Printer Friendly

Portable GCMS analyzes volatile compounds in coffee.

A portable GCMS system can identify semi-volatile and volatile compounds in one of the worlds most consumed beverages in a matter of minutes, as opposed to days.

Coffee is widely consumed as a beverage because of the stimulating effect it produces in humans. The aroma of coffee contributes to the flavor and taste of the beverage and has consequently led to extensive research on its benefits. Hundreds of volatile/semi- volatile aroma and flavor compounds have been identified in coffee using traditional laboratory based headspace GCMS systems. This is a study for rapid fingerprinting of coffee volatile/semi-volatile compounds using solid phase micro-extraction (SPME) coupled to a portable GCMS system for separation and detection.

The on-site analysis of coffee using portable technology can be used for quick quality control check of raw and finished products, comparison of competitor products, analysis of storage conditions or for process development.

Experimental

Coffee (1 gm) was placed in headspace vials (20 mL vial volume), capped and placed at room temperature for at least an hour to allow for saturation of the aroma volatiles in the head-space. The SPME fiber was directly exposed to the headspace vapors in the vial for 15 seconds prior to analysis. Below are the GC and MS conditions:

* Sampling: SPME

* SPME phase: DVB/PDMS, 65 urn

* GC injector temp: 270 C

* GC column: MTX-5, 5 m x 0.1 mm, 0.4 u df

* GC carrier gas: Helium, 0.2 mL/min

* GC column temp: 50- 270 C at 2 C/sec, end hold time for 60 sec

* Transfer line: 250 C

* Injector split ratio: 10 to 1

* Mass analyzer: Toroidal ion trap

* Mass range: 42-500 Da

* Detector: Electron multiplier

Results and discussion

Triplicate analysis of coffee (variety #1) is shown in Figure 1. The overlay of the total ion current (TIC) suggests the analysis is very reproducible between injections.

The overlay of TIC of caffeinated and decaffeinated samples of coffee (variety #1) showed peaks with similar retention time but in many cases with varying intensities, suggesting similar compounds are present in the two samples but at different concentrations (Figure 3). An extra peak was observed in the caffeinated sample that was not observed in the decaffeinated coffee.

[FIGURE 1 OMITTED]

The extraneous peak observed in the caffeinated coffee resembled the spectra of toluene, and comparisons confirmed its identification. The presence of toluene in the caffeinated sample is not surprising as literature suggests toluene can be produced in roasted coffee.

[FIGURE 2 OMITTED]

[FIGURE 3 OMITTED]

[FIGURE 4 OMITTED]

The decaffeinated form of variety #1 coffee was similarly analyzed in triplicates (Figure 2) and also showed excellent reproducibility of analysis.

Two other varieties of coffee (variety #2 and #3) were analyzed, and the TIC overlay of the three coffee types (Figure 4) showed some distinct profiles between the samples. For instance, a peak at ~30 sees was common to #1 and #2, but not observed in #3. The spectra of this peak was matched against the NIST library and the probability of the match suggested it was likely methyl pyrrole.

Literature studies suggest that methyl pyrrole degradation is accelerated in coffee with high moisture content, which may be the reason for variety #3 having little or no methyl pyrrole.

A brief study of coffee fingerprinting using the Torion T-9 coupled to SPME sampling resulted in reproducible profiles for triplicate analysis. Separation of the volatile/semi-volatile compounds by GC and the specificity of detection provided by MS along with spectral matching to the NIST library helped identify differences in coffee varieties. Therefore, portable GCMS provides a rapid and reliable screening technology to study coffee aroma profiles within a couple of minutes, making it an ideal tool for on-site analysis.

by Sharanya Reddy, LCMS Senior Applications Scientist, PerkinElmer, Waltham, Mass.
COPYRIGHT 2017 Advantage Business Media
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2017 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Chromatography: Techniques
Author:Reddy, Sharanya
Publication:Laboratory Equipment
Date:Jun 1, 2017
Words:628
Previous Article:The true definition of a high-performance fume hood.
Next Article:A culture of collaboration can fight antibiotic resistance.
Topics:

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters