Printer Friendly

Role of different Pfcrt and Pfmdr-1 mutations in conferring resistance to antimalaria drugs in Plasmodium falciparum.

1. Resistance to Antimalaria Drugs

Emergence of resistant strains of Plasmodium falciparum to the well-known conventional antimalarials has worsened the calamity of malaria scourge. Resistance to chloroquine (CQ) is the most catastrophic factor as it is still the cheapest and safest among all other antimalaria drugs [1, 2]. It was originated in 6 different foci in the world distributed among Africa, South-east Asia, and Latin America [3].

Development of drugs resistance relies entirely on the array of biological and atmospheric factors and the drug pressure that each strain had experienced during its evolution [4]. For instance, it took decades to develop resistant strains to CQ while resistance to the electron transport inhibitor, atovaquone, may emerge in tandem with its clinical use [5,6]. The former requires several mutations in the transporter protein [7] whilst only one point mutation is sufficient to confer the latter [8, 9].

Fixed dose combination strategy was adopted by WHO to overwhelm spread of resistance [1]. For instance, prevalence of lumefantrine (LM) resistance is very low due to its use as a part of fixed dose combination therapy along with artemisinin (ART) [10,11].

2. Intracellular Distribution of Anti-Plasmodium Drugs and Role of Transporter Proteins

Access of antimalaria drugs into their target is a prerequisite for their action. They have different intracellular targets, such as digestive vacuole (DV), cytosol, mitochondria, apicoplast, and parasite membrane [12, 13]. Their intracellular distribution relies on their solubility, potential to permeate cell membranes, and binding affinity to transporters that regulate drugs trafficking through intracellular compartments [14,15].

Normally, eukaryotic cells evade xenobiotics toxicity through trafficking them into the DVs or lysosomes for further procession or expel them extracellularly [15]. In plasmodium, two types of transporters mediate xenobiotics trafficking to the DV [16]: P-glycoprotein related transporters (which include pfmdr-1 (Plasmodium falciparum multidrug resistance-1), pfmdr-2 and pfmrp (Plasmodium falciparum multidrug resistance associated protein)) and drug metabolite transporter (DMT) system that is represented by pfcrt (Plasmodium falciparum chloroquine resistance transporter). Drugs are trafficked from the cytosol to the intravacuolar compartment by the former and in the opposite direction by the latter [7, 16, 17]. Their function is inconsistent in all the strains as it depends on the drug selection pressure and type of the mutation possessed by the transporter [8,18,19].

Different mutations were observed in different strains of Plasmodium falciparum [18]. The mutant transporters increase efficacy of drugs as long as they are shuffled into their target site. In other words, if the drug target is intracytosolic, its potency increases when the transporters prevent its accumulation up in the intravacuolar compartment [20-22].

In this review, we are going to summarize the potential of different pfcrt and P-glycoprotein transporters on the intracellular distribution of the antimalaria drugs.

3. Digestive Vacuole Membrane Transporters: (i) P-Glycoprotein Transporters and (ii) Drug Metabolite System Transporters

3.1. P-Glycoprotein Transporters. ABC transporters (ATP dependent cassette transporters) or P-glycoprotein (P-gh) is a group of energy mediated carriers which pump xenobiotics outside the cytosolic compartment [7, 23]. They have active sites that accommodate substrates of dissimilar structure and molecular size (300-2000 KDa) [24]. The majority of the substrates are amphipathic and have at least one aromatic ring attached to an amine group. Their amphipathicity enhances its binding affinity to P-gh as their hydrophobic part binds to the active sites that are embedded inside the membrane while the hydrophilic one binds to the sites exposed to the cytosolic compartment [25] Figure 1).

Four ABC transporter proteins have been identified in Plasmodium falciparum, namely, pfmdr 1 (Plasmodium falciparum multidrug resistance-1) [26, 27], pfmdr 2 (Plasmodium falciparum multidrug resistance-2) [28], pf mrp (Plasmodium falciparum multidrug resistance associated protein) [29], pfgcn20, and pfa0590w.

Pfmdr-1 is ubiquitous on DV membrane and is involved in multidrug resistance through dispatching xenobiotics away of the cytosol [19]. In plasmodium, it acts as an auxiliary mechanism beside simple diffusion for drug entry into the DV.

Meanwhile, pfmdr-2 is involved in translocation of heavy metals and has nothing to do with multidrug resistance [30, 31]. Nevertheless, some previous articles had related it to CQR and MQR (mefloquine resistance) [28].

On the other hand, pfmrp is present in cell membrane and membrane bound vesicles and is involved in the transport of glutathione and its conjugates. Meanwhile, biological functions of the last two have not been specified yet 29, 32].

3.1.1. Point Mutations in Pfmdr-1. Pfmdr-1 point mutations were observed in both CQ resistant and susceptible strains of Plasmodium falciparum. They ablate the transporter capacity to drift drugs, namely, CQ, quinoline (QN), mefloquine (MQ), halofantrine (HF), and lumefantrine (LM), into the DV [33,34]. The wild (nonmutant) form ([pfmdr-1.sup.CQS]) mediates transfer of drugs, such as CQ, quinoline (QN), mefloquine (MQ), halofantrine (HF), and lumefantrine (LM), from the cytosol into the vacuole. Its ubiquity is prominent in MQ, HF, and LM resistant strains as it sways them away from their target site of action in the cytosol [21, 26].

Four plausible single nucleotide polymorphisms (SNPs) were detected in pfmdr-1 gene, N86Y, N1042D, S1034C, and D1246Y [33, 35] in which asparagine at codons 86 and 1042, serine at codon 1034, and aspartic acid at codon 1246 of pfmdr-1 protein had been replaced by tyrosine, aspartic acid, cystine, and tyrosine, respectively. These substitutions have altered P-gh physiochemical properties as all the substitute amino acids are more polar as compared to their substituent (as indicated by their hydrophobicity indices--Table 1) 36].

Each amino acid has certain physiochemical property, namely, side chain volume, side chain charge, and hydrolipophilicity index. Its substitution in the structure of any transporter changes the transporter physiochemical properties and consequently affects its potential to bind to and transfer different xenobiotic [37].

Distribution of pfmdr-1 mutations is inconsistent over different geographic areas due to the discrepancy in the type of stress that each strain had experienced [38]. For instance, N86Y mutation disseminates widely in Asia and Africa while S1034C, N1042D, and D1246Y exist in South America.

3.1.2. Role of the Mutant Pfmdr Allele in Drug Resistance. Conflicting results were generated by studies that investigated the correlation between expression level of [pfmdr-1.sup.CQR] and the extent of resistance to CQ or other quinoline antimalaria drugs. Earlier studies had revealed that genetic overexpression and protein amplification of the mutant forms of both pfmdr-1 and pfmdr-2 were significantly correlated to the degree of CQ resistance. Accordingly, scientists had concluded that both pfmdr-1 and pfmdr-2 induced multidrug resistance which is responsible for CQR in Plasmodium falciparum [28]. This conclusion was prejudiced when latter screening studies failed to prove that correlation [39] wherein less copies of [pfmdr-1.sup.CQR] were detected in some CQ resistant strains [40, 41]. This led to a suggestion that [pfmdr-1.sup.CQR] has a role in augmenting CQR but it is not the sole cause. This observation was proved by one cross-genetic study between HB3, a CQ susceptible strain of Plasmodium falciparum, and Dd2, a CQ resistant one. The study showed that transfection of [pfmdr-1.sup.CQR] into the susceptible strain or [pfmdr-1.sup.CQS] into the resistant strain does not produce a pronounced change in their response to CQ [39].

Furthermore, the majority of the survey studies revealed that there was no correlation between [pfmdr-1.sup.CQR] ubiquity and CQR prevalence [34, 38, 41-44].

One epidemiological study that was run in Thailand had found that N86Y is not implicated in CQR as the team failed to find any correlation between its expression and spread of CQR within the screened areas [45]. On the other hand, allelic exchange experiments showed that replacement of these point mutations by wild genes increases susceptibility of the parasite to chloroquine as detected by [3] hypoxanthine incorporation experiments [46].

Eventually, it was concluded that presence of [pfmdr-1.sup.CQR] is not provisional for CQR but may relate to fitness adaptations in response to the physiological changes that result from other genetic mutations that are most likely to be associated with pfcrt. Pfcrt is another transporting system which was discovered subsequently and is involved in conferring drug resistance. This phenomenon was proved by Reed et al. as the team found that introduction of S1034C, N1042D, and D1246Y mutations through allelic exchange experiments into CQ susceptible strains of Plasmodium/alciparum did not alter their response to CQ [20,34,46]. A similar cross-genetic study run by [47, 48] in which pfmdr-1 alleles from each of 7G8, a CQ resistant strain present in Latin America (pfmdr-[1.sup.7G8]), and D10 strain, a CQ sensitive strain of Plasmodium falciparum ([pfmdr-1.sup.D10]), were transfected to the other strains reciprocally. The results showed that, in spite of the its ability to alter CQ [IC.sub.50], pfmdr-17G8 was insufficient to confer CQR in D10 while the wild [pfmdr-1.sup.D10] allele could have halved CQR level in 7G8 without changing the parasite phenotype into CQ susceptible.

According to a study by Michael B. Reed, 1999 [48], altering pfmdr-1 sequence in 7G8, which is sensitive to MQ, HF, to encode ser 1034, asn 1042, and asp 1246 through transfecting it with a wild form of pfmdr-1 allele ([pfmdr.sup.D10]), confers for higher resistance to these antimalarials. The most pronounced effect was seen after introducing a single tyr 1246 mutation as compared to that after introducing both asp 1042 and cyc 1034 SNPs. This highlights the importance of 1246 amino acid in the interaction with MQ and LM [47].

Emergence of K1HF strain after exposing K1H, a CQ resistant and HF susceptible cell line of Plasmodium falciparum, to HF pressure in study was another proof that CQR is not totally dependent on pfmdr-1. K1HF phenotype is alien to that of K1H such that it is CQ susceptible and HF sensitive. This change was not accompanied by any overexpression or sequence change in pfmdr [49].

It was found that amplification of the copy number of the wild form of pfmdr-1 gene accounts for half of the recrudescence and treatment failure that occur after having selection pressure induced by mefloquine (MQ), lumefantrine (LM), and artemisinin (ART). This phenomenon is accompanied by enhancement in CQ susceptibility [50].

It is noteworthy that there is an interstrain difference in the copy number of pfmdr-1 gene that it reaches its upmost values in both Dd2 and FCB strains of Plasmodium falciparum. This has an impact on sensitivity to some drugs, such as mefloquine and artemisinin [34].

Overall, Plasmodium falciparum strains that exhibit resistance to ART, HF, and/or MQ are characterized by having higher copy number of pfmdr-1 allele and ubiquity of the well-known pfmdr-1 mutations, namely, 86N, 1034S, 1042N, and 1246N. Pfmdr-1 mutations selection may occur after exposure to MQ, ART, and/or HF.

3.1.3. Pfmrp-1 (Plasmodium falciparum Multidrug Resistance Associated Protein). Pfmdr-1 is not the only ABC transporter protein associated with CQR, but pfmrp-1 (Plasmodium falciparum multidrug resistance associated protein) is another DV membrane protein concerned with CQ inflow into the DV [29]. Genetic survey studies revealed that pfmrp ability to drift CQ into the DV is afflicted by two point mutations, Y191H and A437S where tyrosine and alanine at codons 191 and 437 had been replaced by histidine and serine, respectively. The substitute amino acids are polar as compared to their substituent ones as indicated by their values of hydrophobicity index (Table 2). This posits the importance of polarity in the active sites of pfmrp for CQ binding. Due to its alkaline characteristics, histidine evolves a steric repulsion with quinine nucleus containing molecules. Although their ubiquity is not provisional for conferring CQ resistance, both of Y191H and A437S mutations play a role in augmenting the degree of CQ resistance [7, 32]. It is noteworthy that both Y191H and A437S mutations were reported in Dd2 strain which is highly resistant to CQ [51].

3.2. Pfcrt (Plasmodium falciparum Chloroquine Resistance Transporter) as an Essential Tool in Conferring Chloroquine Resistance. Later on, another protein was discovered on the surface of the DV membrane called pfcrt (Plasmodium falciparum chloroquine resistance transporter). It is a 48 KDa putative transporter or channel that belongs to DMT family of transporter proteins (drug metabolite transporter). It acts as an anion channel and mediates CQ efflux outside the DV. This role that has been studied extensively in lots of in vitro cross-genetic transfection studies ended up with controversial results. Some of them proved the dependency of CQR on pfcrt expression level while others failed [17, 52]. This discrepancy was first attributed to the inconsistency of the experimental conditions and the used strains [40]. Later on, this debate was solved as it was found that CQR is more related to point mutations in pfcrt gene rather than pfcrt expression level [53].

3.2.1. Pfcrt Structure. pfcrt is made up of 424 amino acids arranged in 10 a-helical transmembrane domains (TDMs) oriented inside the DV membrane and N-termini which are exposed to the cytosol. TDMs contain active sites that mediate binding and translocation of substrates. Figure 2 shows the detailed structure of pfcrt. There is an internal symmetry between the first and second fives TDMs such that TDMs 4 and 9 are responsible for binding and translocation of substrates. Both 3 and 8 assist in binding and translocation of the substrates and affect substrate specificity. TDMs 1, 2, 6, and 7 are responsible for identifying the substrates while 5 and 10 are responsible of homodimer formation.

3.2.2. Pfcrt Function. It is suggested that pfcrt performs several functions, such as efflux of alkaloids, amine compounds, divalent cations and amino acids, and peptides that result from the vacuolar digestion of globin. Furthermore, it is culminated to have a role in regulation of [H.sup.+] homeostasis [53].

3.2.3. Pfcrt Mutations and CQR. Most of the studies that were concerned about investigating the relationship between pfcrt and CQR are confounded by inaccuracies that stemmed from relying on one time dose response measurement and using polyclonal fresh clinical isolates [54].

Till now, 32 plausible point mutations have been identified in pfcrt gene. Their ubiquity alters pfcrt physiochemical properties and the phenotype of the strain regarding CQ susceptibility [55].

3.2.4. Effect of Amino Acids Substitution on Pfcrt Physiochemical Properties. Any point mutation that alters amino acid sequence of any channel results in changing its physiochemical properties and functional characters. Each amino acid has certain distinguishing properties that determine its impact on the channel function, such as molar mass, van der Waals volume and Vre (average volume of buried residue), lipophilicity or hydrophobicity index, and isoelectric point [56]. These properties affect channel function through changing its side chain volume, negativity, and polarity. The first three amino acids properties are related to the tendency of the amino acid to create a bulky group that hinders passage of the entities through the channel. Van der Waals volume refers to an imaginary hard sphere that the molecule occupies. Meanwhile, [Ve.sup.e.sub.f] is related to the tendency of the amino acid to be buried inside the protein and is calculated from the area of its side chain. On the other hand, lipophilicity index is an index that refers to the ability of the amino acids to associate with lipophilic molecules. Meanwhile, isoelectric point (IP) refers to the pH at which the amino acid forms the zwitterion [56] (Table 3).

Normally, DV pH is maintained at narrow range which is more or less around 5. The majority of the mutations take place at the side that faces the cytosol. Accordingly, those amino acids, whose IP is more than 5, tend to impart positivity of for the channel. When IP value approaches or drops below than 5, higher channel negativity is conferred. Consequently, this affects CQ exodus outside the channel [57].

3.2.5. K76T Mutation. In K76T mutation, the neutral threonine replaces the positively charged lysine residue at codon 76 in the structure of pfcrt [58, 59]. It is a marker of CQR as its ubiquity is provisional to confer CQ resistance [60]. In contrary, there are few exceptions wherein, in spite of presence of K76T, the parasite is CQ susceptible. This is due to coexistence of other unique mutations that obviate K76T effect [61]. As an exception, J9 strain, which is found in Thailand, has got K76A mutation in which alanine is present instead of threonine at codon 76 [18].

Lysine replacement by threonine at codon 76 imparts for higher lipophilicity and negativity in pfcrt lining and reduces the side chain volume. These changes favor egress of the ionized fraction of CQ (CQ[H.sup.+] & CQ[H.sub.2.sup.++]) outside the DV [62]. Due to its positive charge, lysine hampers egress of CQ through repulsing the positively charged ionized CQ molecule. Moreover, it has a bulkier side chain compared to threonine which hinders CQ egress. Furthermore, this change increases the size of the hydrophobic sites which are required by CQ to bind into the channel before it egresses out. Accordingly, the majority of the scientists favored the third hypothesis to interpret the role of K76T mutation in conferring CQR [60].

Discovery of 106/I clone of Plasmodium falciparum is a clear evidence of the importance of K76T mutation in conferring CQR as this strain contains 6 out of 7 well-known mutations that are consistently present in the CQ resistant cohorts except for K76T. Absence of K76T turned 106/I to a CQ susceptible parasite [62, 63].

K76T mutation is primarily and completely selected after long term exposure to CQ. On the other hand, its ubiquity is not correlated with LM, HF, ART, and MQ susceptibility. This discrepancy is due to the disparity of the mechanism through which resistance to each of these drugs develop [54].

3.2.6. Other Corollary Pfcrt Mutations. After discovering K76T mutation, other nonsilent point mutations were discovered in loci: 19, 58, 72, 74, 75, 90, 97, 101, 123, 140, 146, 148, 152, 160, 163, 194, 198, 205, 220, 251, 271, 275, 277, 326, 327, 333, 334, 356, 371, 350, and 352 (Tables 4 and 5) [54]. Rapid diagnostic assays for pfcrt mutations are already employed as surveillance tools for drug resistance [65].

Various patterns of genetic mutations occur in different geographic areas due to the disparity in the condition that the parasite experiences. Majority of them occur at codons 72,74,75, and 76 (Table 4) [56]. These variations result in lots of structural polymorphic changes in pfcrt with appearance of several haplotypes with different degree of CQ resistance, CQ resistance by VPL and other reversing agents [17], and susceptibility to other antimalaria drugs.

It was found that eleven out of the total 32 polymorphic residues are associated with CQR, such as M74I, N75E, K76T, H97Q, A220S, Q271E, N326S, I356T,C350S, and R371I R. At least another three mutations are required along with K76T to confer CQ resistance [18] (Tables 4 and 5).

Various pfcrt mutations are found in different geographic loci. This discrepancy is attributed to the difference in the history of the drug use in different places which result in evolution of alternate sets of pfcrt mutations [67, 68] (Tables 4 and 5).

Genetic studies, which had screened the CQR related genetic foci and chromosomal markers in different geographic areas, found that Plasmodium falciparum strains isolated from Southeast Asia and Africa (old world strains) have quite similar major resistance to foci. On the other hand, the strains in each of South America and Papua New Guinea (new world strains) strains arose independently and each one has its own drug resistance genetic foci [69,70]. Tables 6 and 7 contain a list of the most famous CQ resistant and susceptible strains and their geographic distribution.

VPL induced CQ resistance reversibility is more pronounced in old world strains (Dd2 and K76I) while it is absent in South American ones, namely, 7G8. Scientists had attributed this to the ability of VPL to interact with pfcrt of the former and its failure to do so with the latter [59].

The majority of the effective mutations (Tables 4, 6, and 7) occur in the region between codons 72 and 76. This had resulted in evolution of different genotypic sequences, namely, CVMNK, CVIET, and SVMNT, which consequently produce different phenotypes with different aptitude to confer CQR (Tables 4, 6, and 7). CVMNK is a characteristic feature of CQ susceptible parasites. Both CVIET and SVMNT are found in CQ resistant strains of Plasmodium falciparum. The former is distributed in Southeast Asia and the latter is found in Africa (Tables 6 and 7). Other mutations are found in loci distant from (72-76) region, namely, 97, 220, 271, 326, 356, and 371 (Tables 5, 6, and 7).

In the absence of K76T mutation, the other corollary mutations start affecting CQ response to a certain extent. Bayomi et al. found that CQ response in 106/I is less as compared to other CQ susceptible strains. The team attributed this to the presence of the other corollary mutations in pfcrt that may impart for less CQ accumulation in the DV. Although 106/I harbors the mutant pfmdr-1, it does not impart for the reduced CQ response [63], such that, in one cross-genetic study, it was found that replacing the mutant pfmdr-1 allele in 106/I by [pfmdr-1.sup.D10] allele, the wild pfmdr-1 subtype, or by any other wild pfmdr-1 allele did not produce any change in cQ susceptibility [71].

3.2.7. Relationship between Pfcrt and Pfmdr-1 Alleles. CQ resistant strains of Plasmodium falciparum possess codon mutations that alter pfcrt structure along with microsatellite polymorphs that flank pfcrt structure. CQ resistance mediated by the mutant pfcrt is either modulated by another gene, which is pfmdr-1 gene that is linked to change of [IC.sub.50] values of some strains, or by factors that create a physiological environment that prevent pfcrt of exerting its full capacity of CQ resistance induction. Several cross-genetic and epidemiology studies run in Africa, Southeast Asia, and Oceania proved this impact. This relationship was proved in a cross-genetic study between clones from Brazil and Ghana, 7G8 and GB4 [72]. Response to CQ and AQ and to their respective metabolites, MDCQ (monodesthyl chloroquine) and MDAQ (monodesthyl amodiaquine), was measured with different pfmdr-1 and pfcrt alleles. The study showed that pfcrt allele is the major determinant in their response and the mutant alleles of pfmdr-1 can merely modulate the degree of resistance in the strains that express the mutant allele of pfcrt. The study showed the importance of coexistence of [pfmdr.sup.7G8] along with [pfcrt.sup.7G8] to confer higher degree of resistance to CQ, AQ, and their metabolites. Transfecting pfmdr-[1.sup.GB3] allele to 7G8 strains reduces resistance to these drugs. The study determined contribution of each of 7G8 pfmdr-1 mutations, 1034C, 1042D, and 1246Y in conferring CQR and AQR. It was found that 1042D has the major contribution in imparting moderate CQR, poor sensitivity to VPL, and high degree of AQR. In a study of CQR and AQR in PGN isolates, lots of CQR isolates were obtained carrying a pfcrt with SVMNT genotype. Degree of their CQR is lower in the isolates that carry neither 86Y nor 1042D mutations in pfmdr-1 allele [72].

WHO graded resistance to early treatment failure, late treatment failure, or inadequacy of clinical and physiological response. Prevalence of treatment failure or drug resistance is concomitant with K76T and is augmented when [pfmdr-1.sup.N86Y] allele coexists [73].

3.2.8. Functional Role of Pfcrt Mutation. Mutations in certain active foci of pfcrt result in changing its aptitude to pump CQ and other drugs outside the DV and regulate the intravacuolar pH. Furthermore, it affects the ability of verapamil (VP) or other drugs to reverse CQ resistance [69].

Pfcrt acts as an ion channel that regulates the electrochemical potential cross the DV membrane and regulates egress of the ionized drugs [74]. On the other hand, pfcrt is related to V type ATPase enzyme. An enzyme is present in various organelle membranes and is involved in pumping of protons into the organelles.

3.2.9. Regulation of DV pH and Effect of Pfcrt Mutation on Intravacuolar pH. DV acidity is attributed to the ingress of [H.sup.+] through V-type-ATPase [75] and [H.sup.+]-pyrophosphatase mediated [H.sup.+] pump mechanisms [76]. DV alkalinization is attained by inhibiting of the former by concanamycin A or bafilomycin A1 and the latter by NaF [76]. [H.sup.+] accompanies CQ while the latter is pumped outside the DV. The intravacuolar localization of chloroquine gives rise to a substantial leakage of [H.sup.+] outside the DV in CQ resistant unsusceptible strains [77].

PH dependency of CQ-heme interaction confers for the importance of alkalinization to reverse CQR. If the reversal agent fails to alkalinize DV and promote exodus of [H.sup.+], then reversal of the resistance fails to proceed.

Presence of the mutant pfcrt in CQ resistance strains of Plasmodium falciparum is accompanied by a decrease in the intravacuolar pH [77, 78]. In one study, after transfecting a pfcrt gene into an oocyst of Xenopus laevis, there was a significant rise in the intracytosolic and reduction of DV pH values due to role of pfcrt in pumping [H.sup.+] outside the DV [77, 78]. Meanwhile, other studies found that pfcrt acts as a [Cl.sup.-] channel and this augments its role in maintaining intravacuolar pH [70].

3.2.10. Pfcrt Mutations and Verapamil (VPL) Reversibility of CQ Resistance (Verapamil Effect (VE)). CQR reversal by verapamil (VPL) became another hallmark of CQR in the resistant strains of Plasmodium/alciparum. Abundance of the hydrophobic sites in pfcrt structure increases the chance of VPL-induced CQR reversal. VPL binds to the hydrophobic sites and acts as a bulky group preventing egress of CQ outside the cell. The bound verapamil can replace the lost lysine during the mutation and acts as a repulsing moiety for CQ [79].

Scientists started to investigate the correlation between any of the abovementioned channel physiochemical characters (see Section 3.2.3) and parasite susceptibility to CQ and DCQ (desethylchloroquine) and VE. The results were quite controversial as some could not find any correlation and they attributed the phenomena to factors related to spatial orientation of the active sites within the channel. Others found a correlation between side chain volume of the channel lining and susceptibility to CQ or DCQ and between hydrophobicity of the channel and VPL induced CQR reversal. This suggests that CQR requires presence of bulky groups within the channel that act as obstacles preventing CQ exodus outside the DV. On the other hand, VP induced reversal of CQR required presence of hydrophobic sites where VP bind and prevent exodus of CQ [80].

4. Chloroquine (CQ) Resistance as a Continuous Trait with Multifactorial Inheritance

Ubiquity of the mutant form of pfcrt confers for higher CQR with an extent depending on the presence of other genetic loci [80]. It was found in a cross-genetic study between 3D7 (CQ susceptible strain in Southeast Asia) and 7G8, a South American CQ resistant strain of Plasmodium/alciparum, that transfection of the mutant pfcrt into the CQ susceptible parasite confers for higher CQ resistance in that parasite. However, the extent of resistance in the transfected parasite did not match with the CQ resistant strain. Nevertheless, this phenomenon does not imply to all CQ susceptible strains as performing the same transfection on D10 strains did not produce any change in CQ [IC.sub.50] of the transfected parasite. On the other hand, expression of [pfcrt.sup.7G8] in both 3D7 and D10 had conferred for higher resistance to MDCQ (monodesethyl chloroquine). Interestingly, both CQ and MDQ (monodesethyl chloroquine) resistances after the transfection were VPL reversible. Nevertheless, VPL reversibility is absent in the Latin American strains of Plasmodium falciparum. This suggests that introduction of [pfcrt.sup.7G8] allele to other CQ sensitive strains may produce a VPL irreversible phenotype of CQ resistance. This suggests that VPL, as a calcium channel blocker, induces intracellular physiological changes in the VPL sensitive strains resulting in change of pfcrt function and thence VPL reversibility of CQR. This point requires further investigation to find the precise effect of VPL in both Latin American and Southeast Asian strains of Plasmodium falciparum [81].

Mutant pfcrt allele introduction does not merely change CQ [IC.sub.50]; it changes the slop of dose response curve with an evidence of continued growth at higher concentration. This effect is particularly pronounced after introducing [pfcrt.sup.7G8] allele to D10 ([D10.sup.pfcrt7G8]). This change had generated a phenotype characterized by high CQ tolerance which is indicated by CQ [IC.sub.99] or [IC.sub.99] values. Recrudescence is another mode of treatment failure as it was found that 50% of the in vitro cultures recrudesce after 6 days of CQ discontinuation. Introduction of [pfcrt.sup.7G8] allele to 3D7, D10, and GCO3 has raised level of recrudescence after CQ discontinuation. This suggests that the mutant allele of pfcrt confers for tolerance as well as for resistance.

Fitness cost is another phenomenon related to long term discontinuation of the antimalaria drug. It was found that some resistant strains of Plasmodium falciparum revert to CQ susceptible ones after removal of the selection pressure. For instance, in Malawi, Dd2 strains lost their [pfcrt.sup.dD2] after drug discontinuation.

Detection of G224 and H209 in French Guinea isolates provides indisputable evidence that K76T is insufficient alone to confer CQR. Both G224 and H209 have got pfcrt and pfmdr haplotypes identical to that of 7G8 with only difference of pfmdr-1 at codon 1034 of pfmdr and codon presence of C350R mutation in H209. Western blot analyses did not detect any difference in the copy number of pfcrt allele. CQ activity screening study showed that these changes turned both G224 and H209 to CQ sensitive parasites as their [IC.sub.50] values were comparable to that of CQ sensitive strains and less than that of 7G8. On the other hand, analysis of CQ dose response curve revealed a skew in CQ [IC.sub.90] for both G224 and H209 toward that of 7G8. Furthermore, unlike other CQ sensitive strains, both G224 and H209 showed a comparable degree of recrudescence to that of 7G8. It was found that charge substitution at position 350 in pfcrt was selected by QN pressure in CQ resistant cell line. It was accompanied by reversion of the cell line into CQ susceptible one. H209 shows higher level of resistance to QN and ART as compared to G224 and 7G8.

5. Effect of pfcrt and Pfmdr-1 on Other Antimalaria Drugs

5.1. Effect on Amodiaquine (AQ). Previous screening and cross-genetic in vitro studies showed that unlike CQ, amodiaquine (AQ) efficacy was not affected by the presence of any mutant form of pfcrt. First this had suggested that certain structural features present only in CQ are required for drugs to bind to pfcrt. Nevertheless, scientists found that AQ action in vivo is poorly correlated with its action in vitro. In vivo, AQ is metabolized to desethylamodiaquine (DAQ), an active metabolite to which the discrepancy in AQ action is attributed [80].

Unlike AQ, DAQ action is affected by ubiquity of the mutant form of pfcrt. Presence of K76T mutation in pfcrt facilitates escape of DAQ outside the digestive vacuole or its access to the 72-76 region of pfcrt structure. This is due to loss of the lysine residue that adds the due positivity which is required to prevent exodus of positively charged 4-aminoquinoline moieties. Moreover, DAQ exodus was correlated to presence of VE or presence of higher hydrophobicity in the 72-76 regions of pfcrt. pfcrt channel hydrophobicity especially at the regions 72-76 and VE is highly prominent in the Asian Old World strains of Plasmodium falciparum in comparison to the New World South American ones. Leaked DAQ molecules tend to bind to such hydrophobic sites creating a bottleneck that prevent exodus of further molecules. This characteristic makes DAQ susceptibility highly correlated with hydrophobicity of pfcrt channel in the resistant strains of Plasmodium falciparum. Consequently, DAQ resistance is seen in the New World resistant strains of Plasmodium falciparum and is absent in the Old World ones [80].

5.2. Effect on Amantadine Action. Amantadine AM, an antiviral drug used for treatment and prophylaxis of influenza A virus infection, showed an anti-Plasmodium effect which is quite variable among different strains of Plasmodium falciparum. The action was more pronounced against the Asian strains Dd2 and J3D4, intermediate against the American strain 7G8, and nearly negligible in CQ sensitive strains [61, 82].

It was found that AM blocks M2 ion channels which is one of the viral envelope proteins that affects viral replication through regulation of [H.sup.+] ingress into the virion after its endocytosis by the host cell. Point mutations that result in AM resistance was detected in M2 channels of influenza A virus. This suggests that AM may have an effect on the electrochemical gradient and proton pump of DV membrane [83,84]. The studies revealed that pfcrt and its K76T mutation do not merely have a determinant role on the differential pattern of CQ susceptibility but they have as much important role on that of amantadine as well [61, 84].

In Singh Sidhu et al.'s 2002 study, the endogenous pfcrt allele of GCO3 was replaced by various [pfcrt.sup.CQR] alleles, such as those of Dd2, J3D4(K76I) and 7G8, to get recombinant clones that contain all genetic materials of GCO3 along with one of the [pfcrt.sup.CQR] alleles. The clones were different from the parent GCO3 strain as their degree of CQR was comparable to that of the original resistant cell lines that bear the transfected [pfcrt.sup.CQR] alleled [53]. Aftermath, several studies found that as these clones develop higher resistance to CQ, they develop higher susceptibility to other drugs as MQ, HF, and AM as well. This confirms that the degree of AM susceptibility is highly dictated by pfcrt mutation. One of the plausible annotations of this is that expression [pfcrt.sup.CQR] on the surface of DV results in higher exodus of alkaline drugs outside the vacuole and this raises their intracytosolic concentration and lowers their concentration in DV. It is noteworthy to note that all of the abovementioned drugs are weak alkaline. Their nonionized fraction permeates into the vacuole by simple diffusion and once they reach the acidic milieu of DV, they ionize and trap there. [pfcrt.sup.CQR] alleles excrete them outside the vacuole resulting in either more intensified action if the drug target is in the cytosol or weaker action if it is in DV. MQ, HF, and AM targets are located in the cytosol so [pfcrt.sup.CQR] intensifies their action while CQ target is located in the DV so [pfcrt.sup.CQR] confers for its resistance [85, 86].

Along with three-month intermittent exposure of K1H6/2 strain, which harbors the same Dd2 [pfcrt.sup.CQR] allele, to AM, AM resistance had been developed in a stepwise manner along with parallel improvement in CQ susceptibility [3] and without any effect on both HF and MQ susceptibility. Aftermath, this phenotype was dubbed as K1AM and the genetic sequence and expression level of its pfcrt and pfmdr alleles were studied extensively. It was revealed that the mutational changes in K1AM were not related to pfmdr as neither mutational change nor change in expression level had been detected [87]. Interestingly, in spite of presence of both K76T and A220S mutations, K1AM was Cq susceptible. It is considered as the first validated example of CQ susceptible Plasmodium falciparum cell line expresses both of these mutations. DNA sequencing studies revealed two novel mutations in the pfcrt allele of K1AM strain, S163R and I356V. The former is unique to K1AM as it has never been reported in any Plasmodium falciparum but the latter was detected in some strains and was culminated as a culprit for development of CQR [87, 88].

Bray et al. 2000 studied the effect of AM on CQR in K1H6/2 strain. They found that along with its anti-Plasmodium effect against CQ resistant cell lines of Plasmodium falciparum, AM has a dichotomous relationship with CQ. From one side, it acts as VPL as it reversed VPL reversible CQR in K1H6/2 strains and from the other side its intermittent use on K1H6/2 induces mutational changes that invert CQR and convert the strain into K1AM strain [89].

5.3. Relationship of CQR and Mefloquine Action. It was noted that CQ action contravenes that of MQ in most strains of Plasmodium falciparum. MQ susceptibility is higher in CQ resistant strains and vice versa. Scientists attributed this either to the discrepancy in the location of their target sites as MQ target is located in the cytosol while CQ's is localized in the DV or to the plausible direct effect of both of pfcrt or pfmdr on MQ. Direct action of pfcrt on MQ was excluded as it was found that MQ does not affect efflux of [H.sup.+] from pfcrt. Unlike CQ resistance, MQ resistance is more affected by pfmdr-1 rather than pfcrt mutation [90]. Moreover, it is correlated with amplification of the wild form of pfmdr-1 that mediates MQ accumulation inside the DV. On the other hand, MQ susceptibility is either associated with pfmdr-1 deamplification or overexpression of [pfmdr-1.sup.CQR]. Furthermore, MQ resistance contravenes CQR that it is conferred by mutant form of pfmdr while pfcrt just modifies it [90, 91].

S163R mutation rose independently in resistance selection experiments using HF or AM on K1H6/2 strains. It was detected in one CQ susceptible isolate that is dubbed aftermath as pf163 during a screening study for its ubiquity in 44 different geographic areas. Aftermath, through DNA sequencing studies, genetic sequence of pfcrt allele of pf163 was compared with that of other plasmodium strains. It was found that all of its codons were quite similar to those of K1H6/2 strain except codon 163 which exhibits S163R mutation. This augments the notion that S163R mutation obviates CQ resistance in CQ resistant strains of Plasmodium falciparum [87, 88].

MQ resistance aroused prominently in the Cambodian-Thai and Thai-Mynamar borders during the last 10 years. Genotype mapping in these areas failed to find any correlation between MQ resistance and prevalence of K76T polymorph of pfcrt. This suggests that MQR develops in a mechanism distant from that of CQ resistance [92].

5.4. Effect on Phenanthrenes. Halofantrine HF and lumefantrine (LM) are the two substituted phenanthrene classes of antimalaria compounds. Their precise mechanism of action has not been identified yet but it is suggested that they bind to hematin and to plasmepsin (hemoglobin degrading enzyme) [93].

K1HF strain is an experimental strain obtained by exerting a selection pressure of HF on K1H/6/2 strain. In vitro intermittent exposure of K1 cell line to HF results in higher resistance to MQ and HF and loss of CQR. This strain does not show any mutational change in pfmdr allele while a prominent change is seen in pfcrt. Pfcrt keeps both K76T and A220 S mutations but it gains other unique ones, such as T152A, S163R, and P275L. The scientists attribute most of the changes in CQ susceptibility to S163R as it was expressed in K1AM and both of them possess the same phenotypic pattern regarding CQ susceptibility in two independent experiments [94].

LM is mostly given in combination with artemether (ART) (AL-treatment) under a trade name Coartam. Coartam has been used extensively in Africa due to high spread of CQ resistance. According to a study in Kenya, which had investigated the relationship between the in vitro susceptibility of different antimalarials with different pfcrt and pfmdr polymorphs, susceptibility of Plasmodium falciparum to LM is inversely proportional to that of CQ with a significant correlation. Furthermore, expression of wild type of pfcrt and pfmdr, which are known for imparting higher CQ susceptibility, suppresses LM susceptibility [95].

It was found that long term exposure to LM may select for more CQ susceptible and LM resistant strains as it selects for the wild type of pfmdr-1 and increase its copy number. Emergence of LM resistance is more pronounced in the strains harboring the wild form of pfcrt along with the wild form of pfmdr-1 [87]. It is noteworthy to dictate that such genotype is highly susceptible to CQ and this suggests the inverse relationship between CQ and LM. The rate of LM resistance emergence may occur rapidly. Unlike CQ, previous cross-genetic and transfection studies revealed that expression of the mutant pfcrt in Plasmodium falciparum has less impact on the geometric mean of LM [IC.sub.50] as compared to that of the mutant pfmdr. Similarly, both LM and MQ are unlike CQ in that they are rather more affected by pfmdr-1 than by pfcrt mutation. Consequently, LM requires the mutant form of pfmdr-1 to enhance its access into the DV where it is thought to produce its action [95, 96].

5.5. Effect on Dihydroartemisinin (DHA). It was found that DHA susceptibility was higher for strains harboring the wild rather than the mutant genotype of pfmdr-1. Meanwhile, its susceptibility was enhanced in the presence of the mutant genotype of pfcrt. This urged for DHA use to treat CQ resistant strains of Plasmodium falciparum [95]. According to a cross-genetic study run by Andriantsoanirina et al. 2009, in which transfecting of different CQ sensitive strains with [pfcrt.sup.7G8] allele enhanced DHA susceptibility [97]. This mutation is not stable as it can be affected by drugs selection pressure. For instance, evolution of H209 from 7G8 strain which possessed C350R mutation due to the selection pressure of QN. The mutation reverted the strain into ART resistant strain as well.

5.6. Effect on Quinine Sensitivity. Both quinine (QN) and quinidine (QD) are famous antimalaria compounds that belong to quinoline family. It is thought that their target site of action is inside the DV. Their sensitivity is highly related to K76T mutation of pfcrt. For instance, 106/I strains, a CQ sensitive strain present in Sudan and is characterized by absence of [pfcrt.sup.K76T], are insensitive to both QN and QD [52].

Long term selection pressure of CQ on 106/I had induced either K76I or K76N mutation in pfcrt. Ubiquity of K76I turned the parasite into CQ resistant and produced a unique stereospecific response as it was turned into highly QN sensitive (17-folds decrease in [IC.sub.50]) and QD insensitive (2-folds increase in [IC.sub.50]) parasites. Interestingly, VPL reduced QN sensitivity and raised QD sensitivity in the mutated parasite. 106/I can expel QN outside the DV but this aptitude is lost once K76I is introduced. On the other hand, introduction of K76I mutation into 106/I had increased its pfcrt potency to expel QD extravacuolarly. This augments the direct interaction of these drugs with pfcrt [87].

Griffin et al. had investigated the impact of pfcrt mutations on antimalaria effect of cinchona alkaloids (C.A). C.A contain quinoline amino alcohols exemplified by quinine, hydroquinone, cinchonine, epiquinine, quinidine, hydroquinidine, cinchonidine, and epiquinidine [98]. Each of them contains two chiral centers located at positions 8 and 9. The first four species belong to erythroisomers while the next four are dextrorotatory isomers. Both dextrorotatory isomers were more potent toward CQ sensitive strains rather than the erythroisomers. Consequently, it was concluded that pfcrt is the major determinant of this stereospecific action. Furthermore, lysine ubiquity at position 76 in the wild form of pfcrt may prevent exodus of only dextrorotatory isomers through steric repulsion. The ionic group in the dextrorotatory isomers can face the 76 lysine in the wild form of pfcrt resulting in creation of a steric hindrance that hinders their exodus. On the other hand, erythroisomers dodge this steric hindrance as they face the 76 lysine residue of pfcrt through their hydrophobic part. As an exception, epiquinine and epiquinidine failed to show any effect against Plasmodium falciparum as they lose the aptitude to inhibit p hematin formation. Exodus of cinchona alkaloids is inversely proportional to the positivity of pfcrt channel. On the other hand, anti-Plasmodium effect of the erythroisomers was quite similar in both CQ sensitive and resistant strains of Plasmodium falciparum but the difference was for the dextrorotatory ones. This supports the determinant role of pfcrt in the stereospecific action of C.A. The possibility that pfmdr mutations affect this stereospecificity was excluded as there was no any correlation between these stereoisomers anti-Plasmodium activity and ubiquity of different pfmdr-1 mutation. Furthermore, there was no effect of stereoisomerism on binding of any of the cinchona quinoline alkaloids with p hematin [98].

5.7. Effect on Amodiaquine (AQ). Amodiaquine is a 4-aminoquinoline antimalaria drug whose mechanism of action is similar to CQ. It is effective against the Asian and African CQ resistant strains of Plasmodium falciparum but is ineffective against the South American ones. The latter are moderate CQ resistant and highly resistant to AQ. It was recommended by WHO to be used as a part of artemisinin combination therapy (ACT) in Africa [99]. The precise effect of both pfcrt and and pfmdr on AQ resistance is still unclear. It was found that the pfcrt allele of the African strains is more linked to AQ resistance rather than pfmdr-1 as cross-genetic studies revealed that the degree of resistance was similar when different pfmdr-1 alleles had been transfected as partners with the African [pfcrt.sup.CQR] allele [35].

5.8. Effect on Piperaquine. Previously, it was dictated that PIP [IC.sub.50] is high in CQ resistant strains of Plasmodium falciparum. In a cross-genetic study, where [pfcrt.sup.7G8] allele was introduced into different CQ susceptible strains, it was found that it confers for higher PIP resistance. As an exception, PIP sensitivity was high in G224, a CQ sensitive strain carrying the same [pfcrt.sup.7G8], and [D10.sup.crt7G8], a CQ susceptible strain transfected with [pfcrt.sup.7G8] allele and H209, which carries a mutant [pfcrt.sup.7G8] allele with C350R mutation [54].

6. Conclusion

It is noteworthy to point out that the problem of drug resistance to antimalarials is quite horrendous due to continuous emergence of drug resistant strains. Both pfmdr-1 and pfcrt determine susceptibility of Plasmodium falciparum to antimalarials as they control the amount of the drug that accumulates inside the digestive vacuole. Efficacy of the drugs whose target site of action is intravacuolar increases if the abovementioned transporters shuffle them into the digestive vacuole and vice versa for those whose target site is extravacuolar. There is a close positive association between responses of Plasmodium falciparum to MQ, HF, LM, and DHA. These responses are inversely proportional to those of CQ. These changes are conferred by ubiquity of both pfcrt and pfmdr-1 mutations. This observation suggests the presence of a common element of multigenic mechanism.

Studying the correlation between drug resistance in the parasites and genetic polymorphism may allow for developing new tools to predict responses to drugs.

http://dx.doi.org/10.1155/2014/950424

Conflict of Interests

All authors declare that there is no conflict of interests regarding publication of this paper.

References

[1] M. F. Boni, D. L. Smith, and R. Laxminarayan, "Benefits of using multiple first-line therapies against malaria," Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 37, pp. 14216-14221, 2008.

[2] J. N. Burrows, D. Leroy, J. Lotharius, and D. Waterson, "Challenges in antimalarial drug discovery," Future Medicinal Chemistry, vol. 3, no. 11, pp. 1401-1412, 2011.

[3] J. C. Wootton, X. Feng, M. T Ferdig et al., "Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum," Nature, vol. 418, no. 6895, pp. 320-323, 2002.

[4] C. W. Chan, R. Spathis, D. M. Reiff, S. E. McGrath, R. M. Garruto, and J. K. Lum, "Diversity of Plasmodium falciparum chloroquine resistance transporter (pfcrt) exon 2 haplotypes in the pacific from 1959 to 1979," PLoS ONE, vol. 7, no. 1, Article ID e30213, 2012.

[5] S. V. Looareesuwan, C. Webster, H. K. Kyle et al., "Clinical studies of atovaquone, alone or in combination with other antimalarial drugs, for treatment of acute uncomplicated malaria in Thailand," The American Journal of Tropical Medicine and Hygiene, vol. 54, no. 1, pp. 62-66, 1996.

[6] X. C. Ding, D. Ubben, and T N. Wells, "A framework for assessing the risk of resistance for anti-malarials in development," Malaria Journal, vol. 11, article 292, 2012.

[7] T. J. C. Anderson, S. Nair, H. Qin et al., "Are transporter genes other than the chloroquine resistance locus (pfcrt) and multidrug resistance gene (pfmdr) associated with antimalarial drug resistance?" Antimicrobial Agents and Chemotherapy, vol. 49, no. 6, pp. 2180-2188, 2005.

[8] M. Korsinczky, N. Chen, B. Kotecka, A. Saul, K. Rieckmann, and Q. Cheng, "Mutations in Plasmodium falciparum cytochrome b that are associated with atovaquone resistance are located at a putative drug-binding site," Antimicrobial Agents and Chemotherapy, vol. 44, no. 8, pp. 2100-2108, 2000.

[9] J. M. Peters, N. Chen, M. Gatton et al., "Mutations in cytochrome b resulting in atovaquone resistance are associated with loss of fitness in Plasmodium falciparum," Antimicrobial Agents and Chemotherapy, vol. 46, no. 8, pp. 2435-2441, 2002.

[10] P. Garner and P. M. Graves, "The benefits of artemisinin combination therapy for malaria extend beyond the individual patient," PLoS Medicine, vol. 2, article e105, 2005.

[11] G. D. Shanks, "Treatment of falciparum malaria in the age of drug resistance," Journal of Postgraduate Medicine, vol. 52, no. 4, pp. 277-280, 2006.

[12] G. Santos and N. V Torres, "New targets for drug discovery against Malaria," PLoS ONE, vol. 8, no. 3, Article ID e59968, 2013.

[13] M. T. Tse, "Antimalarial drugs: a treasure trove of potential antimalarials," Nature Reviews Drug Discovery, vol. 9, no. 7, pp. 516-517, 2010.

[14] D. M. Molina, R. Jafari, M. Ignatushchenko et al., "Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay," Science, vol. 341, no. 6141, pp. 84-87, 2013.

[15] P D. Dobson, K. Lanthaler, S. G. Oliver, and D. B. Kell, "Implications of the dominant role of transporters in drug uptake by cells," Current Topics in Medicinal Chemistry, vol. 9, no. 2, pp. 163-181, 2009.

[16] A. D. Djimde, O. K. Doumbo, J. F. Cortese et al., "A molecular marker for chloroquine-resistant falciparum malaria," The New England Journal of Medicine, vol. 344, no. 4, pp. 257-263, 2001.

[17] K. L. Waller, R. A. Muhle, L. M. Ursos et al., "Chloroquine resistance modulated in vitro by expression levels of the Plasmodium falciparum chloroquine resistance transporter," Journal of Biological Chemistry, vol. 278, no. 35, pp. 33593-33601, 2003.

[18] W. M. Atroosh, H. M. Al-Mekhlafi, M. A. K. Mahdy, and J. Surin, "The detection of pfcrt and pfmdr1 point mutations as molecular markers of chloroquine drug resistance, Pahang, Malaysia," Malaria Journal, vol. 11, article 251, 2012.

[19] G. Dorsey, M. R. Kamya, A. Singh, and P. J. Rosenthal, "Polymorphisms in the Plasmodium falciparum pfcrt and pfmdr1 genes and clinical response to chloroquine in Kampala, Uganda," Journal of Infectious Diseases, vol. 183, no. 9, pp. 1417-1420, 2001.

[20] M. T. Duraisingh and A. F. Cowman, "Contribution of the pfmdr1 gene to antimalarial drug-resistance," Acta Tropica, vol. 94, no. 3, pp. 181-190, 2005.

[21] R. N. Price, A.-C. Uhlemann, A. Brockman et al., "Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number," The Lancet, vol. 364, no. 9432, pp. 438-447, 2004.

[22] K. Rungsihirunrat, W. Chaijareonkul, A. Seugorn, K. NaBangchang, and S. Thaithong, "Association between chloroquine resistance phenotypes and point mutations in pfcrt and pfmdr1 in Plasmodium falciparum isolates from Thailand," Acta Tropica, vol. 109, no. 1, pp. 37-40, 2009.

[23] V Andriantsoanirina, A. Ratsimbasoa, C. Bouchier et al., "Chloroquine clinical failures in P. falciparum malaria are associated with mutant Pfmdr-1, not Pfcrt in madagascar," PLoS ONE, vol. 5, no. 10, Article ID e13281, 2010.

[24] A. Van Helvoort, A. J. Smith, H. Sprong et al., "MDR1 Pglycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine," Cell, vol. 87, no. 3, pp. 507-517,1996.

[25] C. P Sanchez, A. Rotmann, W. D. Stein, and M. Lanzer, "Polymorphisms within PfMDR1 alter the substrate specificity for anti-malarial drugs in Plasmodium falciparum," Molecular Microbiology, vol. 70, no. 4, pp. 786-798, 2008.

[26] P Rohrbach, C. P. Sanchez, K. Hayton et al., "Genetic linkage of pfmdr1 with food vacuolar solute import in Plasmodium falciparum," The EMBO Journal, vol. 25, no. 13, pp. 3000-3011, 2006.

[27] L. von Seidlein, M. T. Duraisingh, C. J. Drakeley, R. Bailey, B. M. Greenwood, and M. Pinder, "Polymorphism of the Pfmdr1 gene and chloroquine resistance in Plasmodium falciparum in The Gambia," Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 91, no. 4, pp. 450-453, 1997

[28] C. M. Wilson, A. E. Serrano, A. Wasley, M. P. Bogenschutz, A. H. Shankar, and D. F. Wirth, "Amplification of a gene related to mammalian mdr genes in drug-resistant Plasmodium falciparum," Science, vol. 244, no. 4909, pp. 1184-1186, 1989.

[29] D. K. Raj, J. Mu, H. Jiang et al., "Disruption of a Plasmodium falciparum multidrug resistance-associated protein (PfMRP) alters its fitness and transport of antimalarial drugs and glutathione," Journal of Biological Chemistry, vol. 284, no. 12, pp. 7687-7696, 2009.

[30] E. Rosenberg, I. Litus, N. Schwarzfuchs et al., "pfmdr2 confers heavy metal resistance to Plasmodium falciparum," Journal of Biological Chemistry, vol. 281, no. 37, pp. 27039-27045, 2006.

[31] J. P. Rubio and A. F. Cowman, "Plasmodium faciparum: the pfmdr2 protein is not overexpressed in chloroquine-resistant isolates of the malaria parasite," Experimental Parasitology, vol. 79, no. 2, pp. 137-147,1994.

[32] S. Briolant, M. Henry, C. Oeuvray et al., "Absence of association between piperaquine in vitro responses and polymorphisms in the pfcrt, pfmdr1, pfmrp, and pfnhe genes in Plasmodium falciparum" Antimicrobial Agents and Chemotherapy, vol. 54, no. 9, pp. 3537-3544, 2010.

[33] M. M. Povoa, I. S. Adagu, S. G. Oliveira, R. L. D. Machado, M. A. Miles, and D. C. Warhurst, "Pfmdr1 (Asn)1042(ASp) and (Asp)1246(Tyr) polymorphisms, thought to be associated with chloroquine resistance, are present in chloroquine-resistant and -sensitive Brazilian field isolates of Plasmodium falciparum," Experimental Parasitology, vol. 88, no. 1, pp. 64-68, 1998.

[34] M. T. Duraisingh, C. J. Drakeley, O. Muller et al., "Evidence for selection for the tyrosine-86 allele of the pfmdr1 gene of Plasmodium falciparum by chloroquine and amodiaquine," Parasitology, vol. 114, no. 3, pp. 205-211, 1997

[35] H. Tinto, L. Guekoun, I. Zongo, R. T. Guiguemdo, U. DAlessandro, and J. B. Ouedraogo, "Chloroquine-resistance molecular markers (Pfcrt T76 and Pfmdr-1 Y86) and amodiaquine resistance in Burkina Faso," Tropical Medicine and International Health, vol. 13, no. 2, pp. 238-240, 2008.

[36] G. C. Barrett, Chemistry and Biochemistry of the Amino Acids, Springer, Amsterdam, The Netherlands, 1985.

[37] P. G. Bray, S. R. Hawley, M. Mungthin, and S. A. Ward, "Physicochemical properties correlated with drug resistance and the reversal of drug resistance in Plasmodium falciparum," Molecular Pharmacology, vol. 50, no. 6, pp. 1559-1566, 1996.

[38] H. A. Babiker, S. J. Pringle, A. Abdel-Muhsin, M. Mackinnon, P. Hunt, and D. Walliker, "High-level chloroquine resistance in Sudanese isolates of Plasmodium falciparum is associated with mutations in the chloroquine resistance transporter gene pfcrt and the multidrug resistance gene pfmdr1," Journal of Infectious Diseases, vol. 183, no. 10, pp. 1535-1538, 2001.

[39] K. Haruki, P. G. Bray, S. A. Ward, M. Hommel, and G. Y. Ritchie, "Chloroquine resistance of Plasmodium falciparum: further evidence for a lack of association with mutations of the pfmdr1 gene," Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 88, no. 6, p. 694, 1994.

[40] T. E. Wellems, L. J. Panton, I. Y. Gluzman et al., "Chloroquine resistance not linked to mdr-like genes in Plasmodium falciparum cross," Nature, vol. 345, no. 6272, pp. 253-255, 1990.

[41] L. K. Basco, J. L. Bras, Z. Rhoades, and C. M. Wilson, "Analysis of pfmdr1 and drug susceptibility in fresh isolates of Plasmodium falciparum from Subsaharan Africa," Molecular and Biochemical Parasitology, vol. 74, no. 2, pp. 157-166, 1995.

[42] S. J. Foote, D. E. Kyle, R. K. Martin et al., "Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum" Nature, vol. 345, no. 6272, pp. 255-258, 1990.

[43] L. K. Basco and P. Ringwald, "Molecular epidemiology of malaria in Yaounde, Cameroon. III. Analysis of chloroquine resistance and point mutations in the multidrug resistance 1 (pfmdr 1) gene of Plasmodium falciparum" The American Journal of Tropical Medicine and Hygiene, vol. 59, no. 4, pp. 577-581, 1998.

[44] K. R. G. McCutcheon, J. A. Freese, J. A. Frean, B. L. Sharp, and M. B. Markus, "Two mutations in the multidrug-resistance gene homologue of Plasmodium falciparum, pfmdr1, are not useful predictors of in-vivo or in-vitro chloroquine resistance in southern Africa," Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 93, no. 3, pp. 300-302, 1999.

[45] M. Mungthin, S. Intanakom, N. Suwandittakul et al., "Distribution of pfmdr1 polymorphisms in Plasmodium falciparum isolated from Southern Thailand," Malaria Journal, vol. 13, no. 1, article 117, 2014.

[46] M. B. Reed, K. J. Saliba, S. R. Caruana, K. Kirk, and A. F. Cowman, "Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum," Nature, vol. 403, no. 6772, pp. 906-909, 2000.

[47] C. E. Griffin, J. M. Hoke, U. Samarakoon et al., "Mutation in the Plasmodium falciparum CRT protein determines the stereospecific activity of antimalarial Cinchona alkaloids," Antimicrobial Agents and Chemotherapy, vol. 56, no. 10, pp. 5356-5364, 2012.

[48] M. B. Reed, K. J. Saliba, S. R. Caruana, K. Kirk, and A. F. Cowman, "Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum" Nature, vol. 403, no. 6772, pp. 906-909, 2000.

[49] G. Y. Ritchie, M. Mungthin, J. E. Green, P. G. Bray, S. R. Hawley, and S. A. Ward, "In vitro selection of halofantrine resistance in Plasmodium falciparum is not associated with increased expression of Pgh1," Molecular and Biochemical Parasitology, vol. 83, no. 1, pp. 35-46, 1996.

[50] M. Chavchich, L. Gerena, J. Peters, N. Chen, Q. Cheng, and D. E. Kyle, "Role of pfmdr1 amplification and expression in induction of resistance to artemisinin derivatives in Plasmodium falciparum" Antimicrobial Agents and Chemotherapy, vol. 54, no. 6, pp. 2455-2464, 2010.

[51] J. Mu, M. T. Ferdig, X. Feng et al., "Multiple transporters associated with malaria parasite responses to chloroquine and quinine," Molecular Microbiology, vol. 49, no. 4, pp. 977-989, 2003.

[52] H. Zhang, E. M. Howard, and P. D. Roepe, "Analysis of the antimalarial drug resistance protein Pfcrt expressed in yeast," Journal of Biological Chemistry, vol. 277, no. 51, pp. 49767-49775, 2002.

[53] A. B. Singh Sidhu, D. Verdier-Pinard, and D. A. Fidock, "Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations," Science, vol. 298, no. 5591, pp. 210-213, 2002.

[54] S. G. Valderramos, J. C. Valderramos, L. Musset et al., "Identification of a mutant PfCRT-mediated chloroquine tolerance phenotype in Plasmodium falciparum" PLoS pathogens, vol. 6, no. 5, Article ID e1000887, 2010.

[55] G. Awasthi and A. Das, "Genetics of chloroquine-resistant malaria: a haplotypic view" Memorias do Instituto Oswaldo Cruz, vol. 108, no. 8, pp. 947-961, 2013.

[56] V S. M. A. D. Kolippakkam, "Amino acid physicochemical properties database," Bioinformation, vol. 1, no. 1, pp. 2-4, 2005.

[57] J. Antosiewicz, J. A. McCammon, and M. K. Gilson, "Prediction of pH-dependent properties of proteins," Journal of Molecular Biology, vol. 238, no. 3, pp. 415-436, 1994.

[58] N. Chen, D. E. Kyle, C. Pasay et al., "Pfcrt allelic types with two novel amino acid mutations in chloroquine-resistant Plasmodium falciparum isolates from the Philippines," Antimicrobial Agents and Chemotherapy, vol. 47, no. 11, pp. 3500-3505, 2003.

[59] V. Lakshmanan, P G. Bray, D. Verdier-Pinard et al., "A critical role for PfCRT K76T in Plasmodium falciparum verapamil-reversible chloroquine resistance," EMBO Journal, vol. 24, no. 13, pp. 2294-2305, 2005.

[60] R. A. H. Umar, S. W. Hassan, M. J. Ladan, M. Nma Jiya, M. K. Abubakar, and U. Nata'ala, "The association of K76T mutation in Pfcrt gene and chloroquine treatment failure in uncomplicated Plasmodium falciparum malaria in a cohort of Nigerian children," Journal of Applied Sciences, vol. 7, no. 23, pp. 3696-3704, 2007.

[61] S. G. Evans and I. Havlik, "In vitro drug interaction between amantadine and classical antimalarial drugs in Plasmodium falciparum infections," Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 88, no. 6, pp. 683-686, 1994.

[62] R. A. Cooper, M. T. Ferdig, X.-Z. Su et al., "Alternative mutations at position 76 of the vacuolar transmembrane protein PfCRT are associated with chloroquine resistance and unique stereospecific quinine and quinidine responses in Plasmodium falciparum," Molecular Pharmacology, vol. 61, no. 1, pp. 35-42, 2002.

[63] R. A. Bayoumi, H. A. Babiker, S. M. Ibrahim et al., "Chloroquine-resistant Plasmodium falciparum in Eastern Sudan," Acta Tropica, vol. 46, no. 3, pp. 157-165, 1989.

[64] M. A. Travassos and M. K. Laufer, "Resistance to antimalarial drugs: molecular, pharmacologic, and clinical considerations," Pediatric Research, vol. 65, no. 5, article 2, pp. 64R-70R, 2009.

[65] J. Keen, G. A. Farcas, K. Zhong, S. Yohanna, M. W. Dunne, and K. C. Kain, "Real-time PCR assay for rapid detection and analysis of PfCRT haplotypes of chloroquine-resistant Plasmodium falciparum isolates from India," Journal of Clinical Microbiology, vol. 45, no. 9, pp. 2889-2893, 2007

[66] G. Awasthi, G. B. K. Satya, and A. Das, "Pfcrt haplotypes and the evolutionary history of chloroquine-resistant Plasmodium falciparum," Memorias do Instituto Oswaldo Cruz, vol. 107, no. 1, pp. 129-134, 2012.

[67] R. K. Mehlotra, H. Fujioka, P. D. Roepe et al., "Evolution of a unique Plasmodium falciparum chloroquine-resistance phenotype in association with pfcrt polymorphism in Papua New Guinea and South America," Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 22, pp. 12689-12694, 2001.

[68] S. G. Valderramos and D. A. Fidock, "Transporters involved in resistance to antimalarial drugs," Trends in Pharmacological Sciences, vol. 27, no. 11, pp. 594-601, 2006.

[69] P P Vieira, M. U. Ferreira, M. D. G. Alecrim et al., "pfcrt polymorphism and the spread of chloroquine resistance in Plasmodium falciparum populations across the Amazon Basin," Journal of Infectious Diseases, vol. 190, no. 2, pp. 417-424, 2004.

[70] T. N. Bennett, A. D. Kosar, L. M. B. Ursos et al., "Drug resistance-associated pfCRT mutations confer decreased Plasmodium falciparum digestive vacuolar pH," Molecular and Biochemical Parasitology, vol. 133, no. 1, pp. 99-114, 2004.

[71] A. B. S. Sidhu, D. Verdier-Pinard, and D. A. Fidock, "Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations," Science, vol. 298, no. 5591, pp. 210-213, 2002.

[72] H. Jiang, N. Li, V Gopalan et al., "High recombination rates and hotspots in a Plasmodium falciparum genetic cross," Genome Biology, vol. 12, no. 4, article R33, 2011.

[73] T. Mita, A. Kaneko, F. Hombhanje et al., "Role of pfmdr1 mutations on chloroquine resistance in Plasmodium falciparum isolates with pfcrt K76T from Papua New Guinea," Acta Tropica, vol. 98, no. 2, pp. 137-144, 2006.

[74] J. Papakrivos, J. M. Sa, and T. E. Wellems, "Functional characterization of the Plasmodium falciparum chloroquine-resistance transporter (PfCRT) in transformed Dictyostelium discoideum vesicles," PLoS ONE, vol. 7, no. 6, Article ID e39569, 2012.

[75] K. J. Saliba and K. Kirki, "pH regulation in the intracellular malaria parasite, Plasmodium falciparum. [H.sup.+] extrusion via a V-type [H.sup.+]-ATPase," The Journal of Biological Chemistry, vol. 274, no. 47, pp. 33213-33219, 1999.

[76] K. J. Saliba, R. J. W. Allen, S. Zissis, P G. Bray, S. A. Ward, and K. Kirk, "Acidification of the malaria parasite's digestive vacuole by a [H.sup.+]-ATPase and a [H.sup.+] -pyrophosphatase," Journal of Biological Chemistry, vol. 278, no. 8, pp. 5605-5612, 2003.

[77] A. M. Lehane and K. Kirk, "Chloroquine resistance-conferring mutations in pfcrt give rise to a chloroquine-associated [H.sup.+] leak from the malaria parasite's digestive vacuole," Antimicrobial Agents and Chemotherapy, vol. 52, no. 12, pp. 4374-4380, 2008.

[78] A. M. Lehane, R. Hayward, K. J. Saliba, and K. Kirk, "A verapamil-sensitive chloroquine-associated [H.sup.+] leak from the digestive vacuole in chloroquine-resistant malaria parasites," Journal of Cell Science, vol. 121, no. 10, pp. 1624-1632, 2008.

[79] M. Henry, S. Alibert, E. Orlandi-Pradines et al., "Chloroquine resistance reversal agents as promising antimalarial drugs," Current Drug Targets, vol. 7, no. 8, pp. 935-948, 2006.

[80] D. C. Warhurst, "Polymorphism in the Plasmodium falciparum chloroquine-resistance transporter protein links verapamil enhancement of chloroquine sensitivity with the clinical efficacy of amodiaquine," Malaria Journal, vol. 2, article 31, 2003.

[81] O. K. Amodu, D. L. Hartl, and S. W. Roy, "Patterns of polymorphism in genomic regions flanking three highly polymorphic surface antigens in Plasmodium falciparum," Molecular and Biochemical Parasitology, vol. 159, no. 1, pp. 1-6, 2008.

[82] S. G. Evans and I. Havlik, "Plasmodium falciparum: effects of amantadine, an antiviral, on chloroquine-resistant and sensitive parasites in vitro and its influence on chloroquine activity," Biochemical Pharmacology, vol. 45, no. 5, pp. 1168-1170, 1993.

[83] S. I. Hay, C. A. Guerra, A. J. Tatem, A. M. Noor, and R. W. Snow, "The global distribution and population at risk of malaria: past, present, and future," Lancet Infectious Diseases, vol. 4, no. 6, pp. 327-336, 2004.

[84] M. L. Kelly, J. A. Cook, P Brown-Augsburger, B. A. Heinz, M. C. Smith, and L. H. Pinto, "Demonstrating the intrinsic ion channel activity of virally encoded proteins," FEBS Letters, vol. 552, no. 1, pp. 61-67, 2003.

[85] J. Le Bras and R. Durand, "The mechanisms of resistance to antimalarial drugs in Plasmodium falciparum," Fundamental and Clinical Pharmacology, vol. 17, no. 2, pp. 147-153, 2003.

[86] P G. Bray and S. A. Ward, "A comparison of the phenomenology and genetics of multidrug resistance in cancer cells and quinoline resistance in Plasmodium falciparum," Pharmacology and Therapeutics, vol. 77, no. 1, pp. 1-28, 1998.

[87] D. J. Johnson, D. A. Fidock, M. Mungthin et al., "Evidence for a central role for PfCRT in conferring Plasmodium falciparum resistance to diverse antimalarial agents," Molecular Cell, vol. 15, no. 6, pp. 867-877, 2004.

[88] J. Wooden, E. E. Gould, A. T Paul, and C. H. Sibley, "Plasmodium falciparum: a simple polymerase chain reaction method for differentiating strains," Experimental Parasitology, vol. 75, no. 2, pp. 207-212, 1992.

[89] P G. Bray, O. Janneh, K. J. Raynes, M. Mungthin, H. Ginsburg, and S. A. Ward, "Cellular uptake of chloroquine is dependent on binding to ferriprotoporphyrin IX and is independent of NHE activity in Plasmodium falciparum," Journal of Cell Biology, vol. 145, no. 2, pp. 363-376, 2000.

[90] S. A. Peel, S. C. Merritt, J. Handy, and R. S. Baric, "Derivation of highly mefloquine-resistant lines from Plasmodium falciparum in vitro," American Journal of Tropical Medicine and Hygiene, vol. 48, no. 3, pp. 385-397, 1993.

[91] S. A. Peel, P. Bright, B. Yount, J. Handy, and R. S. Baric, "A strong association between mefloquine and halofantrine resistance and amplification, overexpression, and mutation in the P-glycoprotein gene homolog (pfmdr) of Plasmodium falciparum in vitro," TheAmerican Journal of Tropical Medicine and Hygiene, vol. 51, no. 5, pp. 648-658, 1994.

[92] P Lim, S. Chy, F. Ariey et al., "pfcrt polymorphism and chloroquine resistance in Plasmodium falciparum strains isolated in Cambodia," Antimicrobial Agents and Chemotherapy, vol. 47, no. 1, pp. 87-94, 2003.

[93] G. Lefevre, S. Looareesuwan, S. Treeprasertsuk et al., "A clinical and pharmacokinetic trial of six doses of artemether-lumefantrine for multidrug-resistant Plasmodium falciparum malaria in Thailand," The American Journal of Tropical Medicine and Hygiene, vol. 64, no. 5, pp. 247-256, 2001.

[94] M. Nateghpour, S. A. Ward, and R. E. Howells, "Development of halofantrine resistance and determination of cross- resistance patterns in Plasmodium falciparum" Antimicrobial Agents and Chemotherapy, vol. 37, no. 11, pp. 2337-2343, 1993.

[95] L. Mwai, S. M. Kiara, A. Abdirahman et al., "In vitro activities of piperaquine, lumefantrine, and dihydroartemisinin in Kenyan Plasmodium falciparum isolates and polymorphisms in pfcrt and pfmdr1," Antimicrobial Agents and Chemotherapy, vol. 53, no. 12, pp. 5069-5073, 2009.

[96] L. Mwai, A. Diriye, V. Masseno et al., "Genome wide adaptations of Plasmodium falciparum in response to Lumefantrine selective drug pressure," PLoS ONE, vol. 7, no. 2, Article ID e31623, 2012.

[97] V. Andriantsoanirina, A. Ratsimbasoa, C. Bouchier et al., "Plasmodium falciparum drug resistance in Madagascar: facing the spread of unusual pfdhfr and pfmdr-1 haplotypes and the decrease of dihydroartemisinin susceptibility," Antimicrobial Agents and Chemotherapy, vol. 53, no. 11, pp. 4588-4597, 2009.

[98] C. E. Griffin, J. M. Hoke, U. Samarakoon et al., "Mutation in the Plasmodium falciparum CRT protein determines the stereospecific activity of antimalarial Cinchona alkaloids," Antimicrobial Agents and Chemotherapy, vol. 56, no. 10, pp. 5356-5364, 2012.

[99] J. M. Sa, O. Twu, K. Hayton et al., "Geographic patterns of Plasmodium falciparum drug resistance distinguished by differential responses to amodiaquine and chloroquine," Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 45, pp. 18883-18889, 2009.

Zaid O. Ibraheem, (1) R. Abd Majid, (2) S. Mohd. Noor, (3) H. Mohd. Sedik, (4) and R. Basir (1)

(1) Pharmacology Unit, Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

(2) Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

(3) Department of Hematology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

(4) School of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia

Correspondence should be addressed to Zaid O. Ibraheem; zaid.2002.2005@gmail.com and R. Basir; rusliza1909@gmail.com

Received 29 June 2014; Accepted 30 August 2014; Published 11 November 2014

Academic Editor: Polrat Wilairatana

TABLE 1: List of plausible mutations in pfmdr-1 of Plasmodium
falciparum along with properties of both substituent and
substituted amino acids.

Site of     Substituted      Polarity     Side chain   Hydrophobicity
mutation    amino acids                     charge         index

86          Asparagine        Polar        Neutral          -3.5
1042        Asparagine        Polar        Neutral          -3.5
1034          Serine          Polar        Neutral          -0.8
1246       Aspartic acid   Acidic polar    Negative         -3.5

Site of    Substituent      Side chain    Side chain   Hydrophobicity
mutation   amino acid        polarity     charge           index

86         Tyrosine           Polar       Neutral           -1.3
1042       Aspartic acid   Acidic polar   Negative          -3.5
1034       Cystien          Non polar     Neutral           2.5
1246       Tyrosine           Polar       Neutral           -1.3

TABLE 2: List of mutations in pfmrp of Plasmodium falciparum along
with properties of both substituent and substituted amino acids.

Site of    Substituted   Side chain   Side chain   Hydrophobicity
mutation   amino acids    polarity      charge         index

191         Tyrosine       Polar       Neutral          -1.3

437          Alanine     Non polar     Neutral          1.8

Site of    Substituent   Side chain    Side chain   Hydrophobicity
mutation   amino acid     polarity       charge         index

191         Histidine    Basic polar   Partially         -3.2
                                        positive

437          Serine         Polar       Neutral          -0.8

TABLE 3: Physiochemical properties of different amino acids.

Amino acid      Code          Formula          Molar    Van der
                                                mass     Waals
                                                        volume

Alanine         Ala/A    [C.sub.3][H.sub.7]    89.09      67
                             N[O.sub.2]

Arginine        Arg/R   [C.sub.6][H.sub.14]    174.2      148
                         [N.sub.4][O.sub.2]

Asparagine      Asn/N    [C.sub.4][H.sub.8]    132.11     96
                         [N.sub.2][O.sub.3]

Aspartic acid   Asp/D    [C.sub.4][H.sub.7]    133.1      91
                             N[O.sub.4]

Cysteine        Cys/C    [C.sub.3][H.sub.7]    121.15     86
                            N[O.sub.2]S

Glutamic acid   Glu/E    [C.sub.5][H.sub.9]    147.13     109
                             N[O.sub.4]

Glutamine       Gln/Q   [C.sub.5][H.sub.10]    146.15     114
                         [N.sub.2][O.sub.3]

Glycine         Gly/G    [C.sub.2][H.sub.5]    75.06      48
                             N[O.sub.2]

Histidine       His/H    [C.sub.6][H.sub.9]    155.15     118
                         [N.sub.3][O.sub.2]

Isoleucine      Ile/I   [C.sub.6][H.sub.13]    131.17     124
                             N[O.sub.2]

Leucine         Leu/L   [C.sub.6][H.sub.13]    131.17     124
                             N[O.sub.2]

Lysine          Lys/K   [C.sub.6][H.sub.14]    146.18     135
                         [N.sub.2][O.sub.2]

Methionine      Met/M   [C.sub.5][H.sub.11]    149.2      124
                            N[O.sub.2]S

Phenylalanine   Phe/F   [C.sub.9][H.sub.11]    165.19     135
                             N[O.sub.2]

Proline         Pro/P    [C.sub.5][H.sub.9]    115.13     90
                             N[O.sub.2]

Serine          Ser/S    [C.sub.3][H.sub.7]    105.09     73
                             N[O.sub.3]

Threonine       Thr/T    [C.sub.4][H.sub.9]    119.12     93
                             N[O.sub.3]

Tryptophan      Trp/W   [C.sub.11][H.sub.12]   204.22     163
                         [N.sub.2][O.sub.2]

Tyrosine        Tyr/Y   [C.sub.9][H.sub.11]    181.19     141
                             N[0.sub.3]

Valine          Val/V   [C.sub.5][H.sub.11]    117.14     105
                             N[O.sub.2]

Amino acid      [V.sup.e.sub.r]   Polarity   Acidity    Hydropathy
                   [A.sup.3]                              index

Alanine               92          Nonpolar   Neutral       1.8

Arginine              225          Polar      Basic        -4.5
                                             (strong)

Asparagine            135          Polar     Neutral       -3.5

Aspartic acid         125          Polar      Acidic       -3.5

Cysteine              106          Polar     Neutral       2.5

Glutamic acid         161          Polar      Acidic       -3.5

Glutamine             155          Polar     Neutral       -3.5

Glycine               66          Nonpolar   Neutral       -0.4

Histidine             167          Polar      Basic        -3.2
                                              (weak)

Isoleucine            169         Nonpolar   Neutral       4.5

Leucine               168         Nonpolar   Neutral       3.8

Lysine                171          Polar      Basic        -3.9

Methionine            171         Nonpolar   Neutral       1.9

Phenylalanine         203         Nonpolar   Neutral       2.8

Proline               129         Nonpolar   Neutral       -1.6

Serine                99           Polar     Neutral       -0.8

Threonine             122          Polar     Neutral       -0.7

Tryptophan            240         Nonpolar   Neutral       -0.9

Tyrosine              203          Polar     Neutral       -1.3

Valine                142         Nonpolar   Neutral       4.2

Amino acid      Isoelectric
                point (pI)

Alanine            6.01

Arginine           10.76

Asparagine         5.41

Aspartic acid      2.85

Cysteine           5.05

Glutamic acid      3.15

Glutamine          5.65

Glycine            6.06

Histidine           7.6

Isoleucine         6.05

Leucine            6.01

Lysine              9.6

Methionine         5.74

Phenylalanine      5.49

Proline             6.3

Serine             5.68

Threonine           5.6

Tryptophan         5.89

Tyrosine           5.64

Valine               6

TABLE 4: List of the plausible mutations that may occur in pfcrt
within the regions 72-76 along with their geographic
distribution, effect on channel physiochemical properties, and
their impact on the phenotype of the parasite toward chloroquine
resistance.

Mutation     Geographic       Effect on     Effect on      Effect on
            distribution       channel      side chain    the channel
                             negativity     volume       lipophilicity

C72S        CQ resistant    High increase                  Decrease
           strains of the
             new world

N74I        Old World CQ    High increase                  Increase
             resistant
              strains

N75D        Cambodian CQ      Increase      Decrease
             resistant
              strains

N75E        Old World CQ      Increase                     No effect
             resistant
              strains

K76N         Long term        Increase
            exposure of
            106/I strain
               to CQ

K76I         Long term        Increase
            exposure of
            106/I strain
               to CQ

Mutation   Overall effect on
           chloroquine
           resistance and VPL
           induced reversal of
           CQ resistance

C72S       Imparts for non VPL
           reversible CQ
           resistance

N74I       Imparts for VPL
           reversible CQ
           resistance

N75D       Imparts for higher
           CQR without
           affecting VPL
           binding

N75E       Imparts for higher
           CQR without
           affecting VPL
           binding

K76N       Imparts for VPL
           reversible CQR with
           I[C.sub.50] of about
           12-folds that of
           106/I. On the other
           hand, it imparts for
           higher MQ, HF, LM,
           and DHA activity

K76I       Imparts for higher
           CQR with I[C.sub.50]
           of about 12/folds
           that of 106/I. On the
           other hand, it
           imparts for higher
           MQ, HF, LM, and DHA
           activity

TABLE 5: List of some famous mutations in pfcrt in foci far from
72 to 76 regions along with their geographic distribution, effect
on channel physiochemical properties, and their impact on the
phenotype of the parasite toward chloroquine resistance.

Mutation   Geographic             Effect on    Effect on
           distribution            channel     side chain
                                  negativity     volume

H97Q       Only in TM90-6CB,       Increase
           the Thai CQ
           resistant strain

A220S      All CQ resistant        Increase
           strains

Q271E      Old World CQ            Increase
           resistant strains
           and the CQ
           susceptible strains
           derived from KH1
           strain

N326S      Old World CQ
           resistant strains
           and the CQ
           susceptible strains
           derived from KH1
           strain

I356T      Some CQ resistant       Increase     Decrease
           strains in Southeast
           Asia, namely, Dd2,
           BC7, BC22, KS28, and
           738

I356L      New World CQ             Little
           resistant strains       increase

R371       Old World CQ
           resistant strains
           and the CQ
           susceptible strains
           derived from KH1
           strain

Mutation     Effect on        Overall effect on
            the channel          chloroquine
           lipophilicity     resistance and VPL
                              induced reversal
                              of CQ resistance

H97Q         No effect       Imparts for higher
                                CQ resistance
                              without affecting
                                 VPL binding

A220S        Decrease        Impart for non-VPL
                                reversible CQ
                                 resistance

Q271E                        Imparts for higher
                            CQ resistance without
                            affecting VPL binding

N326S        Increase            Imparts for
                             reversibility of CQ
                              resistance by VPL

I356T        Decrease        Impart for non-VPL
                                reversible CQ
                           resistance (it explains
                            why VPL reversibility
                               is higher in K1
                             rather than in Dd2)

I356L         Little        Imparts for higher CQ
             increase        resistance and VPL
                            induced reversibility
                              of CQ resistance

R371         Increase      Impart for VPL induced
                              reversibility of
                                CQ resistance

TABLE 6: List of chloroquine sensitive strains of Plasmodium
falciparum along with their geographic distribution and both pfcrt
and pfmdr-1 haplotypes.

Strain        Geographic                     pfcrt haplotype
              distribution
                                   72   74   75   76   97   123   144

D7 (wild      Southeast Asia and   C    M    N    K    H     H     A
type)         Africa

HB3           Honduras             C    M    N    K    H     H     A

GC03          Genetic-cross        C    M    N    K    H     H     A
              studies of
              [Dd.sub.2] and
              H[B.sub.3]

MP2475        Malaysia             C    M    N    K    H     H     A

MP2533        Malaysia             C    M    N    K    H     H     A

N29.07        Africa (Nigeria)     C    M    N    K    H     H     A

N60 and N92   Africa (Nigeria)     C    M    N    K    H     H     A

Th230.08      Africa (Senegal)     C    M    N    K    H     H     A

Tg060.07      Africa (Senegal)     C    M    N    K    H     H     A

P09.04        Africa (Pikine/      C    M    N    K    H     H     A
and P19.04    Senegal)

P31.01        Africa (Pikine/      C    M    N    K    H     H     A
and P08.04    Senegal)

P11.02        Africa (Pikine/      C    M    N    K    H     H     A
              Senegal)

P27.02        Africa (Pikine/      C    M    N    K    H     H     A
              Senegal)

P60.02        Africa (Pikine/      C    M    N    K    H     H     A
              Senegal)

K1AM          Positive selection   C    I    E    T    H     H     A
              of K1H with
              amantadine

K1HF          Positive selection   C    I    E    T    H     H     A
              of K1H with HF

P/164         Southeast Asia       C    I    E    T    H     H     A
              Sudan

106/1         (Awad-el-Kariem FM   C    L    E    K    H     H     A
              1992)

DIO           Papau New Guinea     C    M    N    K    H     H     A

D6            Sierra Leone         C    M    N    K    H     H     A

NF54                               C    M    N    K          H     A

H209          French Guinea        S    M    N    T    H     H     A

Strain        Geographic                      pfcrt haplotype
              distribution
                                   148   152   160   163   194   198

D7 (wild      Southeast Asia and    L     T     L     S     I     E
type)         Africa

HB3           Honduras              L     T     L     S     I     E

GC03          Genetic-cross         L     T     L     S     I     E
              studies of
              [Dd.sub.2] and
              H[B.sub.3]

MP2475        Malaysia              L           L           I     E

MP2533        Malaysia              L           L           I     E

N29.07        Africa (Nigeria)      L           L           I     E

N60 and N92   Africa (Nigeria)      L           L           I     E

Th230.08      Africa (Senegal)      L           L           I     E

Tg060.07      Africa (Senegal)      L           L           I     E

P09.04        Africa (Pikine/       L           L           I     E
and P19.04    Senegal)

P31.01        Africa (Pikine/       L           L           I     E
and P08.04    Senegal)

P11.02        Africa (Pikine/       L           L           I     E
              Senegal)

P27.02        Africa (Pikine/       L           L           I     E
              Senegal)

P60.02        Africa (Pikine/       L           L           I     E
              Senegal)

K1AM          Positive selection    L     T     L     R     I     E
              of K1H with
              amantadine

K1HF          Positive selection    L     A     L     R     I     E
              of K1H with HF

P/164         Southeast Asia        L     T     L     R     I     E
              Sudan

106/1         (Awad-el-Kariem FM    L     T     L     S     I     E
              1992)

DIO           Papau New Guinea      L     T     L     S     I     E

D6            Sierra Leone          L     T     L     S     I     E

NF54                                L           L           I     E

H209          French Guinea         L     T     L     S     I     E

Strain        Geographic                      pfcrt haplotype
              distribution
                                   205   220   271   275   277   326

D7 (wild      Southeast Asia and    T     A     Q     P     N     N
type)         Africa

HB3           Honduras              T     A     Q     P     N     N

GC03          Genetic-cross         T     A     Q     P     N     N
              studies of
              [Dd.sub.2] and
              H[B.sub.3]

MP2475        Malaysia              T     A                 N     N

MP2533        Malaysia              T     A                 N     N

N29.07        Africa (Nigeria)      T     A                 N     N

N60 and N92   Africa (Nigeria)      T     A                 N     N

Th230.08      Africa (Senegal)      T     A                 N     N

Tg060.07      Africa (Senegal)      T     A                 N     N

P09.04        Africa (Pikine/       T     A                 N     N
and P19.04    Senegal)

P31.01        Africa (Pikine/       T     A                 N     N
and P08.04    Senegal)

P11.02        Africa (Pikine/       T     A                 N     S
              Senegal)

P27.02        Africa (Pikine/       T     A                 N     N
              Senegal)

P60.02        Africa (Pikine/       T     S                 N     N
              Senegal)

K1AM          Positive selection    T     S     E     P     N     S
              of K1H with
              amantadine

K1HF          Positive selection    T     S     E     L     N     S
              of K1H with HF

P/164         Southeast Asia        T     S     E     P     N     S
              Sudan

106/1         (Awad-el-Kariem FM    T     S     E     P     N     S
              1992)

DIO           Papau New Guinea      T     A     Q     P     N     N

D6            Sierra Leone          T     A     Q     P     N     N

NF54                                T                       N

H209          French Guinea         T     S     Q     P     N     D

Strain        Geographic                    pfcrt haplotype
              distribution
                                   333   350   356   371   86

D7 (wild      Southeast Asia and    T     C     I     R     N
type)         Africa

HB3           Honduras              T     C     I     R     N

GC03          Genetic-cross         T     C     I     R     N
              studies of
              [Dd.sub.2] and
              H[B.sub.3]

MP2475        Malaysia              T           I           N

MP2533        Malaysia              T           I           N

N29.07        Africa (Nigeria)      T           I           N

N60 and N92   Africa (Nigeria)      T           I           N

Th230.08      Africa (Senegal)      T           I           N

Tg060.07      Africa (Senegal)      T           I           N

P09.04        Africa (Pikine/       T           I           N
and P19.04    Senegal)

P31.01        Africa (Pikine/       T           I           N
and P08.04    Senegal)

P11.02        Africa (Pikine/       T           I           N
              Senegal)

P27.02        Africa (Pikine/       T           I           Y
              Senegal)

P60.02        Africa (Pikine/       T           I           N
              Senegal)

K1AM          Positive selection    T     C     V     I
              of K1H with
              amantadine

K1HF          Positive selection    T     C     I     I
              of K1H with HF

P/164         Southeast Asia        T     C     I     I
              Sudan

106/1         (Awad-el-Kariem FM    T     C     I     I
              1992)

DIO           Papau New Guinea      T     C     I     R     N

D6            Sierra Leone          T     C     I     R     Y

NF54                                T                       N

H2O9          French Guinea         T     R     L     R

Strain        Geographic                      P/mdr-1
              distribution
                                   184   1034   1042   1246

D7 (wild      Southeast Asia and    Y     S      N      D
type)         Africa

HB3           Honduras              Y     S      D      D

GC03          Genetic-cross         Y     S      N      D
              studies of
              [Dd.sub.2] and
              H[B.sub.3]

MP2475        Malaysia              Y     S      N      D

MP2533        Malaysia              F     S      N      D

N29.07        Africa (Nigeria)      F     S      N      D

N60 and N92   Africa (Nigeria)      Y     S      N      D

Th230.08      Africa (Senegal)      Y     S      N      D

Tg060.07      Africa (Senegal)      F     S      N      D

P09.04        Africa (Pikine/       Y     S      N      D
and P19.04    Senegal)

P31.01        Africa (Pikine/       F     S      N      D
and P08.04    Senegal)

P11.02        Africa (Pikine/       F     S      N      D
              Senegal)

P27.02        Africa (Pikine/       F     S      N      D
              Senegal)

P60.02        Africa (Pikine/       F     S      N      D
              Senegal)

K1AM          Positive selection
              of K1H with
              amantadine

K1HF          Positive selection
              of K1H with HF

P/164         Southeast Asia
              Sudan

106/1         (Awad-el-Kariem FM
              1992)

DIO           Papau New Guinea      Y     S      N      D

D6            Sierra Leone          Y     S      N      D

NF54                                Y     S      N      D

H209          French Guinea

TABLE 7: List of chloroquine resistant strains of Plasmodium
falciparum along with their geographic distribution and both
pfcrt and pfm dr-1 haplotypes.

Strain              Geographic                  CQR reversal
                    distribution                by VPL

CQ resistant
  strains
K1H                 Southeast Asia (Thailand)   [check]
19                  Southeast Asia (Thailand)   [check]
BC7                 Thailand
BC22                Thailand
KS28                Thailand
Dd2                 Southeast Asia              [check]
                      (Indochina and Laos)
K76I (J34)          Southeast Asia              [check]
PHI                 The Philippines
PH2                 The Philippines
738                 Cambodia
734                 Cambodia
783                 Cambodia
TM90-6CB            Thailand                    [check]
TM6                 Thailand
TM93-C1088          Thailand
2300                INDONESIA
PNG4                PNG
AP041               Africa (Nigeria)            [check]
N60                 Africa (Nigeria)            [check]
N62                 Africa (Nigeria)            [check]
P05.02 and P51.02   Africa (Pikine/Senegal).    [check]
P26.02              Africa (Pikine/Senegal)     [check]
GB4                 Ghana
7G8                 South America (Brazil)      X
J3D4
G209                South America               X
G224                South America               X
TU741               Colombia
JAV                 Colombia
TA7519              Colombia
TA6182              Colombia
ECU1110             Ecuador

Strain                             pfcrt haplotype

                    72   74   75   76   97   123   144   148   152

CQ resistant                                  H     A     L
  strains
K1H                 C    I    E    T    H     H     A     L     T
19                  C    I    E    A    H     H     A     L     T
BC7                 C    I    E    T    H     H     A     L     T
BC22                C    I    E    T    H     H     A     L     T
KS28                C    I    E    T    H     H     A     L     T
Dd2                 C    I    E    T    H     H     A     L     T
K76I (J34)          C    I    E    I    H     H     A     L     T
PHI                 C    M    N    T    H     H     T     L     T
PH2                 S    M    N    T    H     H     T     L     T
738                 C    I    D    T    H     H     A     I     T
734                 C    I    D    T    H     H     A     I     T
783                 C    I    E    T    H     H     A     L     T
TM90-6CB            C    I    E    T    Q     H     A     L
TM6                                           R     A     L
TM93-C1088                                    H     A     L
2300                C    I    K    T    H     H     A     L     T
PNG4                S    M    N    T    H     H     A     L     T
AP041               C    I    E    T    H     H     A     L
N60                 C    I    E    T    H     H     A     L
N62                 C    I    E    T    H     H     A     L
P05.02 and P51.02   C    I    E    T    H     H     A     L
P26.02              C    I    E    T    H     H     A     L
GB4                 C    I    E    T    H     H     A     L     T
7G8                 S    M    N    T    H     H     A     L     T
J3D4                                          H     A     L
G209                S    M    N    T    H     H     A     L     T
G224                S    M    N    T    H     H     A     L     T
TU741               C    M    N    T    H     H     A     L     T
JAV                 C    M    E    T    H     H     A     L     T
TA7519              C    M    E    T    Q     H     A     L     T
TA6182              C    M    E    T    Q     H     A     L     T
ECU1110             C    M    N    T    H     H     A     L     T

Strain                               pfcrt haplotype

                    160   163   194   198   205   220   271   275

CQ resistant         L           I     E     T
  strains
K1H                  L     S     I     E     T     S     E     P
19                   L     S     I     E     T     S     E     P
BC7                  L     S     I     E     T     S     E     P
BC22                 L     S     I     K     T     S     E     P
KS28                 L     S     I     E     T     S     E     P
Dd2                  L     S     I     E     T     S     E     P
K76I (J34)           L     S     I     E     T     S     E     P
PHI                  Y     S     I     E     T     A     Q     P
PH2                  Y     S     I     E     T     A     Q     P
738                  L     S     T     E     T     S     E     P
734                  L     S     T     E     T     S     E     P
783                  L     S     I     E     T     S     E     P
TM90-6CB             L     S     I     E     T     S     N
TM6                  L           I     E     K
TM93-C1088           L           I     E     T
2300                 L     S     I     E     T     S     E     P
PNG4                 L     S     I     E     T     A     Q     P
AP041                L           I     E     T     S
N60                  L           I     E     T     S
N62                  L           I     E     T     S
P05.02 and P51.02    L           I     E     T     S
P26.02               L           I     E     T     S
GB4                  L     S     I     E     T     S     E     P
7G8                  L     S     I     E     T     S     Q     P
J3D4                 L           I     E     T
G209                 L     S     I     E     T     S     Q     P
G224                 L     S     I     E     T     S     Q     P
TU741                L     S     I     E     T     S     Q     P
JAV                  L     S     I     E     T     S     Q     P
TA7519               L     S     I     E     T     S     Q     P
TA6182               L     S     I     E     T     S     Q     P
ECU1110              L     S                       S     Q     P

Strain                         pfcrt haplotype

                    277   326   333   350   356   371

CQ resistant         N           T
  strains
K1H                  N     S     T     C     I     I
19                   D     S     T     C     I     I
BC7                  N     S     T     C     T     I
BC22                 N     S     T     C     T     I
KS28                 N     S     T     C     T     I
Dd2                  N     S     T     C     T     I
K76I (J34)           N     S     T     C     I     I
PHI                  N     D     T     C     I     R
PH2                  N     D     T     C     I     R
738                  N     N     T     S     I     R
734                  N     N     T     S     I     R
783                  N     D     T     S     T     I
TM90-6CB             N     S     T           I
TM6                  N           T
TM93-C1088           N           T
2300                 N     S     T     S     I     I
PNG4                 N     D     T     C     L     R
AP041                N     N     T           I
N60                  N     N     T           I
N62                  N     N     T           I
P05.02 and P51.02    N     S     T           I
P26.02               N     N     T           S
GB4                  N     N     T     S     I     R
7G8                  N     D     T     C     L     R
J3D4                 N           T
G209                 N     D     T     R     L     R
G224                 N     D     T     C     L     R
TU741                N     D     T     N     L     R
JAV                  N     N     T     S     I     T
TA7519               N     N     T     S     I     T
TA6182               N     S     T     S     I     T
ECU1110              N     D     T     S     L     R

Strain                         Pfmdr-1

                    86   184   1034   1042   1246

CQ resistant
  strains
K1H
19
BC7
BC22
KS28
Dd2
K76I (J34)
PHI
PH2
738
734
783
TM90-6CB            N     F     C      D      Y
TM6
TM93-C1088
2300
PNG4
AP041               N     F     S      N      D
N60                 N     Y     S      N      D
N62                 Y     F     S      N      D
P05.02 and P51.02   Y     F     S      N      D
P26.02              Y     F     S      N      D
GB4
7G8                 N     F     C      D      Y
J3D4
G209                N     F     S      D      Y
G224                N     F     S      D      Y
TU741
JAV
TA7519
TA6182
ECU1110
COPYRIGHT 2014 COPYRIGHT 2010 SAGE-Hindawi Access to Research
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2014 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Ibraheem, Zaid O.; Majid, R. Abd; Noor, S. Mohd.; Sedik, H. Mohd.; Basir, R.
Publication:Malaria Research and Treatment
Article Type:Report
Date:Jan 1, 2014
Words:14928
Previous Article:Pharmacovigilance practices for better healthcare delivery: knowledge and attitude study in the national malaria control programme of India.
Next Article:Major Polymorphisms of Genes Involved in Homocysteine Metabolism in Malaria Patients in Ouagadougou, Burkina Faso.
Topics:

Terms of use | Privacy policy | Copyright © 2021 Farlex, Inc. | Feedback | For webmasters |