Printer Friendly

REACH: An Efficient MAC Protocol for RF Energy Harvesting in Wireless Sensor Network.

1. Introduction

A Wireless Sensor Network (WSN) is a motive power for implementing Internet of Things (IoT) technologies and is used in many systems [1]. As a representative example, a system has been developed that periodically monitors and manages information about a target environment (e.g., temperature, humidity, and illumination) around the sensor [2-4]. There is a critical problem that the lifetime of the WSN is limited because of limited sensor batteries [5]. Also, it cannot be assumed that all sensors are easily physically accessible. As a result, researches have been conducted to increase the energy efficiency of sensor components in order to increase the limited lifetime of the WSN [6, 7]. Previous works showed that the power consumption of sensors can be reduced. However, they do not consider charging the battery, so the battery will be discharged inevitably. A sensor should be able to charge itself using a specific energy source. Radio Frequency (RF) energy harvesting has been proposed [8, 9] as a new energy source of sensors. It supplies stable power to peripheral sensors through Energy Transmitters (ETs) without being affected by the physical environment [10]. With these advantages, a lot of related works have been proposed [11] for determining the routing path [12], data aggregation method [13], improving the energy conversion efficiency [14], and duty-cycle control method [15]. But still, there has not been enough research on the new MAC protocol considering RF energy harvesting. Current researches of the MAC protocol are only related to energy harvesting time. In [16], a method is proposed to adjust the charging time of the sensor. The charging time is changed adaptively according to the data traffic pattern. In [17], a method is proposed to enable for a long time charging of sensors actively involved in data communication. The charging time is determined by an Important Index (IDX) of the sensor that requests energy. Both protocols use methods to allocate the time and channel for charging or requesting energy. They inevitably delay data communication. It is difficult to guarantee real-time communication in WSN when using the existing MAC protocol. To overcome this problem, we propose a method called RF Energy Autocharging and Harvesting (REACH). When there are no packets to be transmitted in the channel, an idle time continues. In REACH, ETs automatically transmit energy to charge the sensors during the idle time. This allows sensors to maintain long data communication times. The contributions of this paper are as follows:

(i) We propose REACH to charge automatically when idle time continues on the channel.

(ii) An improved MAC protocol considering RF energy harvesting is proposed to prevent real-time communications from being disrupted by charging.

(iii) We design REACH that shows 150% performance improvement in harvested energy with backward compatibility.

The rest of this paper is organized as follows. Section 2 introduces the existing MAC protocol considering RF energy harvesting. We explain the proposed REACH algorithm in Section 3. The simulation environment is described in Section 4. The results of performance analysis are presented in Section 5. Finally, conclusion is presented in Section 6.

2. Related Work

There are two representative MAC protocols considering RF energy harvesting: RF-AASP (RF-based energy harvesting technique and the Adaptive, Active Sleeping Period) and RFMAC (Radio Frequency-Medium Access Control). The RFAASP determines charging time depending on data traffic and RF-MAC determines it depending on how much the sensor has participated in data communication. However, they still have a problem that charging delays data communication. We describe the RF-AASP and Rf-MAC in this section.

2.1. RF-AASP. In [15], an algorithm is proposed that adaptively changes the sleeping period of a sensor. The period changes depending on the traffic pattern and residual energy of sensors. A sensor with low energy checks traffic pattern and satisfaction of Quality of Service (QoS). Based on the result, the sensor adjusts variables like BO (Beacon Order) and SO (Superframe Order). The two adjusted variables determine sleeping period by the equation [t.sub.sleep] = [2.sup.BO] - [2.sup.SO]. The sensor performs energy harvesting during the sleeping period to charge energy. When the traffic load is large, the RF-AASP may not guarantee a sufficient sleeping period for charging. In other words, the sensor may fail to charge sufficient energy and continues to request energy.

2.2. RF-MAC. In [16], an algorithm is proposed with a new procedure of energy harvesting. Energy harvesting occurs with the Request-for-Energy (RFE) packet. A sensor with low energy broadcasts the RFE packet. Peripheral ETs respond with Cleared-for-Energy (CFE) packets. When the sensor broadcasts the ACK, the ETs emit energy. In this case, the charging time of the sensor depends on the value of the Important Index (IDX). The IDX indicates how much the sensor has participated in data communication in the channel. This algorithm guarantees continuous data communication when there is no energy request. However, when the energy request occurs frequently, starvation can occur. A sensor to send data falls into starvation because of the higher priority of energy request.

3. The Proposed REACH Protocol

3.1. Target System. Notations and descriptions used in this paper are shown in the "Notations and Descriptions" section. Figure 1 shows a target network. A WSN consists of a large number of sensors and ETs. ETs are hardware that transmit energy to sensors. Sensors are the subjects of data communication and contend with each other through the CSMA/CA method. All the data from the sensors are transmitted to the Base Station (BS). ETs and sensors share the same frequency band and they have omnidirectional antennas. Therefore, energy and data signals cannot be transmitted at the same time. An energy request has a higher priority than data communication to prevent sensor outage and increase stability of the WSN.

3.2. REACH Algorithm. REACH consists of three steps. Algorithm 1 describes a pseudocode of REACH. First, a sensor gives [CW.sub.random] and [SCT.sub.origin] (Short Charging Time) to ETs using the existing energy harvesting process. ETs set parameters required for the REACH process based on the received values. The ETs determine the backoff to participate in channel contention. REACH process has a lower priority than data communication because ETs have longer backoff. Finally, the ETs determine the next action depending on whether they acquired the channel. They transmit RF energy signals to nearby sensors for [SCT.sub.origin] when they acquire the channel. They adjust the parameters after transmission so that REACH can be performed while reducing the interruption to data communication. Figure 2 shows a flow diagram of REACH. Dashed-line boxes represent the newly proposed process in REACH. Solid-line boxes represent the existing RF-MAC process.

ALGORITHM 1: REACH.

Step 1
(1)   Compute [CW.sub.random], [SCT.sub.origin]
(2)   Transmit values to ETs
(3)   Save [CW.sub.random], [SCT.sub.origin] with [SCT.sub.default],
      [SCT.sub.unit]
(4)   While:
Step 2
(5)     Determine backoff
Step 3
(6)     Participate in channel contention
(7)     If success to channel occupation then:
(8)        Auto Charging as [SCT.sub.origin]
(9)        [SCT.sub.origin] [left arrow] [SCT.sub.origin] +
           [SCT.sub.unit]
(10)       [CW.sub.random] [left arrow] [CW.sub.random] + 1
(11)    Else:
(12)    [SCT.sub.origin] [left arrow] [SCT.sub.default]
(13)    [CW.sub.random] [left arrow] [CW.sub.random] - 1
(14)    End If
(15)  End While


3.2.1. Step 1: Parameter Setting. This step uses a process in the existing charging when a sensor transmits optimization values to nearby ETs. The sensor calculates additional values to be used in the REACH process. Additional calculated values are [CW.sub.random] and [SCT.sub.origin]. These values are included in the ACK packet and transmitted to nearby ETs. [CW.sub.random] is the number of contention windows used when ETs determine backoff to participate in channel contention. After the existing energy harvesting process, ETs must have the same backoff period as each other to set the same start timing of autocharging. [CW.sub.random] cannot be the same without communication between ETs. For this reason, the sensor in this process determines the random value and transmits it to ETs. [CW.sub.random] is randomly determined in the range of CW ([[CW.sub.min], [CW.sub.max]]). [CW.sub.min] and [CW.sub.max] are the minimum and maximum number of contention windows, respectively. [SCT.sub.origin] means the time that ETs automatically transmit energy to nearby sensors if ETs acquire the channel. Autocharging can interrupt data communications because of longer charging time if [SCT.sub.origin] is too large. For this reason, [SCT.sub.origin] should be determined to be of a reasonable length considering current channel conditions. [SCT.sub.origin] expression is as follows:

[SCT.sub.origin] = [summation][t.sub.IDLE]/[summation] [N.sub.data] + 1. (1)

([summation] [N.sub.data] + 1) represents the maximum number of times the channel was idle for a unit time. [SCT.sub.origin] is calculated to the average of the idle times that existed between data communications. The initial value of [SCT.sub.origin] becomes small since it is divided by the maximum number. [SCT.sub.origin] does not significantly interrupt the data communication time. The sensor passes the random values to nearby ETs after the calculations are complete. The ETs store the values. Then, [SCT.sub.default] and [SCT.sub.unit] are calculated and stored by the ETs. [SCT.sub.default] is the same as the initial [SCT.sub.origin]. [SCT.sub.default] is used to initialize [SCT.sub.origin] again when the channel cannot be acquired. [SCT.sub.unit] is set to [SCT.sub.origin]'s largest decimal unit. [SCT.sub.unit] is used to increase [SCT.sub.origin] after acquiring the channel. Once the transmission and storage process is complete, the ETs proceed with the existing RF-MAC charging process. The ETs proceed to the next step of the REACH process without deleting the received values after the charging process is finished.

3.2.2. Step 2: Backoff Decision. The ETs compute backoff to participate in channel contention after the charging process is finished. ETs must have the same backoff period to match the start timing of autocharging. This is because all ETs must transmit energy for charging at the same time to maximize the constructive interference. Besides, there is a disadvantage that the autocharging time is lengthened when ETs do not match the timing of transmitting energy. The following expression is proposed for synchronizing backoff of all ETs:

Backoff = [DIFS.sub.ac] + [CW.sub.random] x [Slot.sub.AC]. (2)

In order to not have a serious impact on network throughput, the REACH process should have a lower priority than data communications. [DIFS.sub.AC] and [Slot.sub.AC] of backoff should be larger than the value of data communications. We set the two values to [DIFS.sub.AC] = [DIFS.sub.data] + [DIFS.sub.energy] and [Slot.sub.AC] = [Slot.sub.data] + [Slot.sub.energy]. [DIFS.sub.data] and [DIFS.sub.energy] denote DIFS of data communications and energy requests, respectively. [Slot.sub.data] and [Slot.sub.energy] denote slot time of data communications and energy requests, respectively. All ETs have the same value of [DIFS.sub.AC] and [Slot.sub.AC] because these values are defined by the protocol. [CW.sub.random] is broadcasted by the sensor that issued the RFE packet as mentioned in Section 3.2.1, so all ETs have the same [CW.sub.random] value. As a result, all ETs have the same backoff period. ETs participate in channel contention like other sensors after backoff is calculated. [SCT.sub.origin] and [CW.sub.random] are then adjusted according to results of channel contention.

3.2.3. Step 3: Channel Contention. There are two cases of channel contention. The first case is a situation in which the channel is acquired by ETs. Autocharging is executed in this case. The other case is a situation in which the channel is not acquired by ETs. The stored values are reset and ETs rejoin the channel contention in this case.

If there is no data to send in the channel, ETs acquire the channel. The ETs will start autocharging for [SCT.sub.origin] after waiting for backoff. ETs transmit energy at the frequencies used in the most recent existing charging process. Therefore, it can skip some processes like RFE-CFE exchange and frequency optimization. [SCT.sub.origin] is increased by [SCT.sub.unit] which was calculated beforehand after the autocharge is finished. ETs increase [CW.sub.random] to make backoff for autocharging longer than data communication. ET's success in channel acquirement means that there was idle time for ETs to acquire the channel. It can be inferred that there is no data waiting for transmission on the current channel. There is also a high possibility that the channel will be idle in the future. Therefore, ETs increase [SCT.sub.origin] to improve channel efficiency. [SCT.sub.origin] becomes larger if the ETs frequently acquire the channel. If a particular sensor wants to send data while autocharging is executing, there will be a long delay. It is necessary to prevent the ET from frequently acquiring the channel. Therefore, ETs increase the number of contention windows to wait for a longer backoff time than before. [CW.sub.random] is increased to not exceed [CW.sub.max]. In summary, ETs increase the charging time to improve the efficiency when autocharging is executed. ETs also increase backoff at the same time to prevent the frequent autocharging occurrence.

If the channel is not acquired by ETs, the ETs adjust the values. [SCT.sub.origin] is initialized to [SCT.sub.default] which was saved. [CW.sub.random] is decreased. ETs again calculate backoff to try to acquire the channel. Failure to acquire the channel means that there is data to send in the channel and the REACH process is not available. In addition, it can be inferred that there is a high probability that there will be data to be transmitted. It is needed as a way to minimize the effect on data communication even if the channel is acquired by ETs. ETs initialize the charging time to the smallest value to solve this problem. However, if the backoff has increased previously, it will take a long time to wait for a short period of autocharging. The efficiency is very low. [CW.sub.random] is decreased to shorten the backoff of ETs. [CW.sub.random] is decreased to not less than [CW.sub.max]. In summary, ETs decrease the charging time to minimize effect on data communication. ETs also decrease the backoff to increase the efficiency of autocharging.

4. Simulation Environment

4.1. Node Setting. First, all nodes are randomly distributed evenly by dividing a 50 x 50 [m.sup.2] grid plane into 8 zones. The reason for dividing the plane into 8 zones is to solve a problem of node gathering on one place in the plane. Figure 3 shows the specific zone on the plane and percentages of the number of nodes. A node is selected as a BS based on the location information of all sensors. The BS role will be taken by a node closest to the geographic center (25,25). Data generated by sensor is transmitted to the BS node through the forwarding path. All sensors relay the data immediately without compressing or gathering the data. In this simulation, we assume that frame synchronization on all nodes is exactly the same.

Figure 4 shows how a sensor determines a sensor to forward data. Sensor A searches for sensors presented within 10 m from itself. Sensor A finds sensor B which is closest to the BS among the sensors existing within 10 m. And sensor A forwards the data to sensor B. The sensor selected as BS receives data but does not transmit data. We assume that there is one channel in the plane. Table 1 lists system parameters used by the simulator.

4.2. Numerical Modeling

4.2.1. Energy Consumption Model. We refer to sensor motes called Mica2 to set the energy consumption model of sensor used in simulation [18]. Table 2 shows currents at specific state of sensor. An I notation is the amount of consumed current in each state. In sleep mode, currents of 15 [micro]A flow through a circuit. 8 mA currents flow in the circuit while a sensor listens to a channel. 25 mA currents flow while a sensor sends data and 8 mA currents flow while a sensor receives data. [E.sub.consume] is the summation of the amount of consumed energy in each state (R represents the resistance of the circuit):

[mathematical expression not reproducible]. (3)

4.2.2. Energy Harvesting Model. ETs transmit energy to nearby sensors at a power of 3W. The propagation loss of energy sent from ETs is calculated by the Friis transmission equation [19]. Friis transmission equation shows a relationship between transmitting power (TP) and receiving power (RP). Suppose a transmitting ET is i and a receiving sensor is j. The Friis transmission equation between i and j is as follows:

[RP.sub.j] = [TP.sub.i][G.sub.i][G.sub.j] [([lambda]/4[pi][d.sub.(i,j)]).sup.2]. (4)

Since we assume the omnidirectional antenna, the two antenna gain values are always 1. A sensor can receive energy from multiple ETs located at various distances. In the RF-MAC charging process, ETs are separated into two groups according to the phase of wave. As a result, only constructive interference is caused by the energy waves at the sensor. An actual amount of harvested energy should add [RP.sub.j-] of the signal from each ET during a charging time t:

[E.sub.harvest] = [summation over (i[member of][A.sub.j])] [[integral].sup.t.sub.0] [([lambda]/4[pi][d.sub.(i,j)]).sup.2]. (5)

5. Performance Analysis

In this section, we compare the performances between RFMAC and REACH. We built the simulation environment mentioned in Section 4 by using Java Language. Each experiment was performed 20 times and average values of the results were compared. In experiments of changing the number of sensors, the number of ETs is fixed at 100. Likewise, in experiments of changing the number of ETs, the number of sensors is fixed at 250. It is assumed that all data has a size of 50 bytes.

5.1. The Number of RFE Packet Generations. We compared the number of RFE generations by the number of sensors. Figure 5 shows the average number of RFE generations according to the number of sensors. Residual energy of the sensor drops below a threshold of energy harvesting; RFE generation is inevitable. When a RFE packet is generated, energy harvesting is performed. In this process, energy harvesting delays data communications because of higher priority. In the graph, REACH has substantially fewer RFE generations than the existing RF-MAC. Due to autocharging, the lifetime of sensors is increased and RFE generation is delayed. The number of RFE generations is reduced within the same time and delaying data communications will be reduced. However, when the number of sensors is large, the number of RFE generations becomes similar. This is because there are a lot of data communications in the channel. Autocharging cannot occur frequently because of lower priority than data communications. The amount of autocharging is reduced, and RFE is generated to charge sensors. As a result, the average number of RFE generations was reduced from 18% up to 36%.

