Printer Friendly

Reducing the scale of drag.

A COATING for the hulls of ships that mimics sharks' scales could prevent fouling by algae and barnacles without causing pollution, its developers claim.

When organisms attach themselves to ships, drag increases, reducing fuel efficiency. Conventional coatings can prevent this but leach poisonous copper into the ocean. This accumulates in harbours, threatening marine life. Researchers at the University of Florida have created an alternative coating composed of tiny scale-like elements.

The project is sponsored by the US Navy, which estimates that it could save up to [pounds sterling]25m per year in fuel by reducing fouling-related drag. Full-scale ocean tests will begin later this month, and researchers at Birmingham University and an Australian team are also providing support.

Project leader Anthony Brennan, professor of materials science and engineering, realised that sharks remain free of barnacles and algae despite spending their lives submerged. Sharks have placoid scales, consisting of a rectangular base embedded in the skin with tiny spines that poke upwards from the surface, making them feel rough. He mimicked this by creating a plastic and rubber composite coating made from billions of raised diamond-shaped patterns, each measuring 15 microns. Each diamond also contains seven raised ribs.

Tests have so far shown that a common and aggressive algae called ulva, which likes to colonise the inlet ports used to cool the nuclear reactors of submarines and battleships, has trouble attaching its spores to the diamonds. 'The scales are a tenth of the size of a real shark scale,' said Brennan. 'So far we don't have any settlement of ulva spores.'

By adding less than one volt of electric current, the material flexes as the ribs shrink and swell, preventing accumulation of silt and other debris. This is often a precursor to barnacle and plant growth, and the team hopes the material's movement should deter organisms other than ulva from attaching themselves.

The research could also lead to the creation of better medical implants such as catheters or heart valves, which may suffer reduced function over time as they are colonised by cell and tissue deposits.
COPYRIGHT 2005 U.S. Army Maneuver Support Center
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2005 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Publication:Engineer: The Professional Bulletin for Army Engineers
Date:Mar 11, 2005
Words:345
Previous Article:Sensing the danger: helmet-mounted displays and body sensors could help save firefighters' lives.
Next Article:A healthier prognosis? The government has announced plans to work with the medical technology industry to improve provision of NHS equipment, but...

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters