Test            Disease (1)     95% CI     n

Pregnancy        Neospora      0.04-3.8   177
                    IBR        0.8-21.8   177
                    BVD        0.1-2.9    177
               Leptospirosis   0.1-2.5    194
* Lactation      Neospora      0.2-7.9    107
                    IBR        0.4-3.6    107
                    BVD         0.1-99    107
               Leptospirosis   0.02-3.1   122

(1) BVD = bovine viral diarrhea; IBR = infectious bovine
rhinotracheitis; Leptospirosis includes Leptospira pomona,
L. hardjo, L. grippo-typhosa, L. ictero-hemorrhagiae,
L. bratislava, and L. canicola).
COPYRIGHT 2018 Instituto de Ecologia, A.C.
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2018 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Articulo original
Author:Bender, Louis C.; Rosas-Rosas, Octavio C.
Publication:Acta Zoologica Mexicana (nueva serie)
Date:Jan 1, 2018
Words:5488
Previous Article:ESTUDIO MORFOLOGICO DE ALEUROPLEUROCELUS ABNORMIS (QUAINTANCE) (HEMIPTERA: ALEYRODIDAE) Y NUEVOS REGISTROS DE ESPECIES DEL GENERO PARA MEXICO.
Next Article:AVIFAUNA DE LOS PUEBLOS SANTOS DE LA SIERRA MADRE DEL SUR DE GUERRERO: ANALISIS DE LA RIQUEZA Y RECAMBIO TAXONOMICO ENTRE TIPOS DE VEGETACION.
Topics:

Terms of use | Privacy policy | Copyright © 2022 Farlex, Inc. | Feedback | For webmasters |