Printer Friendly

Pharmacotherapy for Patients with Obesity.

Contributors to the development and persistence of obesity in humans include genetic, epigenetic, biological, behavioral, psychosocial, environmental, cultural, and dietary factors, with the scenario being generally multifactorial (1). Therefore, although lifestyle modification, with an emphasis on caloric restriction and increased physical activity, is recommended as the first-line therapy for the prevention and treatment of obesity, most patients, especially those with more severe forms of obesity and medical comorbidities, need additional interventions. Furthermore, given that the most commonly encountered chronic medical problems in clinical practice--type 2 diabetes (T2D), [2] hypertension, and dyslipidemia--tend to improve with weight reduction (2), increased emphasis on obesity management can reduce the burden of medical management of various comorbidities individually.

Bariatric surgery is a very effective intervention for achieving weight loss and ameliorating obesity-related comorbidities, but is associated with greater risks and higher costs relative to nonsurgical interventions, and thus it is not feasible or desirable for millions of individuals with obesity. Bariatric surgery is currently recommended for patients with a body mass index (BMI) of [greater than or equal to] 40 kg/[m.sup.2] or [greater than or equal to] 35 mg/[m.sup.2] in the presence of weight- related comorbidities (3). Pharmacotherapy, with an efficacy level that falls between that of lifestyle and surgical interventions, can thus bridge the gap that exists.


Drugs approved for weight management should be considered for patients with a BMI of [greater than or equal to] 30 kg/[m.sup.2] and those with a BMI of at least 27 kg/[m.sup.2] in the presence of weight-related comorbidities when added to lifestyle counseling (3). Pharmacotherapy may be considered for patients with excess bodyweight who (i) achieve modest benefit with lifestyle intervention and need additional weight loss; (ii) lose some weight with lifestyle intervention but have difficulty maintaining weight loss; (iii) have made numerous unsuccessful attempts at losing weight with diet and exercise; and (iv) are unable to comply with recommended lifestyle changes due to chronic severe medical conditions.


Although nearly half of obesity patients meet BMI eligibility criteria for antiobesity drugs, it is estimated that [less than or equal to] 3.5% receive prescriptions for these drugs in the US (4-6). The majority of users of antiobesity drugs are women (85%), white (86%), and aged <44 years (5, 7), with the possible explanation being a higher level of body image distress among these groups.


Primary care physicians account for most prescriptions for antiobesity drugs, ranging from 70% to 84%, depending on the period of survey (6, 8). Despite the availability of 5 medications for chronic weight management since 1999, phentermine, approved in 1959 for short-term weight loss, remains the most commonly used antiobesity drug in the US, accounting for 74%-89% of all prescriptions (6, 7). High costs, lack of insurance coverage, and the negative attitudes of prescribers toward pharmacotherapy and the treatment of obesity in general might be factors contributing to underutilization of newer antiobesity drugs. Furthermore, removal of some approved antiobesity drugs (fenfluramine, dexfenfluramine, sibutramine, rimonabant) because of safety issues might be a possible explanation for the reluctance of some physicians to prescribe this class of drugs.


Losing weight requires creation of a negative energy balance. With this in mind, patients with obesity are generally counseled to decrease their caloric intake and increase physical activity. Antiobesity drugs, via reduction of hunger and food cravings and enhancement of satiety, help patients to limit the amount of food they eat, thereby increasing their adherence to the prescribed diet plan (9). Although increased energy expenditure is suggested as a possible additional mechanism for weight loss associated with some antiobesity drugs, reduction in energy intake explains most of the weight loss achieved with all available antiobesity drugs. With the exception of orlistat, which reduces the absorption of fat in the gut, currently approved drugs for weight management primarily work via their effects on the central nervous system (CNS). Therefore, it is important to have a basic understanding of the CNS pathways involved in the regulation of energy homeostasis.


Neural control of energy balance is complex, redundant, and flexible. It has become increasingly clear that the neural pathways controlling food intake and energy expenditure that lead to the regulation of energy balance, body weight, and fat distribution are complex, redundant, and flexible. The idea of a relatively simple hypothalamic adipostat that had emerged about 20 years ago following the discovery of leptin has been replaced with an extensive neural network that encompasses most areas of the brain, including the cortico-limbic systems that make up >80% of the human brain. This expanded system (Fig. 1) is thought to integrate both the classical homeostatic as well as the hedonic, emotional, and cognitive aspects of food intake and energy expenditure (10). Clearly, with a larger system comes increased heterogeneity of neurotransmitters and modulators as potential targets for pharmacotherapy. Furthermore, the redundancy and flexibility of the system require treatments that address > 1 pathway. To avoid compensation, treatments ideally impinge on both the energy intake and the energy expenditure arms of the system. This can be achieved by combining drugs with different pharmacodynamic profiles, e.g., a phentermine/topiramate combination. A number of second-generation unimolecular polypharmacy agents are under development (11).

Biological defense mechanisms are a major obstacle to weight loss. Another fundamental new insight is the recognition that it is the defense of a particular body weight that is at the core of the near-global obesity epidemic. Specifically, the powerful counterregulatory and biologically adaptive mechanisms of increased hunger and decreased metabolism that kick into action upon calorie restriction are likely the major obstacles to preventing or reversing obesity (12). For any obesity prevention or treatment strategy, including pharmacotherapy, to be successful, it will have to be able to suppress these adaptive responses and permanently change the defended level of body weight/ adiposity. Although we can accurately measure these adaptive biological responses, we do not fully understand their mechanisms and, more importantly, we neither understand the molecular mechanisms that constitute defense of the set point nor how the set point can be changed. Bariatric surgeries in patients with obesity and in rodent models strongly suggest that this treatment leads to sustained weight loss because it changes the defended body weight/adiposity level (13). Therefore, understanding the mechanisms by which bariatric surgeries achieve resetting the body weight set point is a major research goal as it may lead to nonsurgical interventions with similar efficacy.

A powerful basomedial hypothalamus is key to body weight regulation. A major candidate for body weight set point regulation is the basomedial hypothalamus, where nutrient availability is sensed and translated into an optimal behavioral and metabolic action pattern (14). The basomedial hypothalamus, more than other regions, is exquisitely sensitive to any kind of manipulation, leading to either extreme obesity or starvation. Agonists and antagonists to the melanocortin receptors MC4R and MC3R are among the most powerful drugs for changing body weight in rodents, but application to humans has not been successful because of strong undesirable side effects. However, melanocortin-signaling is just one aspect of basomedial hypothalamic functions, with a recent study identifying 50 transcriptionally distinct cell populations in the arcuate nucleus-median eminence alone (15). The effects of the [5-HT.sub.2c] agonist, lorcaserin, on food intake appear to be primarily due to its activation of basomedial hypothalamic proopiomelanocortin neurons (16), although additional action on the mesolimbic reward circuit has been suggested (17). Thus, targeting basomedial hypothalamic signaling mechanisms remains a hot topic in obesity drug development.

Importance of manipulating the reward value of food. The literature on nonhuman animals very clearly identifies palatable food as the major cause of obesity. More than 40 years ago it was demonstrated that rats become rapidly obese on a palatable cafeteria diet, an effect that was moderated by access to physical activity and completely reversed by changing the diet back to regular laboratory chow (18). How is diet-induced obesity possible in the presence of powerful hypothalamic body weight regulation? One possibility for the corruption of hypothalamic body weight regulatory mechanisms by palatable diets rich in saturated fats and sugar is their proinflammatory action mediated by increased numbers of microglia and astrocytes in critical hypothalamic areas. However, current evidence suggests that the rapid initial hypothalamic gliosis is rather a neuroprotective response to cope with neural stress induced by an increased load of saturated fats and that only long-term overnutrition eventually changes inflammatory signaling of hypothalamic microglia and astrocytes to a more neurotoxic phenotype (19). This clearly puts the blame for the initial cause of this vicious cycle to overeating of palatable diets high in saturated fats and sugar. There is considerable evidence for a role of the meso-corticolimbic reward pathways (20). Although dopamine is a crucial neurotransmitter in the reward system, it also depends on opioidergic, glutamatergic, y-aminobutyric acid (GABA)-ergic, and nicotinic cholinergic signaling, as well as signaling via orexin and the melanin-concentrating hormone. Although currently marketed CNS-acting anorexigenic drugs affect the food reward system, there are further opportunities for developing drugs that could selectively manipulate food reward without having undesirable effects on mood, cognition, and executive functions.

Fighting obesity through improvement of cognitive functions. Several lines of evidence in both rodents and humans have shown strong interactions between obesity and cognitive functions, particularly with learning and memory (21, 22). The rescue of impaired learning and memory functions may be an effective strategy to modulate food intake and reduce body weight in obese subjects (23). Because habitual and "mindless" behavior routines such as instinctively responding to environmental food cues with eating or automatically taking the elevator instead of the stairs are less accessible to cognitive modulation (24), a case can be made for shifting from subconscious procedural to more conscious, associative forms of memory and more mindful behavior. Because habit formation appears to depend on a shift of activity from progressively more ventral to more dorsal striatal loops (25), a potential strategy would be to prevent or attenuate this shift. It will thus be important to identify the molecular signatures of these different striatal domains to ultimately pharmacologically target specific subsets and thereby enhance associative memories and cognitive attention.


Drugs approved to treat obesity have been in existence since the 1950s (Table 1). Until the approval of dexfenfluramine in 1996 for chronic weight management, weight loss drugs were approved in the US for short-term use only, about 12 weeks. With the exception of fenfluramine, all drugs approved before 1996 were structurally related to amphetamine, although they differed in their effects on enhancing the turnover of norepinephrine and dopamine, thus differing in their abuse potential. Although randomized controlled trials (RCTs) of at least 1 year were lacking, these sympathomimetic drugs showed a fair amount of efficacy, averaging approximately 3.0-3.6 kg weight loss relative to a placebo (26); of these drugs, mazindol was discontinued by the manufacturer in 1999. Phentermine, diethylpropion, phendimetrazine, and benzphetamine have remained on the US market, with phentermine being the most prescribed weight loss drug in this class, as well as among all approved antiobesity drugs. Fenfluramine, first approved in 1973, was withdrawn worldwide 24 years later, along with its newly-approved isomer, dexfenfluramine, in 1997 following echocardiographic demonstration of increased risk of mitral and aortic regurgitation among patients treated with these drugs. It was also in 1997 that sibutramine, a serotonin and norepinephrine uptake inhibitor, was approved for long-term treatment of obesity; however, the manufacturer voluntarily withdrew the drug worldwide at the request of the US Food and Drug Administration (FDA) in 2010 when results of a long-term trial (27) in high-risk patients revealed a slightly increased risk of major adverse cardiovascular events (MACE) with sibutramine treatment relative to a placebo (hazard ratio, 1.16; 95% confidence interval 1.03-1.31; P = 0.02). There was considerable enthusiasm for cannabinoid receptor-1 antagonists when rimonabant, the first drug in that class, was approved in the European Union in 2006; however, due to increased frequency of mood disorders and suicidal behaviors (28), it received a negative recommendation from an FDA advisory committee, resulting in the manufacturer withdrawing the new drug application (NDA). In 2008, the European Medicines Agency ordered removal of rimonabant from European markets. Following withdrawal of rimonabant, further clinical development of at least 3 other cannabinoid receptor-1 antagonists--taranabant (Merck), CP-945 598 (Pfizer), and BMS-646256 (Bristol Myers Squibb)--was halted without NDA submission.


Phentermine, approved in 1959 for short-term use, is a norepinephrine-releasing agent, with possible norepinephrine uptake inhibition with lower abuse potential than amphetamine due to lack of significant dopaminergic effects (29). It is the most prescribed weight loss drug in the US despite the availability of 5 approved drugs for long-term use in recent years. A 2002 metaanalysis estimated that treatment with phentermine 30 mg/day for 8-24 weeks achieved a mean weight loss of 3.6 kg relative to a placebo (26). Other drugs in this class have fewer published clinical trials. Although most clinical trials of phentermine were of short duration, there was a 1968 publication (30) that reported a 36-week RCT that compared phentermine 30 mg/day continuously, phentermine 30 mg/day intermittently (1 month on, 1 month off), and a placebo continuously. All subjects (n = 108, women) were instructed to follow an energy-restricted diet of1000 kcal/day. Results were reported only for the 64 women who completed the study. Weight changes with continuous phentermine (n = 17), intermittent phentermine (n = 22), and a placebo (n = 25) were - 12.2 kg, -13.0 kg, and -4.8 kg, respectively. A significant placebo-subtracted weight loss of 6.4 -6.7 kg was reported for phentermine 30-37.5 mg/day in two 12-week RCTs among Korean obese patients (31, 32). In a recently reported 28-week RCT that compared various treatments, phentermine 15 mg/day led to weight loss of 6.1% vs 1.7% for a placebo (33). Common side effects of phentermine are dry mouth, constipation, and insomnia. There is no scientific evidence that phentermine used alone increases the risk of valvular heart disease (34).


Orlistat. Orlistat, a pancreatic lipase inhibitor that reduces intestinal absorption of fat by about one-third, has been available since 1999. Orlistat 120 mg three-times-daily achieves a placebo-subtracted weight loss of approximately 3% (Table 2) and somewhat less in RCTs of longer duration (35, 36). Low-dose orlistat (60 mg three-times-daily), approved for use without a prescription, achieved a placebo-subtracted weight loss of 1.2 kg (1.6%) after 4 months in the nonprescription NDA study and 2.3 kg (2.4%) at 6 months in 2 prescription NDA studies (37). In December 2003, orlistat was approved for weight management of obese adolescents age 12 years and above, and to date it remains the only antiobesity drug approved for pediatric patients. In a 1-year study of obese adolescents, BMI decreased by 0.55 kg/[m.sup.2] with orlistat treatment compared with an increase of 0.31 kg/[m.sup.2] with a placebo; weight increased only 0.5 kg with orlistat but 3.1 kg with a placebo (38).

Lorcaserin. Lorcaserin, a selective serotonin [5-HT.sub.2C] receptor agonist, was approved in the US in 2012 and became available almost a year later due to a delay in receiving DEA classification for abuse potential. At the recommended dose in humans, lorcaserin has minimal affinity for [5-HT.sub.2B] receptors, stimulation of which is suspected to increase the risk of valvular heart disease (39) that led to the withdrawal of fenfluramine and dexfenfluramine. On reviewing the lorcaserin NDA in 2010, the FDA noted (40) that the mean weight loss associated with lorcaserin was about 3% greater than the mean weight loss associated with a placebo and therefore did not satisfy the first (5% difference in weight between active drug and a placebo) of 2 efficacy criteria set forth in the FDA guidelines; however, lorcaserin 10 mg twice daily dose satisfied, by a slim margin (47% vs 23%), the second efficacy criterion (the proportion of patients losing [greater than or equal to] 5% weight be at least 35% and at least double the proportion of the placebo-treated group). Concerns were also expressed about the increase in mammary tumors in preclinical studies in rats. Following rereview in 2012, the FDA approved lorcaserin with certain postmarketing requirements (41) that included the conduct of a long-term cardiovascular outcomes trial (CVOT), which began in 2014 and completed enrollment of approximately 12 000 patients in December 2015; the results are pending. In the largest of the three phase-3 trials of lorcaserin, patients on lorcaserin had a mean weight loss of 5.8 kg during the first year, but they gained 2.5 kg in the second year, whereas patients who were blindly switched from lorcaserin to a placebo gained a mean 4.8 kg (42). These observations suggest that patients continuing on lorcaserin beyond 1 year regain significant weight and that almost all of the lost weight is regained when the drug is discontinued. FDA recommends discontinuation of lorcaserin (Table 3) after 12 weeks if weight loss of at least 5% is not achieved (41). However, a recently published RCT showed that only 28% of obese patients treated with lorcaserin 10 mg twice daily achieved 5% weight loss after 12 weeks (43), thus raising concern about the utility of this drug in clinical practice because only 1 of 4 patients would be suitable for continuing the drug for longer than 3 months.

The most frequent adverse effects of lorcaserin (Table 4) are headache, dizziness, fatigue, nausea, dry mouth, and constipation. The dropout rate due to adverse events was low (8.4% vs 6.8% with a placebo) for patients assigned to lorcaserin in phase-3 trials (40). The FDA accepted a relative risk of 1.16 (95% confidence interval, 0.81-1.67) for valvular heart disease from exposure to lorcaserin over 2 years (44). Because obesity and depression are both common presentations in clinical practice, it would be ideal that a drug prescribed to induce weight loss is compatible with commonly used antidepressants. However, because the safety of lorcaserin coadministered with selective serotonin reuptake inhibitors, serotonin norepinephrine reuptake inhibitors, and other drugs that affect serotonergic system has not been established or systematically evaluated, FDA recommends caution when using lorcaserin in patients taking these drugs (45). During review of lorcaserin, FDA advisory committee members expressed a concern that given the minimal efficacy of lorcaserin, physicians might combine it with phentermine (46). A 12-week study (43) that compared lorcaserin alone and in combination with phentermine 15 mg/day or 30 mg/day reported that twice as many patients dropped out due to adverse events in the group that received lorcaserin and phentermine 30 mg/day. Mean weight loss with lorcaserin was 3.3% with only 28% patients achieving a weight loss of [greater than or equal to] 5%. The study did not have placebo- or phentermine-only arms.

Liraglutide 3.0 mg. Liraglutide is an injectable glucagon-like peptide-1 agonist initially approved in 2010 for treatment of T2D at the dose of 1.8 mg daily. Data suggest that liraglutide decreases appetite and enhances satiety via its effects on the CNS (47). These findings led to the development of liraglutide for treatment of obesity. A 20-week phase-2B trial in patients with obesity demonstrated that liraglutide treatment led to a dose-dependent weight loss of -4.8 kg, -5.5 kg, -6.3 kg, and -7.2 kg with 1.2 mg, 1.8 mg, 2.4 mg, and 3.0 mg doses, respectively, compared with -2.8 kg with a placebo and -4.1 kg with orlistat (48). The liraglutide NDA for obesity included three phase-3 trials of 1 year or more that primarily examined the efficacy of liraglutide 3.0 mg/day. One of these trials randomized 3731 overweight/obese patients in a 2:1 ratio to receive daily liraglutide 3.0 mg or placebo for 1 year (49). The study excluded patients with diabetes but enrolled those with prediabetes who were followed for an additional 2 years for a total of3 years to examine whether liraglutide treatment could reduce the risk of developing T2D. The mean weight change with liraglutide was -8.0% vs -2.6% with a placebo at 1 year. For patients with prediabetes at baseline, liraglutide treatment was associated with a mean weight change of -6.1% vs -1.9% with a placebo (50). The time to onset of T2D over 3 years was estimated to be 2.7 times longer with liraglutide than with a placebo (95% CI 1.9 -3.9). In a separate 1-year RCT, weight changes of -6.0% with liraglutide 3.0 mg, -4.7% with liraglutide 1.8 mg, and -2.0% with a placebo were reported among overweight/obese patients with T2D, confirming that the higher dose is more effective for weight loss (51). In another RCT, overweight/obese patients without diabetes were randomized to liraglutide 3.0 mg or a placebo to examine weight maintenance after they had achieved an average 6.0% weight loss with a low-calorie diet (52). During the maintenance phase, mean weight changes were -6.2% for liraglutide vs -0.2% for a placebo. Although liraglutide is associated with an increase in resting heart rate of 2-3 bpm compared to a placebo, a long-term CVOT of 9340 patients with T2D revealed that those assigned to liraglutide 1.8 mg had a lower MACE incidence compared to a placebo group after a median follow-up of 3.8 years (53).

Nausea, vomiting, and diarrhea are common adverse effects of liraglutide, especially nausea, which has an incidence of almost 40%. Liraglutide caused thyroid C-cell tumors in rats and mice. It is contraindicated in patients with a personal or family history of medullary thyroid cancer or in patients with type 2 Multiple Endocrine Neoplasia Syndrome.

Phentermine/Topiramate. As discussed above, phentermine has been in use for nearly 6 decades in the US. The combination of phentermine and topiramate has been well investigated for treatment of obesity, and it received FDA approval in 2012. Topiramate, an unusual drug with several pharmacological actions, including blockade of sodium and L-type calcium channels, antagonism of glutamate [alpha]-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid/kainate receptors, facilitation of GABA-mediated chloride fluxes, and inhibition of carbonic anhydrase activity, is approved for treatment of epilepsy and migraine prophylaxis. Weight loss has been a frequent finding among patients treated with topiramate, although it is not precisely known which mechanism of topiramate contributes to its effects on weight (54). A 2011 metaanalysis of 10 RCTs of 16-60 weeks duration revealed that topiramate treatment led to robust weight loss, relative to a placebo, of 5.3 kg in overweight/obese adults (55). In addition to weight loss, topiramate treatment led to a reduction in blood pressure and significant improvement of glycemia in studies of overweight/obese patients with T2D and hypertension (55). Although topiramate demonstrated consistent and clinically meaningful benefits for obese patients, the risk associated with it at the doses that resulted in weight loss, especially cognitive and psychiatric adverse effects, hindered further development of this drug for weight management. Therefore, efforts focused on combining low-dose topiramate with a low dose of another weight loss drug. In this context, phentermine appeared to be suitable candidate to combine with topiramate due to their varied pharmacological mechanisms and dissimilar adverse effect profiles.

Gadde et al. (56) examined the efficacy and safety of combining topiramate 100 mg/day with phentermine 15 mg/day in comparison with individual components in a 24-week RCT in 200 obese adults. Generic phentermine was administered in the morning and topiramate was given in the evening. Combination therapy led to robust weight loss (-10.7%) that was significantly superior to the weight loss achieved by each of the other 3 comparisons (placebo -2.1%, phentermine -4.6%, topiramate -6.3%). Subsequently, a once-daily formulation was tested in a 28-week RCT in which 2 doses of combination therapy (phentermine/topiramate 7.5/46 mg or 15/92 mg) were compared against individual components (topiramate 46 mg or 92 mg; or, phentermine 7.5 mg or 15 mg) and a placebo (33). Weight changes (intention-to-treat analysis) were -1.7% for a placebo, -5.5% for phentermine 7.5 mg, -6.1% for phentermine 15 mg, -5.1% for topiramate 46 mg, -6.4% for topiramate 92 mg, -8.5% for phentermine/topiramate 7.5/46 mg, and -9.2% for phentermine/topiramate 15/92 mg. Although both doses of combination therapy led to robust weight loss, the 7.5/46 mg dose had better tolerability than the 15/92 mg dose. Unfortunately, the addition of phentermine did not lower the incidence of neuropsychiatric adverse events as hoped.

