Printer Friendly

Reprogramming Method Converts Adult Cells Into Many Progenitor-Like Cells.

TORONTO, Ont., Canada, November 30, 2017 -- A modified version of iPSC methodology, called interrupted reprogramming, allows for a highly controlled, potentially safer, and more cost-effective strategy for generating progenitor-like cells from adult cells.

Researchers here converted adult mouse respiratory tract cells called Club cells into large, pure populations of induced progenitor-like (iPL) cells, which retained a residual memory of their parental cell lineage and therefore specifically generated mature Club cells. Moreover, these cells showed potential as a cell replacement therapy in mice with cystic fibrosis.

A major block in the critical path of regenerative medicine is the lack of suitable cells to restore function or repair damage.

The new approach starts with purifying the desired cell type and then manipulating it to give those cell types characteristics of progenitor cells, which can grow rapidly but produce only a few cell types.

As such, it is much more direct, more rapid, and the batches of cells are more purified.

In recent years, induced pluripotent stem (iPS) cells have generated a great deal of interest as a potentially unlimited source of various cell types for transplantation. This method involves genetically reprogramming skin cells taken from adult donors to an embryonic stem-cell-like state, growing these immature cells to large numbers, and then converting them into specialized cell types found in different parts of the body.

A major advantage of this approach is the ability to generate patient-specific iPS cells for transplantation, thereby minimizing the risk of harmful immune reactions.

Despite significant progress, these protocols remain limited by low yield and purity of the desired mature cell types, as well as the potential of immature cells to form tumors.

Moreover, there is no standardized approach applicable to all cell types, and the development of personalized therapies based on patient-derived pluripotent cells remains very expensive and time consuming.

Scientists have pursued cell therapy for lung diseases for many years. A key issue is how to get the right type of cells and lots of them. To avoid rejection, cells from the actual patient need to be used.

To address these issues, the researchers developed an interrupted reprogramming strategy, which is a modified version of the iPSC methodology. They started to genetically reprogram adult Club cells isolated from mice, transiently expressing the four iPSC reprogramming factors, but interrupted the process early, prior to reaching the pluripotent state, to generate progenitor-like cells, which are more committed to a specific lineage and show more controlled proliferation than pluripotent cells.

The reprogramming process had previously been considered as an all-or-none process. But it can be fine-tuned by the timing and dosing of the drug used to activate the reprogramming factors. That gives lots of opportunities for control, but it does mean there is lots of work to do to get it right.

The researchers showed that the resulting Club-iPL cells could give rise to Club cells and other respiratory tract cells such as mucus-secreting goblet cells and ciliated epithelial cells that produce the CFTR protein, which is mutated in patients with cystic fibrosis.

When the Club-iPL cells were administered to CFTR-deficient mice, the cells incorporated into tissue lining the respiratory tract and partially restored levels of CFTR in the lungs without tumor formation.

This technology can theoretically be applied to almost any cell type that can be isolated and purified, and isolation of purified populations of adult cells from organs is already possible with existing techniques.

To create specialized cell types for use in cell therapy requires only that the genes be inserted (or non-transgenic approaches be used) and then the drug dose be tested and timed for each cell type and each patient. It should be relatively scalable at low cost compared to other approaches using each patient's own cells. It should be very easy for other labs to use a similar approach.

The approach could be used for a variety of regenerative medicine practices, including cell replacement therapy, disease modelling, and drug screening for human diseases. But there is still a long way to go before clinical translation.

For their own part, the researchers plan to test this approach with other cell types, including human cells. They will also try to determine if there are safe ways to engraft these cells in human lungs.

The study is a proof of principle, the way this concept may ultimately be used in humans could be different, and it will be many years before this will be attempted in humans.

Citation: Li Guo et al., "Generation of Induced Progenitor-like Cells from Mature Epithelial Cells Using Interrupted Reprogramming," Stem Cell Reports, 2017; DOI: 10.1016/j.stemcr.2017.10.022

Abstract/Article: http://bit.ly/2iOUhjU

Contact: Thomas K. Waddell, tom.waddell@uhn.ca
COPYRIGHT 2017 DataTrends Publications, Inc.
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2017 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Basic Research
Publication:Stem Cell Research News
Date:Dec 4, 2017
Words:783
Previous Article:Scientists Reveal Rules For Making Ribs.
Next Article:3D Intestine Model Could Enable Study Of IBD.
Topics:

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters