Phytosociological investigations of steppe and steppe forest vegetation in the south-east part of Central Anatolia of Turkey/Ic Anadolu'nun Guneydogu kesiminde step ve step bitki ortusu ile ilgili fitososyolojik arastirmalar.
Abstract: To gain a better understanding of the ecological systems, it is necessary to study the development, composition, and classification of the steppe and steppe forest communities, which are the primary components of phytocoenoses in semi-arid environments. Therefore, this study was aimed to contribute to a syntaxonomic classification of the Central Anatolian steppe and steppe forest vegetation. The Braun--Blanquet approach was used to analyze the vegetation of the study area in Golludag (2172 m a.s.l.) located in the north of Nigde province. The vegetation data were analyzed using cluster analysis and detrended components analysis. The relationships between the communities and certain environmental factors were examined by principal components analysis. Two new steppe and steppe forest communities in Central Anatolia were classified in this study. The steppe communities were included in Agropyro tauri-Stachydion lavandulifoliae and Astragalo-Brometalia, whereas the steppe forest communities were classified as Quercion anatolicae and Querco cerridis-Carpinetalia orientalis.Key words: Golludag, steppe, oak scrubs, phytosociology, syntaxonomy
Ozet: Ekolojik sistemlerin daha iyi anlasilmasi icin yan kurak ortamlardaki fitosenozlerin temel bilesenlerinden olan step ve step ormani komunitelerinin gelisimi, yapisi ve siniflandirilmasinin arastirilmasi gerekmektedir. Bu nedenle calismada, Ic Anadolu step ve step ormani vejetasyonunun sintaksonomik olarak siniflandirilmasma katki saglamasi amaclanmistir. Nigde ilinin kuzeyinde bulunan Golludag'da bulunan arastirma alaninin vejetasyonu Braun-Blaunquet metoduna gore analiz edilmistir. Vejetasyon verilerinin analizi, kumeleme ve Egilimsiz Uyum Analizi ile gerceklestirilmistir. Komuniteler ile bazi cevresel faktorler arasindaki iliski Temel Bilesen Analizi yardimiyla incelenmistir. Calismada Ic Anadolu'da iki yeni step ve step ormani komunitesi tespit edilmistir. Step komunitesi Agropyro tauri-Stachydion lavandulifoliae alyansina ve Astragalo-Brometalia ordosuna dahil edilirken, step ormani komunitesi Quercion anatolicae alyansina ve Querco cerridis-Carpinetalia orientalis ordosu icerisinde siniflandirilmistir.
Anahtar Kelimeler: Golludag, step, mese caliligi, fitososyoloji, sintaksonomi.
1. INTRODUCTION
The vegetation of Central Anatolia is characterized by steppe and Quercus-dominated forests. The fluctuation in climate in time allowed woodlands and forests expanded and also displaced occasionally steppe which was formerly present in Central Anatolia (Aytug and Gorecelioglu, 1996; Cordova, 2005). The alteration of vegetation was mostly caused by climate change until the end of Late Glacial (10,000 BP), however; the human impact has been the most important factor on alteration of vegetation recently (Bottema, 1993). The destruction of these forests by human activity progressively caused the settlement of the pre-steppe formations in Central Anatolia and the Quercus-dominated forests transformed into small shrubs (Akman, 1974). Therefore, Quercus-dominated scrub-woodlands are blended with steppe vegetation in Central Anatolia at present. The pollen records indicate that although the vegetation of Central Anatolia was composed of the woodlands of Quercus L. sp., Pistacia terebinthus L., and Juniperus L. sp., the woodland vegetation was replaced by predominantly open grasslands due to human settlement over the last two millennia (Asouti, 2009; Bas, 1968; England et al., 2008). On the other hand some studies are indicated that the communities of wild orchards and conifers might be present before oak woodland vegetation in the region (Aytug, 1970; Hopf, 1992; Woldring and Bottema, 2003).
The steppe of Central Anatolia has rich floristic composition and is composed of different plant communities depending on different physical and chemical structure of the bedrock and elevation (Kurt et al., 2015). The Central Anatolian steppe can be physionomically grouped as Gramineae steppes, malacophyll steppes, tragaganthic, and salty steppes. Gramineae species such as Bromus tomentellus Boiss., Festuca valesiaca Schleich ex. Gaudin, Stipa lessingiana Trin. & Rupr., Koeleria cristata L. (Bertol.) are dominant in Gramineae steppes that are very scarce today. Malacophyll steppes are dominated by the broad-leaved plants in consequence of alteration of Gramineae steppes due to grazing. Tragaganthic steppes have the dominant species such as Astragalus L. sp. and Acantholimon L. sp. which are pulvinate chamaephytes having cushion forms and spines. Salty steppes spread on salty soils and marshes and include the halophytic species in the floristic composition (Kurt et al. 2006). The drainage of these salty areas (Salt Lake, Seyfe Lake, Sultansazligi) which are under the influence of semi-arid or arid, very cold Mediterranean climate are damaged in the region. The salt concentration in soil and the limits of species against salt tolerance are the most important factors forming the zones of salty areas (Aksoy and Hamzaoglu, 2006).
The steppe vegetation in Anatolia is included in the class Astragalo-Brometea Quezel 1985. The lowland steppe vegetation (800-1200 m a.s.l.) is classified in the orders Onobrychido armenae--Thymetalia leucostomi Akman, Ketenoglu & Quezel 1985 and Hyperico linarioidis--Thymetalia scorpilii Akman, Quezel, Yurdakulol, Ketenoglu & Demirors 1987; the high mountain steppe vegetation (above 1200m a.s.l.) is classified in Astragalo--Brometalia Quezel 1973 and Drabo--Androsacetalia Quezel 1973 in Anatolia.
Quercus pubescens Willd. is the most common woody species in the region. It occurs as a shrub form in destructed areas. The more humid climatic conditions support the co-existence of Q. robur L., Q. cerris L. and, Q. trojana Webb. locally (Kirwan et al., 2010). Quercus-dominated forest communities in Central Anatolia is included in the alliance Quercion anatolicae Akman, Barbero & Quezel 1979 and in the order Querco cerridis-Carpinetalia orientalis Quezel, Barbero & Akman 1980 of the class Quercetea pubescentis (Oberd. 1948, Doing- Kraft 1955) Scamoni & Passarge 1959.
The steppe is one of the most important ecosystems including unique plant and animal species in Turkey as well as in the world. The composition of steppe has changed dramatically due to overgrazing, deforestation, and intensive agricultural activities for last thirty years in Central Anatolia (Akman et al., 2014). Therefore, the Central Anatolian steppe is under risk today and must be one of the primary conservation areas. The first step of the conservation studies is composed of the determination of the structure and process of the steppe ecosystem. Thus, syntaxonomic units of the Central Anatolian steppe and steppe forest vegetation are needed to find out. Some phytosociological studies have been done especially in steppe and steppe forest vegetation of Central Anatolia until today. (Adiguzel and Vural, 1995; Kilinc, 1985; Ocakverdi and Unal, 1991; Sanda and Kucukoduk, 2000; Vural et al., 1995). Within the scope of this paper, it is aimed to determine of phytosociology of the particular area comprising steppe and steppe forest vegetation in the south-east part of Central Anatolia.
1.1 A brief description of the area
Golludag (2172 m a.s.l.) is an inactive volcano near the village of Komurcu in the north of Nigde province (Figure / Sekil 1). A crater lake is located at the summit of the mountain. The major soils occurring in the study area are regosols and brown soils without non-calcareous (Dizdar, 2003). The study area has a lower semi-arid very cold Mediterranean climate that mostly characterizes Central Anatolian climate. The steppe vegetation corresponds to the climatic conditions of the region which are cold winters with frost periods and dry hot summers. The seasonal precipitation regime is spring, winter, autumn, and summer. The average annual rainfall in the region varies between 336.4 and 345.7 mm and the average annual temperature about 11.1 and 12.1 [degrees]C (Table / Tablo 1 and 2). Considering that ombrothermic diagram of Aksaray meteorological station, it is seen that there is a dry period from the begining of June to the mid-October (Figure / Sekil 2).
2. MATERIALS AND METHOD
The vegetation was sampled according to the method of Braun-Blaunquet (Braun-Blanquet, 1964). The sizes of the releves were estimated by means of a "minimal area" that was 8 x 8 [m.sup.2] for steppe and 17 x 17 [m.sup.2] for scrub-woodland vegetation. 31 releves were recorded between 1700 and 2100 m a.s.l. in floristically and physiognomically homogenous habitats.
The data were stored in a TURBOVEG database (Hennekens and Schaminee, 2001). The classification of data was carried out with cluster analysis and Detrended Components Analysis (DCA) using Ward's method and the Euclidean distance measure in the PC-ORD 5.0 and R-Project 2.10.1 (Anonymous, 2009; McCune and Mefford, 1999). Diagnostic species of the clusters were determined in the JUICE 7.0 software (Tichy, 2002). The threshold degrees of fidelity were subjectively selected as 0.35 for steppe and 0.70 for scrub-woodland vegetation. The results of the classification were given in releve tables. The relationship between the communities and some ecological factors are examined by Principal Components Analysis (PCA) using the vegan package in R-Project (Anonymous, 2009).
The Flora of Turkey and The East Aegean Islands (Davis, 1965-1985) and The Checklist of the Flora of Turkey -Vascular Plants (Guner et al., 2012) were used to identify the specimens. The rules of the International Code of Phytosociological Nomenclature (Weber et al. 2000) were followed in naming the new syntaxa. Climatic data were provided by Turkish State Meteorological Service (www.mgm.gov.tr). Life forms were defined according to (Raunkiaer, 1934).
Soil samples were obtained from the top 30 cm of the soil profile in the sample plots representing the different plant formations. Particle-size measurement (Bouyoucos, 1962), organic matter measurement (Walkley and Black, 1934), plant-available soil phosphorus spectrophotometrically (Olsen, 1954), NaCl and pH (Tuzuner, 1990), CaC[O.sub.3] (calsimetric method), and potassium (ammonium acetate flame photometer method) were performed for the analysis of the soil samples.
3. RESULTS AND DISCUSSION
The Asphodelino damascenae-Quercetum pubescentis which resides in scrub-woodland vegetation and the Ziziphoro clinopodioidis-Festucetum valesiacae belonging to steppe vegetation are decribed below. Besides, the relationship between soil properties and syntaxa are discussed. In addition, the life forms and chorotypes of the species in the syntaxa are also explained.
3.1 Description of syntaxa
3.1.1 Scrub-woodland vegetation
Asphodelino damascenae-Quercetum pubescentis ass. nov. hoc loco
Typus: Releve 17 in Table / Tablo 3.
Characteristic species: Quercus pubescens Willd., Juniperus oxycedrus L. subsp. oxycedrus, Asphodeline damascena (Boiss.) Baker subsp. damascena, Bromus squarrosus L., and Ferula rigidula Fisch. ex DC.
Quercus pubescens subsp. pubescens is a deciduous oak species and is characterized by short petioles, undulate-margined, lobed, and greyish leaves. It spreads West, Central, and South Europe. Juniperus oxycedrus subsp. oxycedrus is widespread and occurs in pine woods, oak scrub, and maquis up to 1800 m. Asphodeline damascena subsp. damascena is an Irano-Turanian element and occurs on rocky slopes, alpine meadows, steppe, forest clearings between 370 and 2000 m mainly in Central Anatolia. Bromus squarrosus spreads North Africa, South Europe, Southwest and Central Asia. It is widespread in Anatolia occurs at waste places, steppe hillsides, and forest clearings up to 2200 m. Ferula rigidula is a perennial and Irano-Turanian element. It occurs at rocky places between 850 and 2370 m. The species spreads East and Central Anatolia also Armenia and Northwest Iran (Davis, 1965-1985).
Physiognomy and ecology: The mean cover of the association varies between 80-95%. The soil texture of the association is sandy (63%), clay (17.04%), and loam (19.96%), and it contains 0.96 % organic matter. The pH is about 6.78. The herb layer is composed of herbaceous cushion forming species and xerophytic grasses.
Distribution: It spreads northwest of Golludag between 1700 m and 1800 m.
3.1.2 Steppe vegetation
Ziziphoro clinopodioidis-Festucetum valesiacae ass. nov. hoc loco Typus: Releve 23 in Table / Tablo 4
Characteristic species: Festuca valesiaca Schleich. ex Gaudin, Ziziphora clinopodioides Lam., Astragalus microcephalus Willd. subsp. microcephalus, Teucrium polium L. subsp. polium, Astragalus condensatus Ledeb., Potentilla recta L., and Elymus hispidus (Opiz) Melderis subsp. hispidus.
Festuca valesiaca is a densely caespitose perennial and occurs in steppe, alpine meadows and, oak scrubs between 400-2800m. It spreads in the West, South, and Central Anatolia. Ziziphora clinopodioides is a mat-forming perennial and Irano-Turanian element. It occurs on rocky slopes and steppe between 760-4100 m. It spreads South and Central Anatolia and also Caucasia, North Iraq, Iran, Afghanistan, and Central Asia. Astragalus microcephalus subsp. microcephalus is an Irano-Turanian cushion-forming shrub and widespread between 850 and 2700 m in Central Anatolia. Teucrium polium subsp. polium is a widespread suffruticose perennial and occurs at rocky slopes, in Quercus scrub, steppe, and dunes up to 2050 m. Potentilla recta is widespread in Anatolia also spreads Central and South Europe, South Russia, Caucasia, Syria, Iran, Central Asia, and Northwest Africa. It occurs in meadows up to 2300 m. Astragalus condensatus is a dwarf cushion-forming endemic shrub occurs between 500 and 1200 m. It is Irano-Turanian element and spreads Central and Southwest Anatolia. Elymus hispidus subsp. hispidus occurs on scree below cliffs, limestone slopes, arid places between 1400 and 2300 m. It spreads Northwest, North, and South Anatolia, Central Europe, Mediterranean area, South Russia, Caucasia, Iran, Norh Iraq, and Central Asia (Davis, 1965-1985).
Physiognomy and ecology: The mean cover of the association varies between 50% and 85%. The soil texture of the association is sandy (84.87%), clay (8.71%), and loam (6.42%), and it contains 0.71% organic matter. The pH is about 6.58. The association is mostly composed of hemicryptophyte and chamaephytes. Distribution: It spreads north and northeast of Golludag between 1700 and 2100 m.
typicum subass. nov. hoc loco Typus: the same as for the association name.
elymetosum divaricati subass. nov. hoc loco Typus: Releve 23 in Table / Tablo 4
Differential species: Elymus divaricatus Drobow subsp. divaricatus, Minuartia juniperina (L.) Maire & Petitm., Paronychia chionaea Boiss. subsp. chionaea var. chionaea, Stipa pulcherrima subsp. crassiculmis (P.A.Smirn.) Tzvelev, Centaurea patula DC., Pilosella hoppeana subsp. testimonialis (Nageli ex Nageli & Peter) P.D.Sell & C.West, and Pilosella hoppeana subsp. cilicica (Nageli & Peter) P.D.Sell & C.West.
Elymus divaricatus subsp. divaricatus is a caespitose perennial with short rhizomes. It is an Irano-Turanian endemic. It occurs on rocky limestone slopes in Central and South Anatolia between 1000-2700 m. Minuartia juniperina is a cushion-forming herb occuring at rocky places between 900 and 2700 m. It is widespread in Anatolia and also spreads in Greece, West Syria, and North Iraq. Paronychia chionaea subsp. chionaea var. chionaea is a prostrate caespitose herb occuring at rocky places up to 2800 m. It spreads Central and West Anatolia. Stipa pulcherrima subsp. crassiculmis is widespread in Anatolia and also spreads from Central Europe to Iran. It occurs in stony places between 500-3000 m. Centaurea patula is an annual and Irano-Turanian element. It exists in steppe between 400 and 1400 m. Pilosella hoppeana subsp. testimonialis is a Euro-Siberian element existing North Anatolia and also being local in the South. It spreads Central Europe, Crimea, Balkan Peninsula, Caucasia, Syria, and Iran. It occurs in Fagus scrub and rocky slopes between 700 m and 2300 m. Pilosella hoppeana subsp. cilicica is widespread, mainly North and South Anatolia between 1550 m and 2760 m (Davis, 1965-1985).
Physiognomy and ecology: The mean cover of the association varies between 40% and 80%. The soil texture of the association is sandy (85.91%), clay (7.67%), and loam (6.42%), and it contains 1.43% organic matter. The pH is about 7.33.
Distribution: It spreads north and northeast of Golludag between 1860 and 2090 m.
3.2 Numeric analysis (DCA and PCA ordination)
The pattern of floristic differentiation of syntaxa in the study area was visualized by DCA (Figure / Sekil 3). They are well separated into three distinct groups along axis 1 and 2 (Figure / Sekil 2a). The releves of steppe vegetation, the Ziziphoro clinopodioidis-Festucetum valesiacae (1) and elymetosum divaricati (2), exist on left side of axis 1, the releves of scrub-woodland vegetation the Asphodelino damascenae-Quercetum pubescentis are on right side of axis 1.
The relation between topography, the soil characteristics and the communities are shown in Table / Tablo 5 and Figure / Sekil 4. The rest of variables except for CaC[O.sub.3], pH, and organic matter are correlated to the first PCA axis. The [K.sup.+] and NaCl show higher intensity at lower altitudes together with high plant cover. The Asphodelino damascenae-Quercetum pubescentis (3) is related to high [K.sup.+], P, NaCl, and plant cover. The inclination is also related to altitude but inversely [K.sup.+], P, and NaCl. The slopes with high inclination lead to greater runoff and displacement of soil materials (Hall 1983). The Ziziphoro clinopodioidis-Festucetum valesiacae (1) and elymetosum divaricati (2) are represented by higher inclination and thus, [K.sup.+], P, and NaCl may be removed from soil due to steeper slope. The organic matter content is quite low in all communities. However, elymetosum divaricati (2) is represented by higher pH and organic matter content, lower P amount in soil than the Ziziphoro clinopodioidis-Festucetum valesiacae (1) which has higher P, lower pH and organic matter content.
3.3. Life Forms and Chorotypes
The study area is phytogeographically situated in Irano-Turanian region. Therefore, the number of Irano-Turanian elements is high in both associations identified. Besides, the number of Irano-Turanian endemics is also higher than the elements of other phytogeographic regions (Figure / Sekil 5). The endemism ratio of Ziziphoro clinopodioidis-Festucetum valesiacae and Asphodelino damascenae-Quercetum pubescentis is 15% and 12% respectively.
The life forms of the vegetation are considered to be an indicator of the climatic conditions. The Irano-Turanian region that has low rainfall and long dry season is characterized by the dominance of hemicryptophytes and chamaephytes (Djamali et al., 2012). Therophytes are also adapted to drought of Mediterranean climate (Gimenez et al., 2004). Thus, hemicryptophytes dominate the flora of the study area followed by chamaephytes and therophytes, respectively (Figure / Sekil 6).
The study area is located in Irano-Turanian phytogeographic region. The semi-arid cold Mediterranean climate prevails over the study area, which makes the dominance of steppe vegetation adapted to xeric conditions in Central Anatolia. Besides, the development of the cultural landscapes led the formation of new plant communities over years and the most of these communities are the anthropogenic ones (Jalut et al., 2009). These communities which characterize the vegetation of the region are in equilibrium with the climatic conditions. Festuca valesiaca is resistant to grazing and replaces the species of Bromus-Stipa steppe that may be supported by climate in Central Anatolia (Imanberdieva, 2015; Walter, 1956). Therefore, the fescue dominated steppe represents a secondary vegetation due to human degradation today (Firincioglu et al., 2009; Kurschner and Parolly, 2012). Since F. valesiaca has wide range of ecological tolerance and adaptability to different environmental conditions, it is widely distributed (Imanberdieva, 2015). The species occurs in the alpine mountain belt of West, South, and Central Anatolia (Davis, 1965-1985).
The communities of F. valesiaca in the Balkans are included in Festucetalia valesiacae Br.-Bl. & R.Tx. Ex Br.-Bl. 1949 of the class Festuco-Brometea Br.-Bl. & R.Tx. 1943 ex Klika & Hadac 1944. This order mainly occurs in the Sub-mediterranean and Mediterranean montane zone and the belt of continental of the Dinaric Alps in the Balkans. The communities of F. valesiaca in Balkans are significantly distinctive from those in the West and Central Europe and also in the Eastern Europe in terms of the species that belong to different phytogeographic regions such as Balkan and Illyrian floral elements (Redzic, 1999). While the distribution of Festuco-Brometea which is Centro-European and South-Sibirian origin is restricted in the south-east and unable to exceed from Balkans (Acic et al., 2015; Pignatti et al., 1995; Redzic, 1999), Astragalo-Brometea includes the grasslands in the deforested zone of Taurus Mountains (1500-1700m) and it is located in the montane and oro-Mediterranean zone of Central, Eastern Anatolia, and Taurus mountains in the south and also extends towards to the Alborz Mountains in Iran. The geographical situation of Anatolia explains that this class is influenced by both Irano-Turanian elements of Anatolian steppes and Mediterranean elements of Mediterranean forests. But yet, the delimitation of Astragalo-Brometea in the east (Eastern Anatolia and Iran) is mainly complicated and not clear yet (Hamzaoglu, 2006; Noroozi et al., 2010).
F. valesiaca is a dominant or accompanying species with high presence of many communities in montane zone of Anatolia. In the east of Anatolia, communities of F. valesiaca are also classified in Astragalo-Brometea, but in different orders and alliances peculiar to the region (Hamzaoglu, 2006; Ocakverdi et al., 2009). These communities spreading between 1800-3000 m belong to mountain steppes in the Eastern Anatolia. The Onobrychido armeneaThymetalia leucostomi characterized by lowland steppe units includes mostly the communities dominated by F. valesiaca in Central Anatolia (sanda and Kucukoduk, 2000; Vural et al., 1995). While these communities occuring between 1200 and 1800 m, the Ziziphoro clinopodioidis-Festucetum valesiacae spreads between 1700 and 2100 m. Therefore, the steppe community in the study area is classified in the order Astragalo-Brometalia comprising montane zone consisting of xerophytic grasslands and thorn cushion communities in Taurus and in the alliance Agropyro tauri-Stachydion lavandulifoliae Quezel 1973 due to being well supported characteristic species of the alliance and the order and occuring in sub-alpine zone (Parolly, 2004).
The characteristic species of the community of F. valesiaca in the south of Central Anatolia are Eremogone ledebouriana, Elymus tauri var. kosaninii, and Paronychia argyroloba. The community does have none tree or shrub (sanda and Kucukoduk, 2000). Dianthus cinnamomeus is an endemic and characteristic species of the community together with F. valesiaca in Karadag. Although this community has high total cover and the soil of the community are rich in organic matter due to low erosion, the floristic composition of the community is poor. That is because ecological tolerance and vegetation period of some terophytes in the community are insufficient to the habitat, topographic, and climatic conditons (Ocakverdi and Unal, 1991). Whereas the dominant species of the community of F. valesiaca in the northwest of Central Anatolia is Thymus sipyleus, Hypericum pseudolaeve is dominant with F. valesiaca in the community in the mid-Central Anatolia. In the study area F. valesiaca exists with high dominance of Ziziphora clinopodioides following Astragalus microcephalus subsp. microcephalus, and Teucrium polium subsp. polium. The reason of different co-occurrence of the steppe species with F. valesiaca may be altitude, bedrock, and edaphic factors.
The deciduous oak woodlands and shrublands enclose the peripheral of Central Anatolia and also occur as fragments in high altitudes of steppe vegetation. Quercus pubescens is a dominant species of these oak woodlands and shrublands in Central Anatolia. Q. cerris, Q. infectoria, Q. ithaburensis subsp. macrolepis, Q. trojana and Juniperus oxycedrus mostly co-exist with this oak species. The certain parts of these woodlands and shrublands occurred in moister conditions than present day. However, the existence of these oak communities were affected by drier climate progressively and even disappeared in destructed areas (Cetik, 1985).
The Quercus community in Karadag mountain (south of Central Anatolia) is described as sub-climax vegetation followed by destructed forest vegetation for many years and it is stated that Karadag was exposed heavy grazing and wood cutting because the cultivated areas have enclosed the mountain. Thus, whereas forests diminish, the steppe vegetation progressively expands in the area due to human impact at present (Ocakverdi and Unal, 1991). The Quercus community in Northwestern Anatolia is described as a shrub vegetation and although it shows similarity in terms of floristic composition of the communities under xeric conditions of Inner Anatolia, it contains the mesophilic and Euxinian (Euro-Siberian) species (Ture et al., 2005). The Quercus-dominated community in the transition zone between Central and Northern Anatolia is remarked that it is a community of a degraded forest and has the steppe species as well as the species that are specific for forest. The destruction of Pinus nigra subsp. pallasiana forests in the area causes expansion of distribution of Quercus-dominated community (Kilinc, 1985). Another Quercus community in northern Anatolia is also described as a forest community and it is indicated that the high number of steppe species in the community is a sign to destruction of the area (Adiguzel and Vural, 1995). Heavy overgrazing also allows the destruction of composition of the oak community in the study area. The canopy of many oak communities frequently opens and it allows to settle light-demanding species -especially steppe species- in the herb layer in Central Anatolia (Ugurlu et al., 2012). Thus, the undergrowth of the community in the study area has abundantly steppe species as in floristic composition of other oak communities in the region. The Quercion anatolicae includes most of Quercus-dominated forest communities in Central Anatolia and it spreads in the supra-Mediterranean zone where semi-arid and low precipitation cold and very-cold Mediterranean climate prevails in the peripheral zone of the Central Anatolia (Akman, 1995). The Asphodelino damascenae-Quercetum pubescentis in the study area is included in the alliance Quercion anatolicae of the order Querco cerridis-Carpinetalia orientalis in the class Quercetea pubescentis.
The inclination and altitude are effective in distribution of these communities in the study area. Quercus-dominated scrub-woodlands cannot reach above 2000 m in Central Anatolia. Moreover, small alterations in environmental drivers allow differentiation of floristic composition in this region (Hamzaoglu et al., 2004). Therefore, the steppe vegetation of Central Anatolia appears as mosaic-like pattern due to this changes in short distance (Kurt et al., 2006). Also, the plant species richness and endemism ratio are quite high.
The most part of the steppe and steppe forest area in Central Anatolia has been degraded by reason of heavy grazing, deforestation and intensive agricultural activities particularly in the last thirty years. Heavy grazing causes soil erosion as well as destruction of the natural vegetation and loss of plant diversity and generally also leads to remain degraded ecosystems (Koc, 2000; Kurschner and Parolly, 2012; Yunusbaev et al., 2003). Besides, this type of vegetation is also strongly affected by agricultural and viticulture activities on semi-arid lands, deforestation, settlements and urban expansion. The steppe and steppe forest vegetation are one of the most sensitive ecosystems and have a great importance ecologically. They can satisfy the needs for sustainable use of the natural resources within semi-arid environments. Thus, heavy human impact should be avoided for preservation and regeneration of the natural vegetation in this type of ecosystems.
4. CONCLUSIONS
The study area which is located within the south-eastern part of Central Anatolia is involved in the Irano-Turanian floristic region phytogeographically. The regosols and brown soils without non-calcareous are found in the study area. The lower semi-arid very cold Mediterranean climate that mostly characterizes Central Anatolian climate are effective in the area.
The class Astragalo-Brometea described the Central Anatolian steppe is represented by the order Astragalo-Brometalia and the alliance Agropyro tauri-Stachydion lavandulifoliae which are composed of xerophytic grasslands and cushion-forming spiny xerophytic and chamaephytic communities in high altitudes. The Ziziphoro clinopodioidis-Festucetum valesiacae community described in the study area is classified in the order Astragalo--Brometalia and the alliance Agropyro tauri-Stachydion lavandulifoliae since it has the characteristic species of both two upper syntaxa and they represent the subalpine zone. The dominant species of the community is Festuca valesiaca. The other characteristic species are Ziziphora clinopodioides, Astragalus microcephalus subsp. microcephalus, Teucrium polium subsp. polium, Astragalus condensatus, Potentilla recta, and Elymus hispidus subsp. hispidus. The community is situated between 1700 and 2100 m. The content of soil of the community is poor due to high inclination.
The class Quercetea pubescentis includes deciduous forest formations in upper Mediterranean vegetation zone. The order Querco cerridis-Carpinetalia orientalis is characterized by Carpinus orientalis Mill. and Quercus sp. in Anatolia. This order is also vikariant in Anatolia of Quercetalia pubescentis Klika 1933 in Europe (Quezel et al., 1980). The alliance Quercion anatolicae spreads in the peripheral of Central Anatolia, in the upper Mediterranean vegetation zone, and in the places where semi-arid cold and very cold Mediterranean climate prevails. The characteristic species of upper syntaxa as well as situated in the vegetation zone the Asphodelino damascenaeQuercetum pubescentis is classified in Quercion anatolicae, Querco cerridis-Carpinetalia orientalis, and Quercetea pubescentis. Quercus pubescens is dominant species of the community. The other characteristic species are Quercus pubescens, Juniperus oxycedrus subsp. oxycedrus, Asphodeline damascena subsp. damascena, Bromus squarrosus, and Ferula rigidula. The community spreads between 1700 m and 1800 m and low inclination, thus soil is richer in terms of several mineral contents than the soil of steppe community in the study area.
The distribution, composition, and ecology of the syntaxonomic units in Central Anatolia should be determined for the prevention of present and further degradation of steppe and steppe forest vegetation. The data of the present vegetation will prepare a substructure for ecological requirements of the species under risk by geographical information systems and will provide improvement of recovery processes for the species in the steppe and steppe forest ecosystem. In addition, the data will also promote determination and monitoring of the effects of climate change on the biodiversity of these semi-arid environments and thus precautions will be taken to avoid these effects on the species eventually.
REFERENCES
Acic, S., Silc, U., Petrovic, M., Tomovic, G., Dajic Stevanovic, Z. 2015. Classification, ecology and biodiversity of Central Balkan dry grasslands. Tuxenia 35: 329-353, doi: http://dx.doi.org/10.14471/2015.35.007.
Adiguzel, N., Vural, M. 1995. The vegetation of Soguksu National Park (Ankara). Turkish Journal of Botany 19(2): 213-234.
Akman, Y. 1974. Evolution regressive de la vegetation a l'etage du Pinus nigra ssp. pallasiana dans l'Anatolie Centrale dans un climat mediterraneen semi aride tres froid. Communications Faculty of Sciences University of Ankara Series C: Biology 18: 1-6.
Akman, Y. 1995. Turkiye Orman Vejetasyonu. Ankara Universitesi Fen Fakultesi Yayinlari, Ankara.
Akman, Y., Ketenoglu, O., Kurt, L., Vural, M. 2014. Ic Anadolu Step Vejetasyonu. Palme Yayincilik, Ankara.
Aksoy, A., Hamzaoglu, E. 2006. Vegetation zones in the salty marshes of Central Anatolia and natural borders of agricultural usage (Turkey). In: Ozturk, M., Waisel, Y., Khan, M.A. and Gork G. Biosaline Agriculture and Salinity Tolerance in Plants, Switzerland, pp. 109-116.
Anonymous, 2009. R Version 2.10.1 for Windows [The R foundation for statistical computing].
Asouti, E. 2009. The relationship between Early Holocene climate change and Neolithic settlement in Central Anatolia, Turkey: current issues and prospects for future research. Documenta Praehistorica 36: 1-5, doi: http://dx.doi.org/10.4312/dp.36.1.
Aytug, B. 1970. Arkeolojik arastirmalann isigi altinda Ic Anadolu stebi. Journal of the Faculty of Forestry Istanbul University 20: 127-143.
Aytug, B., Gorecelioglu, E. 1996. Tarih oncesi donemde Kuzey Anadolu'da tarim, otlatma ve mevsimlik goclerin bitki ortusune etkileri. Journal of the Faculty of Forestry Istanbul University| Istanbul Universitesi Orman Fakultesi Dergisi 46(1-2-3-4): 1-14.
Bas, R. 1968. Son 5 bin yil icinde Anadolu'da orman durumu. Journal of the Faculty of Forestry Istanbul University 2 (18): 211-234.
Bottema, S. 1993. The palaeoenvironment of prehistoric man in the Near East: some aspects of palynological research. Nichibunken Japan Review 4: 129-140.
Bouyoucos, G.J. 1962. Hydrometer method improved for making particle size analyses of soils. Agronomy Journal 54: 464-465.
Braun-Blanquet, J. 1964. Pflanzensoziologie. Grundzuge der Vegetationskunde 3rd edn. Springer, Wien.
Cordova, C.E. 2005. The degradation of the ancient near eastern environment. In: Snell, D.C. (Eds.), A Companion to the Ancient Near East, Blackwell Publishing, Oxford, pp. 107-125.
Cetik, A.R. 1985. The vegetation of Turkey: The vegetation and ecology of Central Anatolia. Selcuk Universitesi Yayinlari, Konya.
Davis, P.H. (Ed.), 1965-1985. Flora of Turkey and the East Aegean Islands. Edinburgh University Press, Edinburgh.
Dizdar, M.Y. 2003. Turkiye'nin Toprak Kaynaklari. TMMOB Ziraat Muhendisleri Odasi Teknik Yayinlar Dizisi, Ankara.
Djamali, M., Brewer, S., Breckle, S.W., Jackson, S.T. 2012. Climatic determinism in phytogeographic regionalization: a test from the Irano-Turanian region, SW and Central Asia. Flora-Morphology, Distribution, Functional Ecology of Plants 207(4): 237-249.
England, A., Eastwood, W.J., Roberts, C.N., Turner, R., Haldon, J.F. 2008. Historical landscape change in Cappadocia (central Turkey): a palaeoecological investigation of annually laminated sediments from Nar lake. The Holocene 18(8): 1229-1245, doi: 10.1177/0959683608096598.
Firincioglu, H.K., Seefeldt, S.S., sahin, B., Vural, M. 2009. Assessment of grazing effect on sheep fescue (Festuca valesiaca) dominated steppe rangelands, in the semi-arid Central Anatolian region of Turkey. Journal of Arid Environments 73(12): 1149-1157, doi: http://dx.doi.org/10.1016/j.jaridenv.2009.05.012.
Gimenez, E., Melendo, M., Valle, F., Gomez-Mercado, F., Cano, E. 2004. Endemic flora biodiversity in the south of the Iberian Peninsula: altitudinal distribution, life forms and dispersal modes. Biodiversity and Conservation 13(14): 2641-2660, doi: 10.1007/s10531-004-2140-7.
Guner, A., Aslan, S., Ekim, T., Vural, M., Babac, M. 2012. Turkiye Bitkileri Listesi (Damarli Bitkiler). Nezahat Gokyigit Botanik Bahcesi ve Flora Arastirmalari Dernegi Yayini, Istanbul.
Hall, G.F. 1983. Pedology and geomorphology. In: Wilding, L.P., Smeck, N.E., Hall, G.F. (Eds.), Pedogenesis and Soil Taxonomy: I. Concepts and Interactions, Elsevier, Amsterdam, pp. 117-140.
Hamzaoglu, E. 2006. Phytosociological studies on the steppe communities of East Anatolia. Ekoloji 15(61): 29-55.
Hamzaoglu, E., Aydogdu, M., Kurt, L., Cansaran, A. 2004. New syntaxa from the west part of Central Anatolia. Pakistan Journal of Botany 36(2): 235-246.
Hennekens, S.M. and Schaminee, J.H. 2001. TURBOVEG, a comprehensive data base management system for vegetation data. Journal of Vegetation Science 12(4): 589-591, doi: 10.2307/3237010.
Hopf, M. 1992. Plant remains from Bogazkoy, Turkey. Review of Palaeobotany and Palynology 73(1): 99-104, doi: 10.1016/0034-6667(92)90048-L.
Imanberdieva, N. 2015. Flora and Plant Formations Distributed in At-Bashy Valleys-Internal Tien Shan in Kyrgyzstan and Interactions with Climate. In: Ozturk, M., Hakeem, K.R., Faridah-Hanum, I., Efe, R. (Eds.), Climate Change Impacts on High-Altitude Ecosystems, Springer, Switzerland, pp. 569-590.
Jalut, G., Dedoubat, J.J., Fontugne, M., Otto, T. 2009. Holocene circum-Mediterranean vegetation changes: climate forcing and human impact. Quaternary International 200(1): 4-18, doi: 10.1016/j.quaint.2008.03.012.
Kilinc, M. 1985. Ic Anadolu-Bati Karadeniz gecis bolgesinde Devrez cayi ile Kizilirmak nehri arasinda kalan bolgenin vejetasyonu. Doga Bilim Dergisi Seri A 9(2): 238-314.
Kirwan, G., Demirci, B., Welch, H., Boyla, K., Ozen, M., Castell, P., Marlow, T. 2010. The birds of Turkey. Bloomsbury Publishing, London.
Koc, A. 2000. Turkish rangelands and shrub culture. Rangelands Archives 22(4): 25-26, doi: 10.2458/azu_rangelands_v22i4_koc.
Kurt, L., Tug, G.N., Ketenoglu, O. 2006. Synoptic view of the steppe vegetation of Central Anatolia (Turkey). Asian Journal of Plant Science 5: 733-739.
Kurt, L., Ketenoglu, O., Tug, GN., Sekerciler, F. 2015. Highland Vegetation of Inner and Eastern Anatolia and the Effects of Global Warming, In: Ozturk, M., Hakeem KH., Faridah-Hanum, I., Efe, R., Climate Change Impacts on High-Altitude Ecosystems. Springer, Switzerland, pp. 275-288 doi: 10.1007/978-3-319-12859-7_11.
Kurschner, H., Parolly, G. 2012. The Central Anatolian Steppe, In: Marinus M.J.A. and Van Staalduinen, M.A. (Eds.), Eurasian Steppes. Ecological Problems and Livelihoods in a Changing World. Springer, Netherlands, pp. 149-171, doi: 10.1007/978-94-007-3886-7_4.
Kurt, L., Tug, G., Ketenoglu, O. 2006. Synoptic view of the steppe vegetation of Central Anatolia (Turkey). Asian Journal of Plant Science 5: 733-739, doi: 10.3923/ajps.2006.733.739.
McCune, B., Mefford, M.J. 1999. PC-ORD: Multivariate Analysis of Ecological Data: Version 4. MjM Software Design, Gleneden Beach, Oregon.
Noroozi, J., Akhani, H., Willner, W., 2010. Phytosociological and ecological study of the high alpine vegetation of Tuchal Mountains (Central Alborz, Iran). Phytocoenologia 40(4): 293-321, doi: 10.1127/0340-269X/2010/0040-0478.
Ocakverdi, H. and Unal, A., 1991. Karadag' in (Karaman) bitki sosyolojisi ve ekolojisi yonunden arastirilmasi. Doga Turkish Journal of Botany 15: 79-106.
Ocakverdi, H., Vural, M., Adiguzel, N., 2009. Vegetation of Kisir Dagi (Kars-Ardahan/Turkey). BioDiCon 2(2): 1-37.
Olsen, S.R., 1954. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. United States Department of Agriculture, Washington DC.
Parolly, G., 2004. The high mountain vegetation of Turkey-A state of the art report, including a first annotated conspectus of the major syntaxa. Turkish Journal of Botany 28: 39-63.
Pignatti, S., Oberdorfer, E., Schaminee, J., Westhoff, V., 1995. On the concept of vegetation class in phytosociology. Journal of Vegetation Science 6(1): 143-152, doi:10.2307/3236265.
Quezel, P., Barbero, M., Akman, Y. 1980. Contribution A l'etude De La Vegetation Forestiere D'anatolie Septentrionale. Phytocoenologia 8(3/4): 365-519.
Raunkiaer, C. 1934. Life Forms of Plants and Statistical Plant Geography, Clarendon, Oxford.
Redzic, S. 1999. The Syntaxonomical Differentiation of the Festuco-Brometea Br.-Bl. & R. Tx. 1943 ex Klika & Hadac 1944 in the Balkans. Annali di Botanica 57: 167-180, doi: http://dx.doi.org/10.4462/annbotrm-9056.
Sanda, M.A., Kucukoduk, M. 2000. Hadim (Konya), Ermenek ve Bucakkisla (Karaman) bolgesinin orman ve cali vejetasyonu. Selcuk Universitesi Egitim Fakultesi Fen Bilimleri Dergisi 8: 73-95.
Tichy, L. 2002. JUICE, software for vegetation classification. Journal of Vegetation Science 13: 451-453, doi: 10.1111/j.1654-1103.2002.tb02069.x.
Ture, C., Tokur, S., Ketenoglu, O. 2005. Contributions to the syntaxonomy and ecology of the forest and shrub vegetation in Bithynia, Northwestern Anatolia. Turkey. Phyton 45(1): 81-115.
Tuzuner, A. 1990. Toprak ve Su Analiz Laboratuarlari El Kitabi. Mulga KHGM Yayinlari, Ankara.
Ugurlu, E., Rolecek, J., Bergmeier, E. 2012. Oak woodland vegetation of Turkey-a first overview based on multivariate statistics. Applied Vegetation Science 15(4): 590-608, doi: 10.1111/j.1654-109X.2012.01192.x.
Vural, M., Duman, H., Adiguzel, N., Kol, U. 1995. Goreme Milli Parki'nin (Nevsehir) vejetasyonu. Turkish Journal of Botany 19(3): 389-400.
Walkley, A., Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37(1): 29-38 doi: 10.1097/00010694-193401000-00003.
Walter, H. 1956. Das problem der Zentralanatolischen steppe. Naturwissenschaften 43(5): 97-102, doi:10.1007/BF00600866.
Weber, H.E., Moravec, J., Theurillat, J.P. 2000. International code of phytosociological nomenclature. 3rd edition. Journal of Vegetation Science 11: 739-768.
Woldring, H., Bottema, S. 2003. The vegetation history of East-Central Anatolia in relation to archaeology: The Eski Acigol pollen evidence compared with the Near Eastern environment. Palaeohistoria 43(44): 1-134.
Yunusbaev, U., Musina, L., Suyundukov, Y.T. 2003. Dynamics of steppe vegetation under the effect of grazing by different farm animals. Russian Journal of Ecology 34: 43-47, doi: 10.1023/A:1021815005312
Nihal Kenar
Aksaray University, Faculty of Science and Letters, Department of Biology 68100 Aksaray, Turkey
Corresponding author e-mail (Iletisim yazari e-posta): nkenar@aksaray. edu.tr
Received (Gelis): 05.10.2016 - Revised (Duzeltme): 21.11.2016 - Accepted (Kabul): 24.11.2016
Cite (Atif): Kenar, N, 2017. Phytosociological investigations of steppe and steppe forest vegetation in the south-east part of Central Anatolia of Turkey. Journal of the Faculty of Forestry Istanbul University 67(2): 210-226. DOI: 10.17099/jffiu.322422.
Table 1. The average and extreme climatic values of Aksaray in the period from 1950 to 2015 Tablo 1. 1950- 2015 yillari arasinda Aksaray ilinin ortalama ve ekstrem iklimsel degerleri Months Meteorological 1 2 3 4 5 6 7 parameters Mean temperature (C[degrees]) 0.5 2 6.5 11.5 16.2 20.4 23.8 Max. mean temp. (C[degrees]) 5.4 7.2 12.4 17.9 22.8 27 30.5 Min. mean temp. (C[degrees]) -3.6 -2.4 1.2 5.5 9.5 12.9 16 Mean rainfall (mm) 38.6 34 40.2 46.9 40.8 25.2 6.1 Months Meteorological 8 9 10 11 12 Mean parameters Mean temperature (C[degrees]) 23.2 18.6 13 6.9 2.5 12.1 Max. mean temp. (C[degrees]) 30.4 26.5 20.6 13.5 7.6 18.5 Min. mean temp. (C[degrees]) 15.6 11.1 6.6 1.7 -1.6 6.04 Mean rainfall (mm) 3.8 8.4 26.1 32.2 43.4 345.7 Table 2. The average and extreme climatic values of Nigde in the period from 1950 to 2015 Tablo 2. 1950-2015 yillari arasinda Nigde ilinin ortalama ve ekstrem iklimsel degerleri Months Meteorological 1 2 3 4 5 6 7 parameters Mean -0.3 1 5.1 10.6 15.1 19.3 22.6 temperature (C[degrees]) Max. mean temp. 4.9 6.3 11 16.7 21.3 25.6 29.3 (C[degrees]) Min. mean temp. -4.5 -3.6 -0.1 4.5 8.3 11.8 14.8 (C[degrees]) Mean rainfall 31.8 33.3 36 43.2 49 28.2 4.8 (mm) Months Meteorological 8 9 10 11 12 Mean parameters Mean 22.3 17.9 12.1 6.1 1.7 11.1 temperature (C[degrees]) Max. mean temp. 29.4 25.6 19.5 12.8 7.1 17.5 (C[degrees]) Min. mean temp. 14.4 10.3 5.9 1.1 -2.6 5.02 (C[degrees]) Mean rainfall 4.4 8.7 26.7 30.9 39.4 336.4 (mm) Table 3. Releve table of Asphodelino damascenae-Quercetum pubescentis (Holotype*) Tablo 3. Asphodelino damascenae-Quercetum pubescentis birliginin releve tablosu (Holotip*) Releve number 13 14 15 16 17* 18 19 Altitude (m) 1705 1697 1712 1720 1700 1730 1732 Inclination ([degrees]) 25 45 15 5 15 5 5 Releve size ([m.sup.2]) 289 289 289 289 289 289 289 Total cover (%) 80 95 85 85 80 95 95 Herb layer (%) 75 85 75 75 70 90 85 Tree layer (%) 15 25 30 25 30 30 30 Aspect N E NW E E NW NE The characteristic species of Asphodelino Quercus pubescens 4 4 4 4 4 5 5 subsp. pubescens Juniperus oxycedrus 1 1 2 2 2 2 2 subsp. oxycedrus Asphodeline damascena + + + + + + + subsp. damascena Bromus squarrosus + + + + . + + Ferula rigidula . + + + + + The characteristic species of Quercion anatolicae and Querco-Carpinetalia orientalis Trifolium elongatum . . . + 1 . . The characteristic species of Querco-Cedretalia libani Quercus infectoria . . . . 1 . . subsp. veneris Sorbus umbellata var. . . + . . . . umbellata The characteristic species of Quercetea pubescentis Cotoneaster nummularius . + . + + . 1 Teucrium chamaedrys + + . . + . . subsp. syspirense The characteristic species of Astragalo-Brometea and Onobrychido armenae-Thymetalia leucostomi Festuca valesiaca 1 2 2 2 2 2 2 Helichrysum plicatum + + + + + + + subsp. plicatum Allium scodoprosum + + + + + . + subsp. rotundum Scabiosa argentea + . + + + + + Ziziphora + . + + + + + clinopodioides Teucrium polium + + + . + + + subsp. polium Cota tinctoria . + + + + + + Apera intermedia + + + + + + . Astragalus + . . + + + + microcephalus subsp. microcephalus Galium verum + + + + + . . subsp. verum Euphorbia macroclada + + + . + + + Minuartia recurva + . + + + . . subsp. oreina Inula montbretiana . + + . . + + Asyneuma limonifolium . . . . + + + subsp. petolazzae Dianthus anatolicus . . . . . + + Leontodon asperrimus + + . . . . . Acantholimon ulicinum + . . . . . . var. ulicinum Minuartia juniperrina . . + + . . . Astragalus . . . + . . . angustifolius subsp. angustifolius Bromus tomentellus . . . . . . . subsp. tomentellus Anthemis cretica + . . . . . . subsp. anatolica Releve number 13 14 15 16 17* 18 19 Comnanions Poa bulbosa . + + + + + + Centaurea virgata + . + + + + + Arenaria serpyllifolia + + + + + . + subsp. serpyllifolia Pilosella hoppeana + . + + + . + subsp. cilicica Xeranthemum annuum + . . . + + + Rumex acetosella + . . + . + + Dactylis glomerata + + . . . + + subsp. glomerata Phleum exaratum . + . + + + . subsp. exaratum Vincetoxicum + + + + . . . fuscatum subsp. fuscatum Prangos meliocarpoides . + + + . . . var. meliocarpoides Pilosella piloselloides + + . + + . . subsp. magyarica Daphne oleoides . . + . . + + subsp. oleoides Poa angustifolia . . . + . . + Verbascum asperuloides . . . + . + + Dianthus calocephalus . . . . + + + Alyssum desertorum . . . . . + + Scleranthus annuus . . + + + . . subsp. annuus Campanula stricta . . . . + + + subsp. stricta Silene caramanica + . + . + . . var. caramanica Linaria genistifolia + . . + + . . subsp. polyclada Filago arvensis . + . . . . . Astragalus condensatus + . . . + . . Silene latifolia . . . . . . + subsp. alba Lactuca orientalis . . . . . + + Trifolium stellatum . . . . . + + var. stellatum Velezia rigida . . . + + . . Hypericum linarioides . . . . + . . subsp. linarioides Scutellaria orientalis + . + . . . . subsp. pinnatifida Centaurea patula . . . . + . . Secale anatolicum . . . . + . . Fibigia clypeata subsp. . . . . . . . clypeata var. eriocarpa Arrhenatherum elatius . . . + . . . Orobanche anatolica . . + . . . . Veronica cinerea . + . . . . . Asperula stricta . . + . . . . subsp. stricta Picnomon acarna + . . . . . . Releve number 20 21 Presence Altitude (m) 1801 1750 Inclination ([degrees]) 5 5 Releve size ([m.sup.2]) 289 289 Total cover (%) 90 85 Herb layer (%) 85 80 Tree layer (%) 30 30 Aspect SE N The characteristic species of Asphodelino Quercus pubescens 5 4 V subsp. pubescens Juniperus oxycedrus 2 3 V subsp. oxycedrus Asphodeline damascena IV subsp. damascena Bromus squarrosus + IV Ferula rigidula . . III The characteristic species of Quercion anatolicae and Querco-Carpinetalia orientalis Trifolium elongatum . . I The characteristic species of Querco-Cedretalia libani Quercus infectoria . . I subsp. veneris Sorbus umbellata var. . . I umbellata The characteristic species of Quercetea pubescentis Cotoneaster nummularius 2 + III Teucrium chamaedrys . . II subsp. syspirense The characteristic species of Astragalo-Brometea and Onobrychido armenae-Thymetalia leucostomi Festuca valesiaca 2 2 V Helichrysum plicatum + + V subsp. plicatum Allium scodoprosum + + IV subsp. rotundum Scabiosa argentea + + IV Ziziphora + + IV clinopodioides Teucrium polium + + IV subsp. polium Cota tinctoria + + IV Apera intermedia + + IV Astragalus + + IV microcephalus subsp. microcephalus Galium verum + . III subsp. verum Euphorbia macroclada . . III Minuartia recurva + + III subsp. oreina Inula montbretiana + + III Asyneuma limonifolium . + II subsp. petolazzae Dianthus anatolicus . + II Leontodon asperrimus . . I Acantholimon ulicinum . + I var. ulicinum Minuartia juniperrina . . I Astragalus . . I angustifolius subsp. angustifolius Bromus tomentellus . + I subsp. tomentellus Anthemis cretica . . I subsp. anatolica Releve number 20 21 Presence Comnanions Poa bulbosa + + IV Centaurea virgata . . III Arenaria serpyllifolia . . III subsp. serpyllifolia Pilosella hoppeana + III subsp. cilicica Xeranthemum annuum + + III Rumex acetosella + + III Dactylis glomerata + + III subsp. glomerata Phleum exaratum + + III subsp. exaratum Vincetoxicum . + III fuscatum subsp. fuscatum Prangos meliocarpoides + . II var. meliocarpoides Pilosella piloselloides . . II subsp. magyarica Daphne oleoides + . II subsp. oleoides Poa angustifolia + + II Verbascum asperuloides + . II Dianthus calocephalus + . II Alyssum desertorum . + II Scleranthus annuus . . II subsp. annuus Campanula stricta . . II subsp. stricta Silene caramanica . . II var. caramanica Linaria genistifolia . . II subsp. polyclada Filago arvensis + + II Astragalus condensatus + . II Silene latifolia + + II subsp. alba Lactuca orientalis . . I Trifolium stellatum . . I var. stellatum Velezia rigida . . I Hypericum linarioides . + I subsp. linarioides Scutellaria orientalis . . I subsp. pinnatifida Centaurea patula . . I Secale anatolicum . . I Fibigia clypeata subsp. + . I clypeata var. eriocarpa Arrhenatherum elatius . . I Orobanche anatolica . . I Veronica cinerea . . I Asperula stricta . . I subsp. stricta Picnomon acarna . . I 13: N 38[degrees]16' 26.8'' E 34[degrees] 33' 10.6'', 14: N 38[degrees]16' 27.2'' E 34[degrees] 33' 12.5'', 15: N 38[degrees]16' 25.3'' E 34[degrees] 33' 8.6'', 16: N 38[degrees]16' 22.7'' E 34[degrees] 33' 7.5'', 17: N 38[degrees]16' 21.2'' E 34[degrees] 33' 7.6'', 18: N 38[degrees]16' 19.4'' E 34[degrees] 33' 5.5'', 19: N 38[degrees]16' 19'' E 34[degrees] 33' 4.6'', 20: N 38[degrees]16' 17.1'' E 34[degrees] 33' 4.4'', 21: N 38[degrees]16' 15.2'' E 34[degrees] 33' 3'' Table 4. Releve table of Ziziphoro clinopodioidis-Festucetum valesiacae (Holotype*) Tablo 4. Ziziphoro clinopodioidis-Festucetum valesiacae birliginin relee tablosu (Holotip*) Releve number 1 2 3 4 7 8 1 2 2 2 2 3 3 5 6 0 2 3 4 6 0 1 * Inclinntion ([degrees]) 3 4 3 6 6 6 1 4 4 4 6 3 4 2 1 Releve size ([m.sup.2]) 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 Total cover (%) 6 7 7 7 7 8 6 5 7 6 6 6 7 6 7 Herb lever (%) 6 7 7 7 7 8 6 5 7 6 6 6 7 6 7 Aspect N N N N S S N N N N N N N N S The characteristic species of Ziziphoro clinopodioidisFestucetum valesiacae Festuca valesiaca 3 1 2 2 3 3 3 2 3 2 3 + 4 2 2 Ziziphora clinopodioides 2 2 . 2 2 1 3 1 3 1 1 . + 1 Astragalus microcephalus 2 1 1 1 1 2 . 1 2 + 1 2 + . 1 subsp. Teucrium polium subsp. 1 . 2 . . . 2 . 2 2 2 1 1 + 1 polium Astragalus condensatus 1 2 . . . . . . 1 . . . . . Potentilla recta . . . . + . . + + . . . . . . Elvmus hispidus subsp. . . . . . . . . + . . + + . . hispidus The differential species of elymetosum divaricate Elymus divaricatus . . . . . . . . . + . + . 3 3 subsp. Minuartia iuniperina . . . . . . + . . . . . . . . Paronvchia chionaea . . . . . . . . . . . . . + . subsp Stipa pulcherrima . . . . . . . . . . . . . + . subsp. Centaurea patula . . . . . . . . . . . . . + + Pilosella hoppeana . . . . . . . . . . . . . . + subsp. Pilosella hoppeana . . . . . . . . . . . . . . . subsp. The characteristic species of Agropyro-Stachydion Pterocephalus pinardii 2 1 . . . . . 1 . 1 . . . . . Marrubium globosum . + . . + . . + 1 . . . . . . subsp. The characteristic species of Onobrychido armeni--Thymetalia leucostomi Dianthus anatolicus . . . . . . . . . . + + . . . Leontodon asperrimus . . + . . . . . . . . . . . + Salvia absconditiflora . . . . . . . . . . . . . . . The characteristic species of Astragalo-Brometalia and Astragalo-Brometea Bromus tomentellus + + + 1 . . 1 + + 1 + + + 1 1 subsp. tomentellus Releve number 1 2 3 4 7 8 1 2 2 2 2 3 3 5 6 0 2 2 2 6 0 1 * Scabiosa argentea + 1 + + + . . + + . + + + . . Helichrvsum plicatum . . + + + + + . . . + . . + + subsp. Minuartia plicatum . . + 1 . . + . + + + + + + 1 subsp. oreina Galium verum subsp. . + . . + 1 + + . . . . . . + verum Astragalus angustifolius . . . 1 . . 1 . . . . . . 1 2 subsp. Acantholimon ulicinum . . . . 1 2 . . + . . + . . + var. Cruciata armeniaca + . . . . + . . . . . + . . . Phlomis armeniaca . . . . 1 . . . . . . + . . 1 Asvnesuma limonifolium . . . . . . + . . . . . + . subsp. Anthemis cretica subsp. . + . . . . . . + + . . . . . Inula montbretiana . . . . + . . . . . + . . . . Centaurea virgata + . . . . . . . . . . . . . . Euphorbia macroclada . . 2 . . . . . . . . . . . . Allium scodoprosum . . . . . + . . . . . . . . . subsp. Sanguisorba minor + . . . . . . . . . . . . . . subsp. balearica Globularia trichosantha . . . . . . . . . . . . . . . subsp. Alvssum murale subsp. . . . . . . . . . . . . . . . murale Campanula stricta subsp. . . . . . . . + . . . . . . . stricta The characteristic species of Quercetea pubescentis Cotoneaster nummularius . + . . . . . . . + . . . . . Berberis crataegina . . . . . . 1 . + . . . . . Juniperus ovxcedrus . . . . . . + . . . . . . . . subsp. Companions . . . . . . . . . . . . . . . Phleum exaratum . + . . . . + + . + 1 1 + + . subsp. Gypsophila laricina . 1 + 1 . . + . . + + . . 1 . Apera intermedia 1 + + + . . . + + + . + . . . Arenaria serpvllifolia . . + 1 + 1 1 + + . + . . . + subsp. Veronica cinerea + 1 + 1 + . 1 . . . . . . 1 . Rumex acetosella + . + . + . . + . + + . . . + Dianthus micranthus . . . + + . + + . + . . . . + Scorzonera cinerea . . . 1 . . + . . . + + . . + Linaria genistifolia + + . . . . . + + + . + . . + subsp. Filago arvensis + . . . + . + + + + . . + . . Daphne oleoides . 1 . . . . . + . . . . . . + subsp. oleoides Poa bulbosa . . . . . . . + + + + . . . . Poa angustifolia . + . + . . . . . . . . + + + Hieracium pannosum . . . + . . . . . . + . . . . Alyssum desertorum . . . . . . + . . . . . . + . Senecio vernalis . . . . . . . + . . . . + . . Alyssum simplex . . . . . . . . + . . . . . . Rosa pulverulenta 1 1 . . . . . . . + . . . . . Veronica thymoides + . . . . . . . . + . . . . . subsp. Xeranthemum annuum . + . . . . . . + . . . + . . Picnomon acarna . . . . . . . 1 + . . . . . . Cuscuta balansae . . . . . . + . . . . . . + . Asperula stricta . . . . . . . . + + . . . + . subsp. Dactylis glomerata + . . + . . . . . . . . . . + subsp. Amblyopyrum muticum . . . . + + . . . . . . . . . var. Echinops ritro . . . . + + . . . . . . . . . Rosa canina . . . . . . . . . . . + 1 . . Trifolium stellatum var. + . . . . . . . . . . . . . . Chondrilla juncea + . . . . . . . + . . . . . . Verbascum lOSianthum . . . . . . . . . . . . . . . Trifolium arvense var. . . . . . . . . + . . . . . . arvense Cvanus lanigerus . . . . . . . . . . . . . . . Alkanna orientnlis var. . . . . . . . . . . . . . . . Verbascum asperuloides . . . . . . . + . . . . . . . Scleranthus annuus . . . . . . . + . . . . . . . subsp. Cirsium leucocephalum . . . . . 1 . . . . . . . . . subsp. Convolvulus arvensis . . . . . + . . . . . . . . . Reseda lutea var. . . . . . . . . . . . . . . . lutea Releve number 9 1 1 2 2 2 2 1 2 5 7 8 9 * Inclinntion ([degrees]) 1 1 3 4 4 4 4 Releve size ([m.sup.2]) 6 6 6 6 6 6 6 Total cover (%) 7 6 6 6 4 6 8 Herb lever (%) 7 6 6 6 4 6 8 Aspect S N N N N N N The characteristic species of Ziziphoro clinopodioidis-Festucetum valesiacae Festuca valesiaca 2 2 1 2 2 2 2 Ziziphora clinopodioides 1 . 1 2 + + + Astragalus microcephalus + . . 1 . . . subsp. Teucrium polium subsp. . 2 2 . . 1 1 polium Astragalus condensatus . . . . . . . Potentilla recta . . . . . . . Elvmus hispidus subsp. . . . . . . . hispidus The differential species of elymetosum divaricate Elymus divaricatus 3 3 3 3 3 3 4 subsp. Minuartia iuniperina + + + . + + . Paronvchia chionaea . + + . . . . subsp Stipa pulcherrima . 2 . . . . + subsp. Centaurea patula . . . . . . . Pilosella hoppeana 1 . . . . . . subsp. Pilosella hoppeana 2 . . + . . . subsp. The characteristic species of Agropyro-Stachydion Pterocephalus pinardii . . . 1 1 1 . Marrubium globosum . . . . + . . subsp. The characteristic species of Onobrychido armeni--Thymetalia leucostomi Dianthus anatolicus . . . . . + + Leontodon asperrimus . + . . . . + Salvia absconditiflora . . . . . . . The characteristic species of Astragalo-Brometalia and Astragalo-Brometea Bromus tomentellus . 1 1 1 + 2 1 subsp. tomentellus Releve number 9 1 1 2 2 2 2 1 2 5 7 8 9 * Scabiosa argentea . . . + . . + Helichrvsum plicatum + + . . . + + subsp. Minuartia plicatum . . . + . + + subsp. oreina Galium verum subsp. + + + + . + + verum Astragalus angustifolius + + + + . . . subsp. Acantholimon ulicinum + + . . . . . var. Cruciata armeniaca . . . + . . . Phlomis armeniaca 1 . . . . . . Asvnesuma limonifolium . + + . . . . subsp. Anthemis cretica subsp. . . . . . . . Inula montbretiana 1 . . . . . . Centaurea virgata . + + . . . . Euphorbia macroclada . . . . + + Allium scodoprosum . . . . . . . subsp. Sanguisorba minor . . . + . . . subsp. balearica Globularia trichosantha 1 . . . . . . subsp. Alvssum murale subsp. . + . . . . . murale Campanula stricta subsp. . . . . . . . stricta The characteristic species of Quercetea pubescentis Cotoneaster nummularius . . . . + . . Berberis crataegina . . . . . . . Juniperus ovxcedrus . . . . . . . subsp. Companions . . . . . . . Phleum exaratum . 1 + + + + + subsp. Gypsophila laricina . + 1 + + + + Apera intermedia . . . + . + + Arenaria serpvllifolia 2 . . . . . + subsp. Veronica cinerea . 1 1 . . . . Rumex acetosella + . . + + . . Dianthus micranthus + + + + . . . Scorzonera cinerea + . + + . . + Linaria genistifolia . . . + + . . subsp. Filago arvensis . + . . + . . Daphne oleoides . . 1 + + . 1 subsp. oleoides Poa bulbosa . . . + . + + Poa angustifolia . . . . . . . Hieracium pannosum . . . . 1 . + Alyssum desertorum + + . . . . . Senecio vernalis . + . . + . . Alyssum simplex . + + + . . Rosa pulverulenta . . . . + . . Veronica thymoides . . . + + . . subsp. Xeranthemum annuum . . . . . . . Picnomon acarna . . . . + . . Cuscuta balansae . . + . . . . Asperula stricta . . . . . . . subsp. Dactylis glomerata . . . . . . . subsp. Amblyopyrum muticum + . . . . . . var. Echinops ritro . . . . . . . Rosa canina . . . . . . . Trifolium stellatum var. . . . . . . . Chondrilla juncea . . . . . . . Verbascum lOSianthum . . . . . . . Trifolium arvense var. . . . . . . . arvense Cvanus lanigerus . . . . . . + Alkanna orientnlis var. . . . . . . . Verbascum asperuloides . . . . . . . Scleranthus annuus . . . . . . . subsp. Cirsium leucocephalum . . . . . . . subsp. Convolvulus arvensis . . . . . . . Reseda lutea var. . + . . . . . lutea 1: N 38[degrees]16' 5.2" E 34[degrees] 33' 36.7", 1809 m 2: N 38[degrees]16' 5.1" E 34[degrees] 33' 32.5", 1837 m 3: N 38[degrees]16' 5" E 34[degrees] 33' 32.6", 1865 m 4: N 38[degrees]16' 4.3" E 34[degrees] 33' 31.1", 1886 m 5: N 38[degrees]15' 47.8" E 34[degrees] 32' 50.8", 2072 m 6: N 38[degrees]15' 40.9" E 34[degrees] 32' 51.4'', 2090 m 7: N 38[degrees] 15' 38.9" E 34[degrees] 32' 50.1", 2018 m 8: N 38[degrees] 15' 35" E 34[degrees] 32' 48.2'', 2047 m9 : N 38[degrees] 15' 32.5" E 34[degrees] 32' 51.9", 2061 m 10: N 38[degrees]15' 45.1" E 34[degrees] 32' 51.1", 2083 m 11: N 38[degrees]15' 47.9" E 34[degrees] 32' 52.9", 2081 m 12: N 38[degrees]15' 51.1" E 34[degrees] 32' 54", 2053 m 22: N 38[degrees]16' 15.8" E 34[degrees] 33' 51.5", 1709 m 23: N 38[degrees]16' 6" E 34[degrees] 33' 35.6", 1786 m 24: N 38[degrees]16' 4.5" E 34[degrees] 33' 30.7", 1856 m 25: N 38[degrees]16' 4.6" E 34[degrees] 33' 28.6", 1864 m 26: N 38[degrees]16' 7.4" E 34[degrees] 33' 13.6'', 1867 m 27: N 38[degrees]16' 2.4'' E 34[degrees] 33' 14.1'', 1934 m 28: N38[degrees]16' 0.5" E 34[degrees] 33' 13.5'', 1953 m 29: N 38[degrees]15' 59.3" E 34[degrees] 33' 13", 1958 m 30: N 38[degrees]65' 3" E 34[degrees] 33' 31.1'', 1863 m 31: N 38[degrees]15' 2.1" E 34[degrees] 33' 35" 1832 m. Table 5. The soil characteristics of the vegetation units in the study area Tablo 5. Arastirma alanindaki vejetasyon birimlerinin toprak ozellikleri Vegetation type Sand Clay Silt NaCl (%) (%) (%) (%) Ziziphoro clinopodioidis-Festucetum 84.87 8.71 6.42 0.0036 elymetosum divaricati 85.91 7.67 6.42 0.0035 Asphodelino damascenae-Quercetum 63 17.04 19.96 0.0041 Vegetation type Org. Matter P K (%) (kg/da) (kg/da) Ziziphoro clinopodioidis-Festucetum 0.7119 1.7769 25.3369 elymetosum divaricati 1.4369 1.5879 29.8437 Asphodelino damascenae-Quercetum 0.964 2.6276 43.1084 Vegetation type CaCO pH 3 (%) Ziziphoro clinopodioidis-Festucetum 0.2149 6.5 elymetosum divaricati 0.4292 78.3 Asphodelino damascenae-Quercetum 0.2149 6.7
![]() ![]() ![]() ![]() | |
Title Annotation: | Research Article / Arastirma Makalesi |
---|---|
Author: | Kenar, Nihal |
Publication: | Journal of the Faculty of Forestry Istanbul University |
Geographic Code: | 7TURK |
Date: | Jul 1, 2017 |
Words: | 8807 |
Previous Article: | Evaluation of the tender results of forest road constructions: A case study in Bolu Regional Directorate/Orman yol insaati ihale sonuclarinin... |
Next Article: | Biological observations for invasive and exotic insect species Anoplophora chinensis (Forster, 1771)/Istilaci yabanci bocek turu Anoplophora... |
Topics: |