5.2. The Amount of Harvested Energy. We compared the amount of harvested energy by the number of sensors in WSN. The harvested energy is the summation of the amount of RF energy received. Figure 6 shows the amount of harvested energy by the number of sensors in RF-MAC and REACH. Basically, both algorithms show that the amount of harvested energy increases as the number of sensors increases. As the number of sensors increases, sensors are located more closely on the experimental plane. In other words, there are many sensors around one ET. When the ET emits energy, a large number of sensors can be charged. REACH showed an overall 150% increase in harvested energy compared with the existing RF-MAC. Even though the number of RFE generations is reduced as shown in Section 5.1, the amount of harvested energy is rather higher.

We compared the amount of harvested energy by the number of ETs in WSN. Figure 7 shows the amount of harvested energy by the number of ETs in RF-MAC and REACH. As the number of ETs increases, both algorithms show increases in the amount of harvested energy. If the number of ETs increases, the probability that a sensor and an ET are close together also increases. Therefore, the amount of harvested energy is increased as the number of ETs increases. The difference between RF-MAC and REACH is not large when the number of ETs is small. This is due to the fact that a small number of ETs cannot charge a large amount of energy during auto charging. The efficiency of autocharging increases and the difference between REACH and RF-MAC increases when the number of ETs is large. Results show that REACH harvests 140% more energy than RF-MAC.

5.3. The Network Throughput. We compared the network throughput according to the number of sensors constituting WSN. Figure 8 shows the comparison of network throughput. As shown in Section 5.2, network throughput also tends to increase as the number of sensors increases. When the number of sensors is increased, sensors are located more closely. In the forwarding path setup process, there are many sensors within 10 m of one sensor. A straight line connecting the sensor and BS is the most optimal path for forwarding data from one sensor to the BS. When the number of sensors is great, the probability that a sensor closer to the optimal path is determined as the next hop sensor increases. An efficient forwarding path is set, and network throughput is increased. Regardless of the number of sensors, REACH shows a throughput loss of about 8%. This can be inferred by the inevitable impact of autocharging being set to minimize the impact of data communication.

We compared the network throughput by the number of ETs. Figure 9 shows the simulation results. Both algorithms tend to show a constant throughput regardless of the number of ETs. They emit energy simultaneously to increase the efficiency of charging. This behavior prevents the number of ETs from affecting network throughput. It can be inferred that as the number of ETs increases, the charging efficiency increases and no additional network throughput loss occurs. As with the previous simulation, the network throughput of REACH is lower by 10% than that of RF-MAC.

5.4. The Average Residual Energy of Sensors. We compared the average residual energy of sensors at every unit time. In this simulation, the unit time is 5 seconds. Figure 10 shows the average of residual energy of sensors every 5 seconds. The point where the residual energy in the graph soars greatly is after the energy harvesting in the existing RF-MAC. Before energy harvesting, there are no significant differences between RF-MAC and REACH. There is a difference after the energy harvesting. The average of residual energy in the existing RF-MAC is reduced. However, the average of residual energy in REACH is still maintained as high energy because of autocharging. Autocharging affects data communication, but the overall lifetime increases. If there are many data communications, the average of residual energy becomes the same. Until then, REACH has maintained a high energy. As a result, REACH differs by 0.8% from the existing RF-MAC in the average of residual energy.

6. Conclusion

We have proposed a protocol that uses idle time of the channel to autocharge batteries of sensors. If the sensors do not have data to send, ETs emit energy. The sensors automatically charge by using the energy. Sensors can be held for longer periods of time without artificial charging requests when data communication is active. We compared the performance between the existing RF-MAC and REACH. As a result, REACH showed an increase in energy charging of 150% and decrease in network throughput of 8%. Also, we can see that the residual energy of the sensors is more than 0.8% at every point in time. Using REACH may result in a small loss of network throughput but it can increase the lifetime of the WSN in a stable manner. The proposed REACH still has some problems. Some network throughput is lost for autocharging. When there are a lot of data communications, eventually, the RF-MAC charging procedure is processed. The future work is the process of improving REACH that can be executed even in a situation when there are a lot of data communications.

Notations and Descriptions

[CW.sub.random]:            The number of contention windows of ET
[SCT.sub.origin]:           Current Short Charging Time
[SCT.sub.default]:          Default value of [SCT.sub.origin]
[SCT.sub.unit]:             Incremental unit of [SCT.sub.origin]
[summation] [t.sub.IDLE]:   Total amount of idle time in unit time
[summation] [N.sub.data]:   The number of data communication
                            occurrences
[DIFS.sub.AC]:              The DIFS value for autocharging
[Slot.sub.AC]:              The slot time for autocharging
[E.sub.consume]:            The amount of consumed energy by sensor
[E.sub.harvest]:            The amount of harvested energy by sensor
[E.sub.state]:              The amount of consumed energy by
                            sensor at each state
[TP.sub.i]:                 Transmission power of object i
[RP.sub.i]:                 Received power of object i
[G.sub.i]:                  Antenna gain of object i
[d.sub.(i, j)]:             Distance between i and j
[A.sub.j]:                  Set of ETs that received RFE sent from
                            sensor j.


https://doi.org/10.1155/2017/6438726

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (no. NRF2015R1D1A1A01059473) and was supported by the research fund of Hanyang University (HY-2015-N).

References

[1] Y. Zhan, L. Liu, L. Wang, and Y. Shen, "Wireless sensor networks for the internet of things," International Journal of Distributed Sensor Networks, vol. 2013, 2013.

[2] T. Torfs, T. Sterken, S. Brebels et al., "Low power wireless sensor network for building monitoring," IEEE Sensors Journal, vol. 13, no. 3, pp. 909-915, 2013.

[3] V. Jelicic, M. Magno, D. Brunelli, G. Paci, and L. Benini, "Context-adaptive multimodal wireless sensor network for energy-efficient gas monitoring," IEEE Sensors Journal, vol. 13, no. 1, pp. 328-338, 2013.

[4] N. Sakthipriya, "An effective method for crop monitoring using wireless sensor network," Middle-East Journal of Scientific Research, vol. 20, no. 9, pp. 1127-1132, 2014.

[5] L. Rosyidi and R. F. Sari, "Energy harvesting aware protocol for 802.11-based Internet of Things network," in Proceedings of the 2016 IEEE Region 10 Conference, TENCON 2016, pp. 1325-1328, November 2016.

[6] S. Guo, L. He, Y. Gu, B. Jiang, and T. He, "Opportunistic flooding in low-duty-cycle wireless sensor networks with unreliable links," IEEE Transactions on Computers, vol. 63, no. 11, pp. 2787-2802, 2014.

[7] D. Zhang, G. Li, K. Zheng, X. Ming, and Z.-H. Pan, "An energy-balanced routing method based on forward-aware factor for wireless sensor networks," IEEE Transactions on Industrial Informatics, vol. 10, no. 1, pp. 766-773, 2014.

[8] T.-Q. Wu and H.-C. Yang, "On the performance of overlaid wireless sensor transmission with rf energy harvesting," IEEE Journal on Selected Areas in Communications, vol. 33, no. 8, pp. 1693-1705, 2015.

[9] X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, "Wireless networks with RF energy harvesting: a contemporary survey," IEEE Communications Surveys & Tutorials, vol. 17, no. 2, pp. 757-789, 2015.

[10] D. Mishra, S. De, S. Jana, S. Basagni, K. Chowdhury, and W. Heinzelman, "Smart RF energy harvesting communications: Challenges and opportunities," IEEE Communications Magazine, vol. 53, no. 4, pp. 70-78, 2015.

[11] X. Lu, P. Wang, D. Niyato, and Z. Han, "Resource allocation in wireless networks with RF energy harvesting and transfer," IEEE Network, vol. 29, no. 6, pp. 68-75, 2015.

[12] A. A. Nasir, X. Zhou, S. Durrani, and R. A. Kennedy, "Relaying protocols for wireless energy harvesting and information processing," IEEE Transactions on Wireless Communications, vol. 12, no. 7, pp. 3622-3636, 2013.

[13] S. Jeong, H. Kim, D. K. Noh, and I. Yoon, "Energy-aware data aggregation scheme for energy-harvesting wireless sensor networks," in Proceedings of the 1st IEEE International Conference on Computer Communication and the Internet, ICCCI2016, pp. 140-143, October 2016.

[14] M. M. Ababneh, S. Perez, and S. Thomas, "Optimized power management circuit for RF energy harvesting system," in Proceedings of the Wireless and Microwave Technology Conference (WAMICON), pp. 1-4, April 2017

[15] T. D. Nguyen, J. Y. Khan, and D. T. Ngo, "Energy harvested roadside IEEE 802.15.4 wireless sensor networks for IoT applications," Ad Hoc Networks, vol. 56, pp. 109-121, 2017

[16] T. D. Nguyen, J. Y. Khan, and D. T. Ngo, "An adaptive MAC protocol for RF energy harvesting wireless sensor networks," in Proceedings of the 59th IEEE Global Communications Conference, GLOBECOM 2016, pp. 1-6, December 2016.

[17] M. Y. Naderi, P. Nintanavongsa, and K. R. Chowdhury, "RFMAC: A medium access control protocol for re-chargeable sensor networks powered by wireless energy harvesting," IEEE Transactions on Wireless Communications, vol. 13, no. 7, pp. 3926-3937, 2014.

[18] Z. Dian, M. Zhong, L. Gang et al., "An empirical study of radio signal strength in sensor networks using mica2 nodes," Journal of Shenzhen University Science and Engineering, vol. 1, article 009, 2014.

[19] P. Nintanavongsa, "A survey on RF energy harvesting: circuits and protocols," in Proceedings of the Eco-Energy and Materials Science and Engineering, EMSES 2014, vol. 56, pp. 414-422, December 2013.

Teasung Kim, Joohan Park, Jeehyeong Kim, Jaewon Noh, and Sunghyun Cho

Department of Computer Science and Engineering, Hanyang University, Ansan, Republic of Korea

Correspondence should be addressed to Sunghyun Cho; chopro@hanyang.ac.kr

Received 9 June 2017; Accepted 3 August 2017; Published 24 September 2017

Academic Editor: Jeongcheol Lee

Caption: Figure 1: Target WSN.

Caption: Figure 2: Flow diagram.

Caption: Figure 3: Sectioning of plane and distribution of nodes.

Caption: Figure 4: The forwarding node setup process.

Caption: Figure 5: The number of generations of RFE packet.

Caption: Figure 6: The amount of harvested energy by the number of sensors.

Caption: Figure 7: The amount of harvested energy by the number of ETs.

Caption: Figure 8: Network throughput by the number of sensors.

Caption: Figure 9: Network throughput by the number of ETs.

Caption: Figure 10: Average residual energy.

Table 1: System parameters.

Parameter                           Symbol           Value

Slot time for energy (s)       [Slot.sub.energy]   10 [micro]
Slot time for data (s)          [Slot.sub.data]    20 [micro]
Minimum contention window        [CW.sub.min]          32
Maximum contention window        [CW.sub.max]         1024
SIFS for energy (s)            [SIFS.sub.energy]   5 [micro]
SIFS for data (s)               [SIFS.sub.data]    10 [micro]
DIFS for energy (s)            [DIFS.sub.energy]   25 [micro]
DIFS for data (s)               [DIFS.sub.data]    50 [micro]
Minimum voltage (v)               [V.sub.min]         1.8
Maximum voltage (v)               [V.sub.max]         3.0
Threshold for harvesting (v)   [V.sub.threshold]      2.3
Channel speed (kbps)                                  250

Table 2: Currents at each state.

State                 Symbol        Value (A)

Sleep              [I.sub.sleep]    15 [micro]
Waiting           [I.sub.waiting]       8m
Transmit packet     [I.sub.tx]         25m
Receive packet      [I.sub.rx]          8m
Listening         [I.sub.listen]        8m
COPYRIGHT 2017 Hindawi Limited
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2017 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Research Article; medium access control
Author:Kim, Teasung; Park, Joohan; Kim, Jeehyeong; Noh, Jaewon; Cho, Sunghyun
Publication:Wireless Communications and Mobile Computing
Article Type:Report
Date:Jan 1, 2017
Words:5252
Previous Article:Modeling of Non-WSSUS Double-Rayleigh Fading Channels for Vehicular Communications.
Next Article:Energy Efficient Hierarchical Clustering Approaches in Wireless Sensor Networks: A Survey.
Topics:

Terms of use | Privacy policy | Copyright © 2020 Farlex, Inc. | Feedback | For webmasters