Printer Friendly

Review of cases and a patient report of myiasis with tracheostomy, Peru.

To the Editor: Myiasis is the infestation in humans of larvae of flies (order Diptera). These larvae can infect skin, necrotic tissues, and natural cavities of living persons. Myiasis can be primary if it infects intact skin or secondary if it infects a previous injury. Depending on the degree of parasitism, myiasis may be obligatory (requiring a live host for parasite survival), facultative (developing in live or dead organic matter), or accidental (developing accidentally in an inappropriate host) (1). In South America, the species that most frequently cause myiasis are Dermatobia hominis and Cochliomyia hominivorax.

Factors contributing to development of myiasis are low socioeconomic status, unhealthy environments, advanced age, alcoholism, neurologic diseases, and lack of personal hygiene (1,2). Myiasis may occur different tissues, but reports of myiasis of the tracheal stoma are rare. We searched PubMed, MedLine, Lilacs, Scopus, and Google Scholar databases for scientific articles published in English or Spanish languages during 1990-2015 by using the search term "myiasis and tracheostomy." We found reports of 10 patients (Table).

We also report a case of tracheostomal myiasis in a 67-year-old man from Tucume, Peru. The patient had a history of esophageal tumor lesion with considerable airway stenosis related to upper esophageal cancer (stage III). Six months before onset of myiasis, he had respiratory difficulty caused by obstructed airway and underwent a tracheostomy and gastrostomy. When the patient was admitted to the emergency department of a hospital in Lambayeque, located [approximately equal to] 35 km from the patient's home, mobile larvae were present at the tracheostomy site, which also contained brown secretions with traces of blood and obvious signs of inflammation. A cervical abscess surrounded by necrotic tissue was visible, which, according to family members, developed after the larval infection. We manually removed the larvae and began treatment with ivermectin orally (1 dose, 200 pg/kg), ceftriaxone orally (2 g/d), and metronidazole intravenously (500 mg every 8 h). Three days after the patient started treatment, the tracheostomy tube was surgically removed for changing, and a large number of dead larvae were then observed and removed. The patient showed no signs of septicemia. He had slight relative eosinophilia (6%), but his hemoglobin and leukocyte levels were within reference ranges; the larvae would be unable to penetrate cells at these levels. The patient improved with no clinical symptoms of cervical abscess or evidence of phlogosis. He was discharged 9 days after admission, with a postdischarge treatment of oral metronidazole (500 mg every 12 h for 3 d).

Three specimens of larvae were sent to the hospital's parasitology laboratory, which identified the larvae as C. hominivorax stage L-3 (infection began with fly oviposition [approximately equal to] 6 days before admission; L-1, L-2, and L-3 are stages of larval development from hatching until pupation, requiring [approximately equal to] 7 days). The larvae were 10 mm x 3 mm and had a cylindrical, pale yellow body segmented with pigmented tracheal trunks visible in the last 4 posterior segments. Microscopic examination showed that the anterior end had a prominent jaw and segments with small bands of cuticular spines; the rear end had exposed spiracles, each with 3 straight grooves and open peritrematic membranes (reference 13 in the online Technical Appendix, http://wwwnc.

The life cycle of C. hominivorax is similar to any other species in the Diptera order. Open wounds and body orifices (e.g., a tracheostomy) emitting odors from natural secretions are conducive for oviposition by flies and development of myiasis. A study from Brazil mentions that open wounds are the leading cause of development of the C. hominivorax parasite (2). Chronic extensive wounds are often infested by C. hominivorax (2,5).

Myiasis infection is concerning because it can lead to secondary infections such as Escherichia coli, Serratia marcescens, and Enterococcus faecalis (6). The infection is most dangerous when patients have concurrent conditions such as immunosuppression.

Treatment of myiasis involves manual removal of larvae and surgical debridement, in conjunction with ivermectin and systemic broad-spectrum antimicrobial drugs to prevent secondary infections (1,2). Treatment with ivermectin can kill the larvae (1; references 14,15 in the online Technical Appendix) and result in considerable reduction of larvae in infested wounds. Ivermectin has a broad antiparasitic spectrum that causes immobilization of parasites by inducing tonic paralysis of the parasite's muscles, mainly at the pharyngeal level, resulting in the death of the parasites by suffocation and starvation.

For the patient in this report, the single oral dose (0.2 mg/kg) of ivermectin was an effective treatment for myiasis. However, to control the underlying disease and prevent recurrences, ivermectin should be used with oral antimicrobial drugs and wound care when the wound has a high number of larvae, which are associated with bacterial infections (4,5).

For bedridden patients, patients with superficial wounds who live in myiasis-endemic areas, or patients who undergo a tracheostomy or have open wounds, health workers and caregivers should consider preventive care of wounds, which are risk factors for myiasis infection. This care consists of suitable wound dressing and proper personal and environmental hygiene.


Author affiliations: Universidad Nacional Pedro Ruiz Gallo, Lambayeque, Peru (V.E. Failoc-Rojas, H. Silva-Diaz); Hospital Regional Lambayeque, Lambayeque (H. Silva-Diaz)


We thank Suzanna Rojas Thompson for her constructive comments on an earlier version of this manuscript.


(1.) Francesconi F, Lupi O. Myiasis. Clin Microbiol Rev. 2012;25: 79-105.

(2.) Batista-da-Silva JA, Moya-Borja GE, Queiroz MMC. Factors of susceptibility of human myiasis caused by the New World screw-worm, Cochliomyia hominivorax in Sao Goncalo, Rio de Janeiro, Brazil. J Insect Sci. 2011;11:14. 10.1673/031.011.0114

(3.) Josephson RL, Krajden S. An unusual nosocomial infection: nasotracheal myiasis. J Otolaryngol. 1993;22:46-7.

(4.) Franza R, Leo L, Minerva T, Sanapo F. Myiasis of the tracheostomy wound: case report. Acta Otorhinolaryngol Ital. 2006;26:222-4.

(5.) Batista-da-Silva JA, Borja GEM, Queiroz MMC. Patient with tracheostomy parasitized in hospital by larvae of the screwworm, Cochliomyia hominivorax. J Insect Sci. 2011;11:163.

(6.) Prasanna Kumar S, Ravikumar A, Somu L, Vijaya Prabhu P Tracheostomal myiasis: a case report and review of the literature. Case Rep Otolaryngol. 2011;2011:303510. 10.1155/2011/303510

(7.) Blejter J. Tracheostomy wound myiasis in a child: case report and review of the literature. Case Rep Pediatr. 2012;2012:317862.

(8.) Shakeel M, Khan I, Ahmad I, Iqbal Z, Hasan SA. Unusual pseudomyiasis with Musca domestica (housefly) larvae in a tracheostomy wound: a case report and literature review. Ear Nose Throat J. 2013;92:E38-41.

(9.) Hemanth V, Kumar CS, Manikandan D, Musarrat F, Preetham AP, Paulraj MG. An unusual cause of late tracheostomy bleed. Case Reports Clin Med. 2013;2:260-2. crcm.2013.24071

(10.) Kaya KH, Gunes S, Erdim i, Koc AK, Avci A, Kayhan FT. Tracheostomal myiasis in a female patient. Kulak Burun Bogaz Uygulamalari. 2014;2:132-4.

Address for correspondence: Virgilio E. Failoc-Rojas, Av Manuel Seoane 1343-La Victoria, Chiclayo, Peru; email:
Table. Reports in the literature about myiasis associated
with tracheostomy, by date of publication *

Country      Patient        Associated          Fly species
            age, y/sex      conditions

Canada         85/F       Comatose state        Unidentified
                             for 2 mo
Italy          57/M         Persistent         Lucilia caesar
                         vegetative state
Brazil         49/M       Neck carcinoma        Cochliomyia
India          78/M       Tracheostomy by    Chrysomya bezziana
                           car accident
Argentina      8/NA       Cerebral palsy        Unidentified
India          52/M      Laryngeal cancer     Musca domestica
India         73/NA          Carcinoma       Chrysomya bezziana
                           and diabetes
Turkey         86/F        Poor hygienic       Lucilia caesar
                           condition and
India          57/M        Proliferative     Chrysomya bezziana
                          ulcer on vocal
                         cords and glottic
Italy          5/M       Werdnig-Hoffmann        Sarcophaga
                              disease           argyrostoma
Peru           67/M      Esophageal cancer      Cochliomyia

Country       Year of     Reference
            publication   ([dagger])

Canada         1993          (3)
Italy          2006          (4)
Brazil         2011          (5)
India          2011          (6)
Argentina      2012          (7)
India          2013          (8)
India          2013          (9)
Turkey         2014          (10)
India          2015          (11)
Italy          2015          (12)
Peru                      This study

* NA, not available.

([dagger]) Sources: PubMed, Medline, Scopus,
LILACS, and Google Scholar.References 11,12 are in
the online Technical Appendix (http://wwwnc.cdc.
COPYRIGHT 2016 U.S. National Center for Infectious Diseases
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2016 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:LETTERS
Author:Failoc-Rojas, Virgilio E.; Silva-Diaz, Heber
Publication:Emerging Infectious Diseases
Article Type:Letter to the editor
Date:Mar 1, 2016
Previous Article:Candida haemulonii complex species, Brazil, January 2010-March 2015.
Next Article:Trends in liver transplantation in hepatitis C virus-infected persons, United States.

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters