Printer Friendly

SEISMIC: "Slip and Earthquake Nucleation in Experimental and Numerical Simulations: a Multi-scale, Integrated and Coupled Approach".

EU contribution: EUR 1 499 600

Objective: "Earthquakes represent one of the deadliest and costliest natural disasters affecting our planet and one of the hardest to predict. To improve seismic hazard evaluation in earthquake-prone regions, an understanding of earthquake nucleation and of the underlying microphysical and chemical processes is crucial. A better understanding of the processes that control earthquake nucleation is also of rapidly growing importance for mitigation of induced seismicity, caused by activities such as gas and oil production, and geological storage of CO2 or gas. The SEISMIC project is a multi-scale study aimed at understanding the parameters that control slip (in)stability in experiments and models addressing earthquake nucleation. A central question to be tackled is what controls the velocity-dependence of fault friction and hence the potential for accelerating, seismogenic slip, and on what length scales the processes operate. A novel acoustic imaging technique will be developed and applied in experiments to obtain direct information on the internal microstructural evolution of fault slip zones during deformation, and on how this evolution leads to unstable slip. The SEISMIC project will link experiments with sophisticated numerical models of grain-scale frictional processes. Using both experiments and grain scale modelling, the SEISMIC project will in turn directly test boundary element models for large scale fault slip. The coupling of experiments with grain-scale numerical models, based on in-situ imaging, will provide the first, integrated, multiscale physical basis for extrapolation and upscaling of lab friction parameters to natural conditions. Ultimately, the SEISMIC project will test and validate the resulting models for fault slip by simulating and comparing patterns of seismicity for two natural-laboratory cases: a) for the l Aquila region of Central Italy, and b) for a reservoir-scale case study involving induced seismicity in the Netherlands."

Project completion date : 2018-08-31 12:00:00

Major organization : UNIVERSITEIT UTRECHT

Address : Heidelberglaan 8

UTRECHT,

Country :Netherlands

Url : http://www.uu.nl/

Financier : European Union (EU),

Financier address : European Union (EU)

Rue de la Loi 200/Wetstraat 200,

B-1049 Bruxelles/Brussels,

Belgium

Tel: 32-2-2999696, 2993085

Fax: 32-2-2961749

Url: ec.europa.eu/

2015 Al Bawaba (Albawaba.com) Provided by SyndiGate Media Inc. ( Syndigate.info ).

COPYRIGHT 2015 SyndiGate Media Inc.
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2015 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Publication:Mena Report
Date:Jul 11, 2015
Words:355
Previous Article:Decheng Fund II.
Next Article:AGORA: ATMP GMP Open Access Research Alliance - AGORA.
Topics:

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters