Printer Friendly

Prevalence of Bleeding Symptoms among Adolescents and Young Adults in the Capital City of Saudi Arabia.

1. Introduction

Bleeding disorders are a group of inherited disorders with different prevalence rates depending on many ethnicities. The most known inherited bleeding disorders are hemophilia A and B, which are relatively rare. Hemophilia A affects 1:5000-10,000 males, while hemophilia B affects 1:50,000100,000 males. Hemophilia A and B can be very serious and life-threatening for individuals as well as a costly disease for families and countries [1]. von Willebrand disease (VWD) is another bleeding disorder, which is an inherited disorder that is caused by deficiency or dysfunction of VWF. VWD is a relatively common cause of bleeding, but the prevalence varies considerably among studies and depends strongly on the case definition that is used. The prevalence of VWD has been estimated in several countries on the basis of the number of symptomatic patients seen at hemostasis centers and ranges from about 23 to 110 per million population (0.0023-0.01%) [2]. It is also been estimated by screening populations for bleeding symptoms (population-based approach), with estimates reported at 0.6%, 0.8%, and 1.3% [3-7]. These international estimates of the prevalence of VWD do not address ethnicity or geographic variables as potential independent factors, though ethnic variation in VWF levels can influence the diagnosis of VWD [8-10]. Moreover, most mild bleeding disorders are often unrecognized, as patients bleed only during stress periods or with surgery and medical procedures [11,12]. The most common result of these chronic bleeds is iron deficiency anemia, which is more common in women due to excessive menstrual bleeding.

The few studies estimating the prevalence of VWD by screening populations using formal standardized criteria reported a prevalence approaching 1%, with no ethnic differences [4, 6]. Platelet disorders are another group of bleeding disorders, in which bleeding can result from a decrease in platelet count (thrombocytopenia), with a reported incidence of 1.9 and 6.4 per 10 children/year. In adults, the incidence of idiopathic thrombocytopenic purpura is 3.3 per 10 adults/year [13,14]. There are additional inherited platelet disorders with a generally unknown prevalence. Inherited thrombocytopathies are a heterogeneous group of platelet disorders present mainly with mucocutaneous bleeding of variable severity caused by defects in platelet adhesion, aggregation, granules, and signal transduction [15]. The diagnosis of more prevalent mild forms of inherited thrombocytopathies is difficult, even with extensive laboratory testing [16]. This could be due to the presence of a very broad range of candidate platelet proteins potentially implicated in the pathogenesis of nonsevere inherited thrombocytopathies, many of which are incompletely characterized [17]. Gresele et al. [18] estimated that only 40-60% of mild platelet disorders can be diagnosed at the level of the defective platelet pathway.

In the Kingdom of Saudi Arabia, no population-based screening studies have examined the prevalence of bleeding disorders, although several case reports and case-series have been published [19-23]. This is potentially important, as Arab populations may have a higher prevalence of bleeding disorders than in the West, primarily owing to the increased rate of consanguinity in Arab communities. The purpose of the current study was to conduct the first screening survey in the capital city of Riyadh focused on the prevalence of bleeding symptoms among adolescents and young adults.

2. Material and Methods

We conducted an epidemiological survey on a randomly selected Saudi national adolescent sample of intermediate and high school participants of both sexes in Riyadh using a semistructured validated condensed (MCMDM-1) VWD Bleeding Questionnaire. This questionnaire was selected owing to its capacity to generate quantifiable data from the entire study group [24]. Process of translation into Arabic and adaptation of MCMDM-1 through an expert committee for implementation has been published elsewhere [25]. A shorter questionnaire, derived from the same primary questions but with less detail, was extracted to be used as a primary screening tool for the initial phase of the study, whereas the original questionnaire was used in the second phase of the study only when participants gave a positive response to any primary question. The survey was conducted onsite by trained Arabic speaking interviewers. All questionnaires were coded for data entry. The process involved the following phases.

Phase I. Fifty schools (30 intermediate and 20 secondary) were randomly selected from a complete list of intermediate and secondary schools in Riyadh city (Table 1). We distributed invitations to the schools with the intention to have at least 100 participants from each school. An initial visit was paid to participating schools to explain the aim of the study and to distribute educational materials on bleeding disorders. Interviews were conducted after obtaining signed assents or consent, depending upon the age of the participant. The Phase I data were analyzed to identify participants who gave a positive response to any of the primary questions; these participants were considered to potentially have a bleeding tendency.

Phase II. Respondents with at least one positive response were contacted again for getting further details regarding symptoms and to assess potential recall bias. Their responses were recorded using a detailed questionnaire further probing on the bleeding type specific to the site of bleeding, based upon MCMDM-1.

2.1. Data Management and Quality Assurance. Arabic speaking trained individuals interviewed participants and collected data using specially designed Arabic-language Case Report Forms (CRF). Confidentiality was maintained by assigning each participant a unique identification number, which was entered into a computerized database. Data were validated for data entry errors by cross checking the improbable answers. Discrepancies were handled by reviewing the original forms. All data were transferred to IBM SPSS Statistics Version 20 (IBM Corp., Armonk, NY, USA) for final analysis.

Processed data are reported in percentages along with the denominator which defines the available data. To compare categorical data, Chi-Square or Fisher's exact test was used while Shapiro-Wilk test was utilized to test for the normality of continuous data. P value of less than 0.05 was considered as achieving statistical significance.

3. Results

3.1. Phase I. During Phase 1,3923 randomly selected students were approached and told about the study after providing written literature and assent forms with an invitation to be interviewed regarding bleeding tendency. Of these 98.9% (3881, male: 1901 [49%]; female: 1980 [51%]) gave assent to participate. Forty-two (42) refused to participate. Median age of the participants at the time of interview for available data was 18.2 years (n = 3322; range, 12.0-21.0 years; mean [+ or -] standard deviation: 17.8 [+ or -] 1.4 years; P value for normality < 0.001). There were 40 (1.2%) participants < 14 years, 1340 (40.3%) 14-17 years, and 1942 (58.5%) [greater than or equal to] 18 years. Of 3881 participants who completed the survey, 1849 (47.6%) answered "yes/positive" to at least one of the eight questions (Table 2).

Of 72 (1.9%) participants who responded "Yes" to "Have you ever been diagnosed with any bleeding disorder?" question, eight reported having hemophilia, three platelets disorders, and none reported VWD; remaining participants did not disclose additional information. In response to a family history of any bleeding disorders, 237 out of 3730 (6.4%) participants who opted to answer, responded positively, 44 hemophilia, 22 platelet disorders, and 3 VWD; the remaining 167 did not provide any details or did not know the exact disorder.

3.2. Phase II. Of the 1849 (47.6%) participants who responded "yes" to at least one question in Phase I, only 525 (28.4%; male: 296 [56.4%]; female: 229 [43.6%]) replied to our call to participate in Phase II of the study and attend the second interview. Reasons for those participants of Phase I who had possibly exhibited bleeding symptoms during the interview, not completing the Phase II of the study, included wrong or changed phone numbers, participant moving out of the area, or incorrect contact details. Median age at the time of interview for this group of participants was 18.4 years (range: 12.5-20.9 years; mean [+ or -] standard deviation: 18.1 [+ or -] 1.4; P value for normality < 0.001). There were eight (1.8%) participants < 14 years, 140 (31.8%) 14-17 years, and 292 (66.4%) [greater than or equal to] 18 years of age. Data on age at interview was available for 440 participants. A total of 442 participants of the Phase II of the study answered positive to any of the questions inquiring about the symptoms pertaining to the bleeding disorders (Table 3); thus an overall prevalence of all bleeding symptoms was 84.2% (Figure 1).

3.3. Oral Cavity Bleeding. About fifty-three percent (278/525, 52.9%) of participants reported oral cavity bleeding. Of these, 85.3% (237/278) reported bleeding from the mouth while brushing their teeth, 20.5% (57/278) spontaneously from the gums, 11.2% (31/278) from lip or tongue bites, and 1.8% (5/278) from tooth eruption. In addition, 7.2% (20/278) reported having sought medical attention, 75% (15/20) sought consultation only, while one participant reported having undergone a blood transfusion. Oral cavity bleeding was significantly higher in girls (134/229, 58.5%) than in boys (144/296, 48.6%, P = 0.028). Similarly, oral bleeding from lip or tongue bites was significantly higher in girls (25/134, 18.7%) than in boys (6/144, 4.2%, P < 0.001).

3.4. Epistaxis. The next most common symptom was epistaxis, which was reported by 229 (43.6%) participants and was more predominant among boys (147/296, 49.7%) than girls (82/229, 35.8%, P = 0.002). Epistaxis mostly occurred 1-5 times yearly (118/228,51.8%), lasted 1-10 minutes (111/223, 49.8%), and was spontaneous in 87.2% (197/226) of participants. It primarily occurred at a single nostril (149/225, 66.2%) and was not related to ingestion of any drugs (227/228, 99.6%), though 56.2% (127/226) reported a seasonal relationship. A majority (162/221, 73.3%) reported successful cessation of epistaxis with short compression, while some (57/221, 25.8%) reported spontaneous cessation, and a few (2/221, 0.9%) reported cessation following medical intervention. No significant dependence was found between the age of maximum severity (<14 years, 111/219, 50.7%; [greater than or equal to] 14 years, 108/219, 49.3%). A small proportion of participants (36/227, 15.9%) reported that they had sought medical attention in the past due to epistaxis, including consultation only (66.7% [24/36]), cauterization (25.0% [9/36]), and packing (2.8% [1/36]).No participants reported needing blood transfusion.

There was a significant difference in the spontaneity of epistaxis between sexes (girls: 77.81 [95.1%]; boys: 120/145 [82.8%], P = 0.007). Moreover, 40.6% (58/143) of boys reported having experienced bleeding from both nostrils compared to 22% (18/82) of girls (P = 0.005).

3.5. Cutaneous Symptoms. Cutaneous symptoms were reported by 29.3% (154/525), most commonly occurring six times yearly (17/92, 18.5%) and ranging from one time (8/92, 8.7%) to 24 times (3/92, 3.2%). The most common manifestation was bruises (109/142, 76.8%), followed by hematoma (16/142, 11.3%); these were most commonly manifested at exposed sites (97/139, 69.8%). Only 14.2% (18/127) sought medical attention regarding this, nine of whom sought consultation only. Cutaneous symptoms occurred more commonly in girls (102/229, 44.5%) than in boys (52/296,17.6%, P < 0.001). In addition, more boys (12/45, 26.7%) required medical attention than girls (6/82,4.7%, P = 0.006).

3.6. Menstrual Bleeding. Heavy menstrual bleeding was reported by 24.5% (56/229) of female participants. Median duration of menstruation was 7 days (range: 3-15 days; mean: 6.5 days; P for normality < 0.001), and the median number of heavy days was 3 (range: 0-8; mean = 2.7, P for normality < 0.001). The most commonly reported duration of menstruation was 7 days (40.9% [90/220]), and the most commonly reported number of heavy days was 3 (36.9% [73/198]). Medical attention was sought by 21.4% (12/56); three had consultation only, and nine received iron supplements.

3.7. Minor Wound Bleeding. Bleeding from minor wounds was reported by 18.1% of participants (95/525), with 52.6% (41/78) reporting this occurred 6-12 times a year, and 25.6% (20/78) reporting >12 times a year. Average duration of a single episode was 1-10 minutes in 78.3% (65/83), > 10 minutes in 19.3% (16/83), and <1 minute in only 2.4% (2/83). Location of minor wounds was primarily exposed sites (89.6%, 69/77), and there was minimal or no trauma in 67.4% (64/95). Only 8.4% (8/95) needed medical attention, with two participants needing surgical hemostasis. Bleeding from minor wounds was more common in girls (56/229, 24.5%) than in boys (39/296,13.2%, P = 0.001).

3.8. Bleeding during Surgery/Tooth Extraction. Those who underwent at least one surgery of any type comprised 30.5% (160/525). Among these, 112 (70%) had one surgical episode, 33 (20.6%) had two, seven (4.4%) had three, three (1.9%) had four, four (2.5%) had five, and one (0.6%) had seven, thus totaling 238 reported surgical episodes. Among those who underwent any surgery, 24 (15%) reported at least one surgery followed by a bleeding episode and four (2.5%) reported two surgeries followed by bleeding episodes; thus 28/238 reported surgeries with a postsurgery bleeding episode alluding to a prevalence of 11.8%. Bleeding episode after first surgery was reported by almost one-quarter of the participants (39/160, 24.4%) and was significantly higher in girls (19/52, 36.5%) than in boys (20/108, 18.5%, P = 0.018). Types of surgeries included major abdominal surgery (4/160, 2.5%), major thoracic surgery (2/160,1.2%), and molar extraction or dental surgery (28/160, 17.5%). Posttooth extraction bleeding was reported by 12.8% (67/525) of participants and was significantly higher in girls (42/229, 18.3%) than in boys (25/296, 8.4%, P = 0.001). No action was required to control the bleeding in 47 participants, resuturing was performed in nine, and only one required blood transfusion.

3.9. Gastrointestinal Bleeding. GI bleeding was reported by 8.8% (46/525) of participants. Six (6/16, 37.5%) reported having had GI bleeding at least once, four (25%) at least three times, two (12.5%) at least five times, two (12.5%) at least 10 times, one (6.2%) at least two times, and one (6.2%) at least 12 times. Of these, 39.1% (18/46) had hematemesis, 37% (17/46) had hematochezia, and 13% (6/46) had melena. In addition, 23.8% (10/42) had associated GI disease; of these, 30% (3/10) reported ulcer and 10% (1/10) angiodysplasia, while none reported portal hypertension. Moreover, 28.3% (13/46) mentioned that they sought medical attention for this, 84.6% (11/13) of whom had consultation only, while one female participant (7.7%) underwent a blood transfusion. GI bleeding was more common in girls (31/229, 13.5%) than in boys (15/296, 5.1%, P = 0.001).

3.10. Muscle Hematoma and Hemarthrosis. Muscle hematomas or hemarthrosis was reported by 4.6% (24/525), with spontaneous bleeding in 37.5% (9/24), which was higher in girls (6/10, 60%) than in boys (3/14, 21.4%, P = 0.092). Two of these participants (2/24, 8.3%) reported that they sought medical attention, one was given replacement therapy, and complete data was not available for the other. None received desmopressin or blood transfusion.

3.11. Other Types of Bleeding. A total of twelve (12/525, 2.3%) participants reported experiencing episodes of bleeding other than the above-mentioned types. Only two of these (2/12, 16.7%) went to see a medical practitioner; one was given replacement therapy and the other received consultation only. No data was available regarding the type of bleeding.

More than half (53.1%, n = 279) of the students (525) reported bleeding episodes from more than one group of sites. Majority of these (53%, n = 148) were females (P value: 0.001). Oral cavity bleeding with cutaneous symptoms was the most common (12.2%, 18 out of 148), followed by oral cavity bleeding with epistaxis (6.8%, 10 out of 148) and oral cavity bleeding with epistaxis and cutaneous symptoms (4.7%, 7 out of 148). Among boys reporting bleeding episodes observed from multiple sites (n = 131), oral cavity bleeding with epistaxis (31.3%, 41 out of 131) was the most frequently observed kind, followed by oral cavity bleeding with cutaneous symptoms (7.6%, 10 out of 131) and epistaxis with cutaneous symptoms (5.3%, 7 out of 131).

4. Discussion

To our knowledge, this is the first largest screening study attempting to address the estimation of prevalence of symptoms of bleeding disorders in the capital city of Saudi Arabia. Prior studies from Saudi Arabia reporting the same have been smaller, hospital-based studies. For instance, El-Bostany et al. [19] assessed the local prevalence of some inherited bleeding disorders in pediatric patients which involved 43 children with various bleeding manifestations recruited from a children's hospital in Cairo, Egypt, and Jeddah, Kingdom of Saudi Arabia. Of these, 12 (279%) had VWD, 11 (25.5%) had hemophilia A, three (7%) had hemophilia B, seven (16.3%) had platelet disorders, and 10 (23.3%) had bleeding of undiagnosed cause. In addition, Ahmed et al. [20] reported 34 cases of inherited bleeding disorders from Eastern Province of Saudi Arabia; of these, 15 had hemophilia, one had factor VII deficiency, one had factor X deficiency, 12 had Glanzmann thrombasthenia, and five had unidentified platelet function disorders. Moreover, Al-Sharif et al. [21] reported clinical phenotype of around 20 patients with factor XIII deficiency in the Riyadh region. Furthermore, Al-Fawaz et al. [22] conducted an 8-year retrospective analysis of patients referred for suspected inherited bleeding disorders in the Riyadh region and found 168 patients had bleeding symptoms that fulfilled the criteria for inherited bleeding disorders. Of these, 41 (24.4%) had hemophilia A, 16 (9.5%) had hemophilia B, 25 (14.9%) had VWD, 18 (10.7%) had Glanzmann thrombasthenia, 18 with Bernard-Soulier disease, five (3.0%) had factor XI deficiency, two (1.2%) had factor XII deficiency, four (2.4%) had factor V deficiency, four (2.4%) had factor VIII deficiency, one (0.6%) had factor VII deficiency, two (1.2%) had dysfibrinogenemia, and one (0.6%) had afibrinogenemia. Additionally, Islam and Quadri [23] conducted a 7-year retrospective review of all hospitals in Eastern Province of Saudi Arabia. They reported 54 patients diagnosed with hereditary coagulation factor deficiencies, including 42 hemophiliacs, 5 with probable factor XIII deficiency, and 7 with VWD. There are also rare reports from other Arab countries reporting small hospital-based studies [26-28].

In the current study, boys experienced epistaxis more frequently, which was more likely to be spontaneous, to occur at both nostrils, and to have seasonal differences; this may be explained by the more outdoor lifestyle in boys in a dry, hot environment, which leads to more nasal dryness and is one of the common causes of epistaxis in general [29-31]. In contrast, girls wear veils and are usually covered in the outdoor setting, which may reduce nasal dryness.

A study from Sweden among healthy university females showed a high prevalence of bleeding symptoms including menorrhagia. 73% of the participants had one bleeding symptom while 43% had more than one symptom [32]. Another study from Turkey done on female university residents showed 82/376 (22%) healthy females reporting menorrhagia, after excluding pelvic pathology out of 11/76 (14.5%) were found to have an underlying bleeding disorder [33].

This study provides insight into the existence of various bleeding disorders and highlights the need for a national surveillance system for identifying the individuals in the early age with such disorders. There is a need for genetic mapping of families suffering from bleeding diathesis in order to prevent further generations of Saudi nationals being affected. Specialized hematological investigations from a nationally representative sample would provide more insight into the nature and classification of the more prevalent disorders and guide treatment and prevention. Although every citizen has an easy access to the healthcare services in the Kingdom of Saudi Arabia, it is imperative to improve the quality of life of the affected individuals and families by raising awareness and reducing exposure to precipitating insults. Genetic counseling of the severely affected families is mandatory for genetically transmitted disorders.

It might be said that the participants in this sample were more aware of their health problems since they were residing in an urban area; the importance to search for the prevalence in other suburban and rural areas of the country is also highlighted, since consanguinity maybe more prevalent in those closed populations. Generally it was observed that girls reported higher prevalence of bleeding symptoms than boys. We believe this could be a reporting bias since girls are generally more self-caring than boys especially in the teenage years. Boys tend to ignore minor cuts and bruises and may attribute them to their typical physical activities.

5. Limitations

This report is limited by the lack of laboratory related data further identifying specific bleeding disorders. It was beyond the feasibility of the research with respect to logistics and financial support. It would be very interesting to observe the prevalent forms of bleeding disorders in a future report hence guiding the policy makers for efficient resource allocation.

6. Conclusion

This survey which is the first epidemiological study for bleeding symptoms in Saudi Arabia using standardized tool (MCMDM-1) that had highlighted the need to conduct a national survey in the Kingdom on broader representative sample with extensive laboratory test to explore the prevalence of different bleeding disorders. We also recommend that physicians be cautious of the existence of bleeding disorders in the community as minor symptoms can get easily ignored and lead to a catastrophe when challenged by trauma or surgery. Also, a sustainable public awareness program focusing the early diagnosis, treatment, and genetic counseling among the residents of the regions with high prevalence of bleeding disorders should be initiated.

Consent

Informed consent was obtained from the participants as per regulatory requirements of the relevant authorities in the Kingdom of Saudi Arabia.

https://doi.org/10.1155/2018/1858241

Conflicts of Interest

The authors declare that they have no conflicts of interest with the funding institute.

Acknowledgments

The authors would like to thank King Abdulaziz City for Science and Technology (KASCT), Saudi Arabia, for providing the funding for this project, research Grant approval letter no. 408-34.

References

[1] W. F. O. Hemophilia, "World federation of hemophilia report on the annual global survey 2006," in World Federation of Hemophilia 1425 Rene Levesque Boulevard West, Suite 1010, Montreal, Canada.

[2] W. L. Nichols, M. E. Rick, T L. Ortel et al., "Clinical and laboratory diagnosis of von Willebrand disease: a synopsis of the 2008 NHLBI/NIH guidelines," American Journal of Hematology, vol. 84, no. 6, pp. 366-370, 2009.

[3] L. Hallberg, A. M. Hogdahl, L. Nilsson, and G. Rybo, "Menstrual bloodloss--apopulation study. Variation at different ages and attempts to define normality," Acta Obstetricia et Gynecologica Scandinavica, vol. 45, no. 3, pp. 320-351,1966.

[4] F. Rodeghiero, G. Castaman, and E. Dini, "Epidemiological investigations of the prevalence of von Willebrand's disease," Blood, vol. 69, no. 2, pp. 454-459,1987

[5] J. E. Sadler, P. M. Mannucci, E. Berntorp et al., "Impact, diagnosis and treatment of von willebrand disease," Thrombosis and Haemostasis, vol. 84, no. 08, pp. 160-174, 2017

[6] E. J. Werner, E. H. Broxson, E. L. Tucker, D. S. Giroux, J. Shults, and T. C. Abshire, "Prevalence of von Willebrand disease in children: a multiethnic study," Journal of Pediatrics, vol. 123, no. 6, pp. 893-898, 1993.

[7] A. S. Lukes, R. A. Kadir, F. Peyvandi, and P. A. Kouides, "Disorders of hemostasis and excessive menstrual bleeding: prevalence and clinical impact," Fertility and Sterility, vol. 84, no. 5, pp. 1338-1344, 2005.

[8] A. F. Fleming, "Ethnic variation in von Willebrand factor levels can influence the diagnosis of von Willebrand disease," Clinical & Laboratory Haematology, vol. 25, no. 6, p. 413, 2003.

[9] B. Friberg, A. K. Orno, A. Lindgren, and S. Lethagen, "Bleeding disorders among young women: a population-based prevalence study," Acta Obstetricia et Gynecologica Scandinavica, vol. 85, no. 2, pp. 200-206, 2006.

[10] T Quiroga, M. Goycoolea, O. Panes et al., "High prevalence of bleeders of unknown cause among patients with inherited mucocutaneous bleeding. A prospective study of 280 patients and 299 controls," Haematologica, vol. 92, no. 3, pp. 357-365, 2007

[11] C. Biron-Andreani, B. Mahieu, A. Rochette et al., "Preoperative screening for von Willebrand disease type 1: low yield and limited ability to predict bleeding," Journal of Laboratory and Clinical Medicine, vol. 134, no. 6, pp. 605-609,1999.

[12] M. Bowman, W. M. Hopman, D. Rapson, D. Lillicrap, M. Silva, and P. James, "A prospective evaluation of the prevalence of symptomatic von Willebrand Disease (VWD) in a pediatric primary care population," Pediatric Blood & Cancer, vol. 55, no. 1, pp. 171-173, 2010.

[13] D. R. Terrell, L. A. Beebe, S. K. Vesely, B. R. Neas, J. B. Segal, and J. N. George, "The incidence of immune thrombocytopenic purpura in children and adults: a critical review of published reports," American Journal of Hematology, vol. 85, no. 3, pp. 174-180, 2010.

[14] G. D'Andrea, M. Chetta, and M. Margaglione, "Inherited platelet disorders: thrombocytopenias and thrombocytopathies," Blood Transfusion, vol. 7, no. 4, pp. 278-292, 2009.

[15] M. V Ragni, N. Machin, L. M. Malec et al., "Von Willebrand factor for menorrhagia: a survey and literature review," Haemophilia, vol. 22, no. 3, pp. 397-402, 2016.

[16] P. Noris, G. Biino, A. Pecci et al., "Platelet diameters in inherited thrombocytopenias: analysis of 376 patients with all known disorders," Blood, vol. 124, no. 6, pp. e4-e10, 2014.

[17] C. M. Kirchmaier and D. Pillitteri, "Diagnosis and management of inherited platelet disorders," Transfusion Medicine and Hemotherapy, vol. 37, no. 5, pp. 237-246, 2010.

[18] P. Gresele, P. Harrison, L. Bury et al., "Diagnosis of suspected inherited platelet function disorders: results of a worldwide survey," Journal of Thrombosis and Haemostasis, vol. 12, no. 9, pp. 1562-1569, 2014.

[19] E. A. El-Bostany, N. Omer, E. E. Salama, E. A. El-Ghoroury, and S. K. Al-Jaouni, "The spectrum of inherited bleeding disorders in pediatrics," Blood Coagulation & Fibrinolysis, vol. 19, no. 8, pp. 771-775, 2008.

[20] M. A. M. Ahmed, M. O. Al-Sohaibani, S. A. Al-Mohaya, T. Sumer, E. H. Al-Sheikh, and H. Knox-Macaulay, "Inherited bleeding disorders in the eastern province of saudi arabia," Acta Haematologica, vol. 79, no. 4, pp. 202-206, 1988.

[21] F. Z. Al-Sharif, M. D. Aljurf, A. M. Al-Momen et al., "Clinical and laboratory features of congenital factor XIII deficiency," Saudi Medical Journal, vol. 23, no. 5, pp. 552-554, 2002.

[22] I. M. Al-Fawaz, A. M. A. Gader, H. M. Bahakim, F. Al-Mohareb, A. K. Al-Momen, and M. S. Harakati, "Hereditary bleeding disorders in Riyadh, Saudi Arabia," Annals of Saudi Medicine, vol. 16, no. 3, pp. 257-261,1996.

[23] S. I. A. Islam and M. I. Quadri, "Spectrum of hereditary coagulation factor deficiencies in Eastern Province, Saudi Arabia," Eastern Mediterranean Health Journal, vol. 5, no. 6, pp. 1188-1195, 1999.

[24] M. Bowman, G. Mundell, J. Grabell et al., "Generation and validation of the condensed MCMDM-1VWD bleeding questionnaire for von Willebrand disease," Journal of Thrombosis and Haemostasis, vol. 6, no. 12, pp. 2062-2066, 2008.

[25] S. S. Khawar, M. Abu-Riash, and A. Al-Suliman, "Translation and adaptation of english language questionnaire into arabic for implementation of a large survey on assessing the symptoms of bleeding disorders in Saudi Arabia," Journal of Applied Hematology, vol. 8, no. 4, 2017

[26] S. S. Eid, N. R. Kamal, T. S. Shubeilat, and A. G. Wael, "Inherited bleeding disorders: a 14-year retrospective study," Clinical Laboratory Science, vol. 21, no. 4, pp. 210-214, 2008.

[27] G. M. Mokhtar, A. A. G. Tantawy, A. A. M. Adly, M. A. S. Telbany, S. E. E. Arab, and M. Ismail, "A longitudinal prospective study of bleeding diathesis in Egyptian pediatric patients: single-center experience," Blood Coagulation & Fibrinolysis, vol. 23, no. 5, pp. 411-418, 2012.

[28] A. S. Awidi, "A study of von Willebrand's disease in Jordan," Annals of Hematology, vol. 64, no. 6, pp. 299-302,1992.

[29] M. Anie, G. Arjun, C. Andrews, and A. Vinayakumar, "Descriptive epidemiology of epistaxis in a tertiary care hospital," International Journal of Advances in Medicine, vol. 2, no. 3, pp. 255-259, 2015.

[30] A. Asghar, M. A. ul Haq, M. I. Anwar, and M. Awais, "Effects of extreme dry climate of sudan on Pakistani peacekeepers," Pakistan Armed Forces Medical Journal, vol. 67, no. 1, pp. 166-170, 2017.

[31] M. R. Chaaban, D. Zhang, V. Resto, and J. S. Goodwin, "Demographic, seasonal, and geographic differences in emergency department visits for epistaxis," Otolaryngology--Head and Neck Surgery (United States), vol. 156, no. 1, pp. 81-86, 2017.

[32] B. Friberg, A. Kristin (Orno, A. Lindgren, and S. Lethagen, "Bleeding disorders among young women: a population-based prevalence study," Acta Obstetricia et Gynecologica Scandinavica, vol. 85, no. 2, pp. 200-206, 2006.

[33] T. Gursel, A. Biri, Z. Kaya, S. Sivaslioglu, and M. Albayrak, "The frequency of menorrhagia and bleeding disorders in university students," Pediatric Hematology and Oncology, vol. 31, no. 5, pp. 467-474, 2014.

Tarek Owaidah (iD), (1,2) Mahasen Saleh, (3) Hazzah Alzahrani, (4) Mahmood Abu-Riash, (4) Ali Al Zahrani, (5) Mohammed Almadani, (6) Ayman Alsulaiman, (5) Abdulmajeed Albanyan, (2) Khawar Siddiqui, (5) Khalid Al Saleh (iD), (2) and Abdulkareem Al Momen (iD) (2)

(1) Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia

(2) Center of Excellence in Thrombosis and Hemostasis, King Saud University, Riyadh, Saudi Arabia

(3) Pediatric Hematology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia

(4) Oncology Center, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia

(5) Research Center, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia

(6) Ministry of Education, Riyadh, Saudi Arabia

Correspondence should be addressed to Tarek Owaidah; towaidah@kfshrc.edu.sa

Received 18 February 2018; Accepted 25 March 2018; Published 2 May 2018

Academic Editor: Elvira Grandone

Caption: Figure 1: Prevalence of bleeding symptoms as reported by the participants.
Table 1: Sampling frame for determining the prevalence of bleeding
symptoms.

                              Intermediate schools

        Number of participants   Number of schools   Number of clusters

Boys            81,869                 336                  15
Girls           84,607                 419                  15
Total          166,476                 755                  30

                                  High schools

        Number of participants   Number of schools   Number of clusters

Boys           72,621                 194                  10
Girls          80,136                 293                  10
Total          152,757                487                  20

Table 2: Responses to Phase I of the Survey (n = 3881).

Questions                                           Male

(1) Previous diagnosis of any bleeding
disorder?
  Yes                                          42 (1901), 2.2
  Did not reply                                      --
(2) Previous episodes of epistasis?
  Yes                                         453 (1901), 23.8
  Did not reply                                      --
(3) Bleeding under the skin?
  Yes                                         218 (1840), 11.8
  Did not reply                                      61
(4) Postsurgery bleeding?
  Yes                                          97 (1834), 5.3
  Did not reply                                      67
(5) Bleeding from the mouth?
  Yes                                          161 (1801), 8.9
  Did not reply                                      100
(6) Bleeding from the digestive system?
  Yes                                          107 (1834), 5.8
  Did not reply                                      67
(7) Postdental extraction bleeding?
  Yes                                         314 (1823), 17.2
  Did not reply                                      78
(8) Muscular bleeding?
  Yes                                          94 (1725), 5.4
  Did not reply                                      176
(9) Family history of bleeding disorders?
  Yes                                          146 (1821), 8.0
  Did not reply                                      80
(10) Any other bleeding disorders? (for
boys only)
  Yes                                          173 (1882), 9.2
  Did not reply                                      19
(11) Heavy menstrual bleeding (girls only)
  Yes                                                --
  Did not reply                                      --
(12) Any Question 2 through 8 or 10
  Yes                                         832 (1901), 43.8
  Did not reply                                      --

Questions                                          Female
                                                n (total), %
(1) Previous diagnosis of any bleeding
disorder?
  Yes                                          30 (1980), 1.5
  Did not reply                                      --
(2) Previous episodes of epistasis?
  Yes                                         311 (1980), 15.7
  Did not reply                                      --
(3) Bleeding under the skin?
  Yes                                         406 (1931), 21.0
  Did not reply                                      49
(4) Postsurgery bleeding?
  Yes                                         313 (1930), 16.2
  Did not reply                                      50
(5) Bleeding from the mouth?
  Yes                                          188 (1928), 9.8
  Did not reply                                      52
(6) Bleeding from the digestive system?
  Yes                                         211 (1930), 10.9
  Did not reply                                      50
(7) Postdental extraction bleeding?
  Yes                                         126 (1926), 6.5%
  Did not reply                                      54
(8) Muscular bleeding?
  Yes                                         201 (1894), 10.6
  Did not reply                                      86
(9) Family history of bleeding disorders?
  Yes                                          91 (1909), 4.8
  Did not reply                                      71
(10) Any other bleeding disorders? (for
boys only)
  Yes                                                --
  Did not reply                                      --
(11) Heavy menstrual bleeding (girls only)
  Yes                                         330 (1980), 16.7
  Did not reply                                      --
(12) Any Question 2 through 8 or 10
  Yes                                         1017 (1980), 51.4
  Did not reply                                      --

Questions                                          Total
                                                n (total), %
(1) Previous diagnosis of any bleeding
disorder?
  Yes                                          72 (3881), 1.9
  Did not reply                                      --
(2) Previous episodes of epistasis?
  Yes                                         764 (3881), 19.7
  Did not reply                                      --
(3) Bleeding under the skin?
  Yes                                         624 (3771), 16.5
  Did not reply                                     110
(4) Postsurgery bleeding?
  Yes                                         410 (3764), 10.9
  Did not reply                                     117
(5) Bleeding from the mouth?
  Yes                                         349 (3729), 9.4
  Did not reply                                     152
(6) Bleeding from the digestive system?
  Yes                                         318 (3764), 8.4
  Did not reply                                     117
(7) Postdental extraction bleeding?
  Yes                                         440 (3749), 11.7
  Did not reply                                     132
(8) Muscular bleeding?
  Yes                                         295 (3619), 8.2
  Did not reply                                     262
(9) Family history of bleeding disorders?
  Yes                                         237 (3730), 6.4
  Did not reply                                     151
(10) Any other bleeding disorders? (for
boys only)
  Yes                                         173 (1882), 9.2
  Did not reply                                      19
(11) Heavy menstrual bleeding (girls only)
  Yes                                         330 (1980), 16.7
  Did not reply                                      --
(12) Any Question 2 through 8 or 10
  Yes                                        1849 (3881), 47.6
  Did not reply                                      --

Questions                                    P value

(1) Previous diagnosis of any bleeding
disorder?
  Yes                                         0.069
  Did not reply
(2) Previous episodes of epistasis?
  Yes                                        <0.001
  Did not reply
(3) Bleeding under the skin?
  Yes                                        <0.001
  Did not reply
(4) Postsurgery bleeding?
  Yes                                        <0.001
  Did not reply
(5) Bleeding from the mouth?
  Yes                                         0.399
  Did not reply
(6) Bleeding from the digestive system?
  Yes                                        <0.001
  Did not reply
(7) Postdental extraction bleeding?
  Yes                                        <0.001
  Did not reply
(8) Muscular bleeding?
  Yes                                        <0.001
  Did not reply
(9) Family history of bleeding disorders?
  Yes                                        <0.001
  Did not reply
(10) Any other bleeding disorders? (for
boys only)
  Yes                                          --
  Did not reply
(11) Heavy menstrual bleeding (girls only)
  Yes                                          --
  Did not reply
(12) Any Question 2 through 8 or 10
  Yes                                        <0.001
  Did not reply

Responses left blank or Did Not Reply are not included in the final
calculations.

Table 3: Responses to Phase II of the Survey (n = 525).

Symptom                                  Male             Female
                                     n (total), %      n (total), %

Oral cavity bleeding                144 (296), 48.6   134 (229), 58.5
Epistaxis                           147 (296), 49.7   82 (229), 35.8
Cutaneous symptoms                  52 (296), 17.6    102 (229), 44.5
Menstrual bleeding                  Not applicable    56 (229), 24.5
Minor wound bleeding                39 (296), 13.2    56 (229), 24.5
Bleeding during tooth extraction     25 (296), 8.4    42 (229), 18.3
Gastrointestinal bleeding            15 (296), 5.1    31 (229), 13.5
Muscle hematoma and hemarthrosis
Spontaneous bleeding                 3 (14), 21.4       6 (10), 60

Symptom                                  Total        P value
                                     n (total), %

Oral cavity bleeding                278 (525), 52.9    0.028
Epistaxis                           229 (525), 43.6    0.002
Cutaneous symptoms                  154 (525), 29.3   <0.001
Menstrual bleeding                  56 (229), 24.5       --
Minor wound bleeding                95 (525), 18.1     0.001
Bleeding during tooth extraction    67 (525), 12.8     0.001
Gastrointestinal bleeding            46 (525), 8.8     0.001
Muscle hematoma and hemarthrosis     24 (525), 4.6
Spontaneous bleeding                 9 (24), 37.5      0.092

Values are reported as n (N), %.
COPYRIGHT 2018 Hindawi Limited
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2018 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Research Article
Author:Owaidah, Tarek; Saleh, Mahasen; Alzahrani, Hazzah; Abu-Riash, Mahmood; Zahrani, Ali Al; Almadani, Mo
Publication:Advances in Hematology
Article Type:Report
Geographic Code:7SAUD
Date:Jan 1, 2018
Words:5994
Previous Article:Study of Erythrocyte Indices, Erythrocyte Morphometric Indicators, and Oxygen-Binding Properties of Hemoglobin Hematoporphyrin Patients with...
Next Article:The Rising Era of Immune Checkpoint Inhibitors in Myelodysplastic Syndromes.
Topics:

Terms of use | Privacy policy | Copyright © 2021 Farlex, Inc. | Feedback | For webmasters |