The long-term safety and efficacy of phentermine/topiramate was examined in 2 large phase-3 trials, one that enrolled patients with moderate to severe obesity (57) and another that enrolled overweight/obese patients with weight-related comorbidities (58). Both RCTs demonstrated robust efficacy with phentermine/topiramate with placebo-subtracted weight losses of -6.6% for the 7.5/46 mg and -8.6% to -9.3% for the 15/92 mg dose. In addition to weight loss, there were clinically significant improvements in blood pressure, triglycerides, and glycemic measures with phentermine/topiramate treatment.

The most frequent adverse effects of phentermine/ topiramate in phase-3 trials were paresthesia, dry mouth, constipation, insomnia, dizziness, and dysguesia (59). Cognitive and psychiatric adverse events occurred 2-3 times more frequently with phentermine/topiramate relative to a placebo, leading to twice (18% vs 9%) as many patients dropping out due to tolerability issues. Topiramate increases the risk of oral clefts among babies born to mothers who were exposed to topiramate during the first trimester of pregnancy (60); therefore, to minimize the risk, a negative pregnancy test is required before starting phentermine/topiramate and monthly thereafter (61). At the time of approval in 2012, based on the observation of a slight increase in heart rate, especially in the first two months of treatment with phentermine/topiramate, the FDA required (62) that a postmarketing CVOT be conducted and completed by 2017; a review of clinical trials registry in June 2017 revealed that such a study has not been conducted.

Naltrexone/Bupropion. Bupropion, a marketed antidepressant that is also approved for smoking cessation, has been shown to promote clinically significant weight loss in 3 RCTs in obese patients (63). Naltrexone, an opioid-receptor antagonist, decreases food intake in animals and decreases food cravings in obese humans, with weight loss reported for female subjects (64, 65). A 16-week proof-of-concept trial (66) revealed no difference in weight loss achieved with bupropion alone (-3.6%) vs analtrexone/bupropion combination (-4.0%). In a subsequent RCT of 24-weeks duration, in which study dropout rates were extremely high (63% withdrew early in one of the groups), additional weight loss was shown with bupropion combined with 2/3 doses of naltrexone (67).

In phase-3 RCTs, bupropion 360 mg/day combined with naltrexone 32 mg/day or 16 mg/day achieved placebo-subtracted weight losses of 4.2% and 3.7%, respectively (68). However, FDA reviewers expressed concern about heart rate and systolic and diastolic blood pressure increases relative to a placebo, which were 2.4 bpm, 2.4 mmHg, and 2.0 mmHg, respectively, in the first 8 weeks. Heart rate and blood pressure remained somewhat increased even at 1 year. Further concern was that naltrexone/bupropion treatment was associated with mean daytime systolic blood pressure and diastolic blood pressure increases of 3.3 mmHg and 3.1 mmHg, respectively, relative to a placebo (68). The FDA required a preapproval CVOT but granted approval for naltrexone/bupropion in 2014 following review of interim data from that trial. However, after the sponsor made an inappropriate public release of confidential interim data, the study's steering committee recommended its termination (69). End-of-study data showed there was no difference in MACE incidence between patients assigned to naltrexone/bupropion or a placebo (2.8% and 2.7% events). Notably, the authors of the study expressed concern that only 17.3% of placebo patients and 27% of naltrexone/bupropion patients were still taking the study drug at 2 years. Study discontinuation rates attributed to adverse events were significantly higher among patients assigned to naltrexone/bupropion vs a placebo (28.1% vs 8.7%).

Naltrexone/bupropion is associated with a high incidence of gastrointestinal (nausea, vomiting, constipation, dry mouth) adverse effects in addition to headache, dizziness, insomnia, and anxiety. Naltrexone/bupropion is contraindicated in patients with uncontrolled hypertension, seizure disorders, and anorexia nervosa or bulimia, and it should be avoided in patients receiving chronic treatment with opioids and in those abruptly stopping alcohol, benzodiazepines, barbiturates, or antiepileptic drugs.


What factors predict weight loss with antiobesity drugs? Weight loss in the first 3-6 months appears to be the best predictor of weight loss after 1 year (70-73). Although we do not have substantial information from research studies to guide us with regard to treatment selection, there are a few factors clinicians could consider based on the pharmacological actions of the various drugs. For example, for patients who report intense food cravings, phentermine/topiramate and naltrexone/bupropion may be good options based on published studies of topiramate and naltrexone (64, 74), lorcaserin for patients who struggle with impulse control (75), phentermine/topiramate for eating disorders (76), naltrexone/bupropion for patients who struggle with addiction (77) and/or depression, liraglutide or lorcaserin to induce weight loss in overweight/obese patients with prediabetes or T2D, and orlistat for obese individuals who need to reduce their fat intake.

How effective are antiobesity drugs beyond 1 year? As is the case with all nonsurgical interventions for treating obesity, some weight is regained when antiobesity drugs are continued beyond 1 year (42, 50, 69, 70, 78), resulting in a net placebo-subtracted mean weight loss of 2%-4% after 2-4 years, with liraglutide demonstrating the most efficacy and lorcaserin and naltrexone/bupropion being less effective.

What happens when an antiobesity drug is stopped? Similar to the observations made with lifestyle interventions, lost weight is regained when drug therapy for weight management is stopped, although there is some net weight loss when followed for few months (42, 79, 80). Thus, for patients who are tolerating the drug well and continuing to benefit, further continuation of the drug therapy should be considered.


Currently, marketed drug therapies for chronic weight management achieve 3% to 9% weight loss, relative to a placebo, after 1 year among patients with obesity when all participants are provided some level of lifestyle counseling. Weight loss achieved with lorcaserin, orlistat, and naltrexone/bupropion is at the lower end of the range and phentermine/topiramate at the upper end, with liraglutide falling in between. Despite much enthusiasm for the newer drugs at the time of approval, only a small proportion of eligible patients are using them due to their high cost. Thus, it is not surprising that phentermine, which has been available in the US for well over 5 decades, remains the most prescribed drug for weight management, although it has never been studied in a randomized controlled trial of at least 1 year. Weight loss achieved with drug therapy generally seems to improve glycemic control, but improvements of blood pressure and lipids are smaller and inconsistent.

Author Contributions: All authors confirmed they have contributed to the intellectual content of this paper and have met the following 3 requirements: (a) significant contributions to the conception and design, acquisition of data, or analysis and interpretation of data; (b) drafting or revising the article for intellectual content; and (c) final approval of the published article.

Authors' Disclosures or Potential Conflicts of Interest: Upon manuscript submission, all authors completed the author disclosure form. Disclosures and/or potential conflicts of interest:

Employment or Leadership: None declared.

Consultant or Advisory Role: K.M. Gadde, AstraZeneca for a diabetes study with all payments made to his academic institution.

Stock Ownership: None declared.

Honoraria: None declared.

Research Funding: K.M. Gadde, NIH, AstraZeneca; J.W. Apolzan, NIH, USDA; H.-R. Berthoud, NIH.

Expert Testimony: None declared.

Patents: K.M. Gadde, awarded several patents related to obesity and body weight. The inventions disclosed in Gadde's patents have not been discussed in this manuscript.

Acknowledgment: The authors thank Katelyn Daigle for editorial assistance in preparing and revising this manuscript.


(1.) Bray GA, Fruhbeck G, Ryan DH, Wilding JPH. Management of obesity. Lancet 2016;387:1947-56.

(2.) Blackburn GL. Benefits of weight loss in the treatment of obesity. Am J Clin Nutr 1999;69:347-9.

(3.) Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG, Donato KA, et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. J Am Coll Cardiol 2014;63:2895-3023.

(4.) Nicklas JM, Huskey KW, Davis RB, Wee CC. Successful weight loss among obese U.S. adults. Am J Prev Med 2012;42:481-5.

(5.) Xia Y, Kelton CML, Guo JJ, Bian B, Heaton PC. Treatment of obesity: pharmacotherapy trends in the United States from 1999 to 2010. Obesity 2015;23:1721-8.

(6.) Thomas CE, Mauer EA, Shukla AP, Rathi S, Aronne LJ. Low adoption of weight loss medications: a comparison of prescribing patterns of antiobesity pharmacotherapies and SGLT2s. Obesity 2016;24:1955-61.

(7.) Hampp C, Kang EM, Borders-Hemphill V. Use of prescription antiobesity drugs in the United States. Pharmacotherapy 2013;33:1299-1307.

(8.) Stafford RS, Radley DC. National trends in antiobesity medication use. Arch Intern Med 2003;163:1046 -50.

(9.) Gadde KM. Current pharmacotherapy for obesity: extrapolation of clinical trials data to practice. Expert Opin Pharmacother 2014;15:809-22.

(10.) Berthoud HR, Munzberg H, Morrison CD. Blaming the brain for obesity: integration of hedonic and homeostatic mechanisms. Gastroenterology 2017;15: 1728-38.

(11.) Tschop MH, Finan B, Clemmensen C, Gelfanov V, Perez-Tilve D, Muller TD, DiMarchi RD. Unimolecular polypharmacy for treatment of diabetes and obesity. Cell Metab 2016;24:51-62.

(12.) Fothergill E, Guo J, Howard L, Kerns JC, Knuth ND, Brychta R, et al. Persistent metabolic adaptation 6 years after "the biggest loser" competition. Obesity; 2016; 24:1612-9.

(13.) Hao Z, Mumphrey MB, Townsend RL, Morrison CD, Munzberg H, Ye J, Berthoud HR. Reprogramming of defended body weight after roux-en-y gastric bypass surgery in diet-induced obese mice. Obesity 2016;24: 654-60.

(14.) Sternson SM, Eiselt AK. Three pillars for the neural control of appetite. Annu Rev Physiol 2017;79:401-23.

(15.) Campbell JN, Macosko EZ, Fenselau H, Pers TH, Lyubetskaya A, Tenen D, et al. A molecular census of arcuate hypothalamus and median eminence cell types. Nat Neurosci 2017;20:484-96.

(16.) Burke LK, Heisler LK. 5-hydroxytryptamine medications for the treatment of obesity. J Neuroendocrinol 2015; 27:389-98.

(17.) Valencia-Torres L, Olarte-Sanchez CM, Lyons DJ, Georgescu T, Greenwald-Yarnell M, Myers MG, Jr., et al. Activation of ventral tegmental area 5-ht2c receptors reduces incentive motivation. Neuropsychopharmacology 2017;42:1511-21.

(18.) Sclafani A, Springer D. Dietary obesity in adult rats: similarities to hypothalamic and human obesity syndromes. Physiol Behav 1976;17:461-71.

(19.) Thaler JP, Guyenet SJ, Dorfman MD, Wisse BE, Schwartz MW. Hypothalamic inflammation: marker or mechanism of obesity pathogenesis? Diabetes 2013; 62:2629-34.

(20.) Berridge KC, Ho CY, Richard JM, Difeliceantonio AG. The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res 2010;1350: 43-64.

(21.) Hargrave SL, Jones S, Davidson TL. The outward spiral: a vicious cycle model of obesity and cognitive dysfunction. Curr Opin Behav Sci 2016;9:40-6.

(22.) Liang J, Matheson BE, Kaye WH, Boutelle KN. Neurocognitive correlates of obesity and obesity-related behaviors in children and adolescents. Int J Obes 2014; 38:494-506.

(23.) Robinson E, Kersbergen I, Higgs S. Eating 'attentively' reduces later energy consumption in overweight and obese females. Br J Nutr 2014;112:657-61.

(24.) Horstmann A, Dietrich A, Mathar D, Possel M, Villringer A, Neumann J. Slave to habit? Obesity is associated with decreased behavioural sensitivity to reward devaluation. Appetite 2015;87:175-83.

(25.) Knowlton BJ, Patterson TK. Habit formation and the striatum. [Epub ahead of print] Curr Top Behav Neurosci September 28, 2016 as doi:10.1007/7854_2016_451.

(26.) Haddock CK, Poston WSC, Dill PL, Foreyt JP, Ericsson M. Pharmacotherapy for obesity: a quantitative analysis of four decades of published randomized clinical trials. Int J Obes 2002;26:262-73.

(27.) James WP, Caterson ID, Coutinho W, Finer N, Van Gaal LF, Maggioni AP, et al. Effect of sibutramine on cardiovascular outcomes in overweight and obese subjects. N Engl J Med 2010;363:905-15.

(28.) Gadde KM, Allison DB. Cannabinoid-1 receptor antagonist, rimonabant, for management of obesity and related risks. Circulation 2006;114:974-84.

(29.) Alexander M, Rothman RB, Baumann MH, Endres CJ, Brasic JR, Wong DF. Noradrenergic and dopaminergic effects of (+)-amphetamine-like stimulants in the baboon Papio Anubis. Synapse 2005;56:94-9.

(30.) Munro JF, MacCuish AC, Wilson EM, Duncan LJ. Comparison of continuous and intermittent anorectic therapy in obesity. BMJ 1968;1:352-4.

(31.) Kim KK, Cho HJ, Kang HC, Youn BB, Lee KR. Effects on weight reduction and safety of short-term phentermine administration in Korean obese people. Yonsei Med J 2006;47:614-25.

(32.) Kang JG, Park CY, Kang JH, Park YW, Park SW. Randomized controlled trial to investigate the effects of a newly developed formulation of phentermine diffuse-controlled release for obesity. Diabetes Obes Metab 2010;12:876-82.

(33.) Aronne LJ, Wadden TA, Peterson C, Winslow D, Odeh S, Gadde KM. Evaluation of phentermine and topiramate versus phentermine/topiramate extended-release in obese adults. Obesity 2013;21:2163-71.

(34.) Jick H, Vasilakis C, Weinrauch LA, Meier CR, Jick SS, Derby LE. A population-based study of appetite suppressant drugs and the risk of cardiac-valve regurgitation. N Engl J Med 1998;339:719-24.

(35.) Rucker D, Padwal R, Li SK, Curioni C, Lau DCW. Long term pharmacotherapy for obesity and overweight: updated meta-analysis. BMJ 2007;335:1194-9.

(36.) Leblanc ES, O'Connor E, Whitlock EP, Patnode CD, Kapka T. Effectiveness of primary care-relevant treatments for obesity in adults: a systematic evidence review for the U.S. Preventive Services Task Force. Ann Intern Med 2011;155:434-47.

(37.) Food and Drug Administration. Orlistat nonprescription briefing document: NDA 21-887. Endocrine and metabolic drugs advisory committee meeting, January 23, 2006. briefing/2006-4201B1_02_03-FDA-Clinical-Review.pdf (Accessed June 2017).

(38.) Chanoine JP, Hampl S, Jensen C, Boldrin MS, Hauptman J. Effect of orlistat on weight and body composition in obese adolescents. JAMA 2005;293:2873-83.

(39.) Rothman RB, Baumann MH, Savage JE, Rauser L, McBride A, Hufeisen SJ, Roth BL. Evidence for possible involvementof 5-HT(2B) receptors in the cardiacvalvulopathy associated with fenfluramine and other serotonertic medications. Circulation 2000;102:2836-41.

(40.) Food and Drug Administration. FDA briefing document, NDA 22529. Advisory committee meeting for lorcaserin. Endocrinologic & Metabolic Drugs Advisory Committee, 16 Sep 2010. downloads/AdvisoryCommittees/CommitteesMeeting Materials/Drugs/EndocrinologicandMetabolicDrugs AdvisoryCommittee/UCM225631.pdf (Accessed June 2017).

(41.) Food and Drug Administration: FDA news release. FDA approves Belviq to treat some overweight or obese adults. June 27, 2012. 7993/201 701 12023940/, NewsEvents/Newsroom/PressAnnouncements/ucm 309993.htm (Accessed June 2017).

(42.) Smith SR, Weissman NJ, Anderson CM, Sanchez M, Chuang E, Stubbe S, et al. Multicenter, placebo-controlled trial of lorcaserin for weight management. N Engl J Med 2010;363:245-56.

(43.) Smith SR, Garvey WT, Greenway FL, Zhou S, Fain R, Pilson R, et al. Coadministration of lorcaserin and phentermine for weight management: a 12-week, randomized, pilot safety study. Obesity 2017;25:857-65.

(44.) Colman E, Golden J, Roberts M, Egan A, Weaver J, Rosebraugh C. The FDA's assessment of two drugs for Chronic weight management. N Engl J Med 2012;367: 1577-8.

(45.) Prescribing informationfor Belviq[R] (lorcaserin HCl) for oral use, CIV. Arena Pharmaceuticals, Zofingen, Switzerland, and Eisai, Inc., Woodcliff Lake, NJ, May 2017.

(46.) Food and Drug Administration. Endocrinologic and Metabolic Drugs Advisory Committee meeting, May 10, 2012, Transcript. AdvisoryCommittees/CommitteesMeetingMaterials/ Drugs/EndocrinologicandMetabolicDrugsAdvisory Committee/UCM309522.pdf (Accessed June 2017).

(47.) Sisley S, Gutierrez-Aguilar R, ScottM, D'Alessio DA, Sandoval DA, Seeley RJ. Neuronal GLP1R mediates liraglutide's anorectic but not glucose-lowering effect. J Clin Invest 2014;124:2456-63.

(48.) Astrup A, Rossner S, Van Gaal L, Rissanen A, Niskanen L, Al Hakim M, et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet 2009;374:1606-16.

(49.) Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med 2015;373:11-22.

(50.) le Roux CW, Astrup A, Fujioka K, Greenway FL, Lau DCW, Van Gaal L, et al. 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial. Lancet 2017;389:1399-1409.

(51.) Davies MJ, Bergenstal R, Bode B, Kushner RF, Lewin A, Skoth TV, et al. Efficacy of liraglutide for weight loss among patients with type 2 diabetes: the SCALE Diabetes randomized clinical trial. JAMA 2015;314:687-99.

(52.) Wadden TA, Hollander P, Klein S, Niswender K, Woo V, Hale PM, et al. Weight maintenance and additional weight loss with liraglutide after low-calorie-diet induced weight loss: The SCALE Maintenance randomized study. Int J Obes 2013;37:1443-51.

(53.) MarsoSP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016; 375:311-22.

(54.) Verrotti A, Scaparrotta A, Agostinelli S, Di Pillo S, Chiarelli F, Grosso S. Topiramate-induced weight loss: a review. Epilepsy Res 2011;95:189-99.

(55.) Kramer CK, Leitao CB, Pinto LC, Canani LH, Azevedo MJ, Gross JL. Efficacy and safety of topiramate on weight loss: a meta-analysis of randomized controlled trials. Obes Rev 2011;12:e338-47.

(56.) Gadde KM, Yonish GM, Foust MS, Tam PY, Najarian T. A 24-week randomized controlled trial of VI-0521, a combination weight loss therapy, in obese adults. Obes Res 2006;14(9Suppl):A17.

(57.) Allison DB, Gadde KM, Garvey WT, Peterson CA, Schwiers ML, Najarian T, et al. Controlled-release phentermine/topiramate in severely obese adults: a randomized controlled trial (EQUIP). Obesity 2012;20: 330-42.

(58.) Gadde KM, Allison DB, Ryan DH, Peterson CA, Troupin B, Schwiers ML, Day WW. Effects of low-dose, controlled-release phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): a randomised, placebo-controlled, phase 3 trial. Lancet 2011;377:1341-52.

(59.) Food and Drug Administration. Advisory Committee Meeting for Phentermine/Topiramate (Qnexa), July 15, 2010. Division of Metabolism and Endocrinology Products (DMEP), Office of Drug Evaluation II, Center for Drug Evaluation and Research, Silver Spring, MD: MeetingMaterials/Drugs/EndocrinologicandMetabolic DrugsAdvisoryCommittee/ucm218819.htm (Accessed June 2017).

(60.) Alsaad AM, Chaudhry SA, Koren G. First trimester exposure to topiramate and the risk of oral clefts in the offspring: a systematic review and meta-analysis. Reprod Toxicol 2015;53:45-50.

(61.) Vivus, Inc. NDA 22580. Qsymia (phentermine and topiramate extended-release) Capsules: risk evaluation and mitigation strategy (REMS). Initial REMS approval, 07/2012; most recent modification, 09/2014. http:// drugsafetyinformationforpatientsandproviders/ UCM312598.pdf (Accessed June 2017).

(62.) Food and Drug Administration. Center for Drug Evaluation and Research. Application number 22580Orig1s000, approval letter, July 17, 2012. https://www.access 1s000Approv.pdf (Accessed June 2017).

(63.) Gadde KM, Xiong GL. Bupropion for weight reduction. Expert Rev Neurother 2007;7:17-24.

(64.) Sternbach HA, Annitto W, Pottash AL, Gold MS. Anorexic effects of naltrexone in man. Lancet 1982;1: 388-9.

(65.) Atkinson RL, Berke LK, Drake CR, Bibbs ML, Williams FL, Kaiser DL. Effects of long-term therapy with naltrexone on body weight in obesity. Clin Pharmacol Ther 1985; 38:419-22.

(66.) Greenway FL, Whitehouse MJ, Guttadauria M, Anderson JW, Atkinson RL, Fujioka K, et al. Rational design of a combination medication for the treatment of obesity. Obesity 2008;17:30-9.

(67.) Greenway FL, Dunayevich E, Tollefson G, Erickson J, Guttadauria M, Fujioka K, et al. Comparison of combined bupropion and naltrexone therapy for obesity with monotherapy and placebo. J Endocrinol Metab 2009;94:4898-906.

(68.) Food and Drug Administration. FDA briefing document, NDA 200063. Advisory committee meeting for naltrexone/bupropion (Contrave), Endocrinologic & Metabolic Drugs Advisory Committee, 7 Dec 2010.

Available at: Committees/CommitteesMeetingMaterials/Drugs/ EndocrinologicandMetabolicDrugsAdvisoryCommittee/ UCM235671.pdf(Accessed June2017).

(69.) Nissen SE, Wolski KE, Prcela L, Wadden T, Buse JB, Bakris G, et al. Effect of naltrexone-bupropionon major adverse cardiovascular events in overweight and obese patients with cardiovascular risk factors: a randomized clinical trial. JAMA 2016;315:990-1004.

(70.) Toplak H, Ziegler O, Keller U, Hamann A, Godin C, Wittert G, et al. X-PERT: weight reduction with orlistat in obese subjects receiving a mildly or moderately reduced-energy diet. Early response to treatment predicts weight maintenance. Diabetes Obes Metab 2006; 7:699-708.

(71.) Finer N, Ryan DH, Renz CL, Hewkin AC. Prediction of response to sibutramine therapy in obese non-diabetic and diabetic patients. Diabetes Obes Metab 2006;8: 206-13.

(72.) Smith SR, O'Neil PM, Astrup A, Finer N, Sanchez-Kam M, Fraher K, etal. Early weight loss while on lorcaserin, diet and exercise as a predictor of week 52 weight-loss outcomes. Obesity 2014;22:2137-46.

(73.) Fujioka K, O'Neil PM, Davies M, Greenway FL, Lau DCW, Claudius B, et al. Early weight loss with liraglutide 3.0 mg predicts 1-year weight loss and is associated with improvements in clinical markers. Obesity 2016;24: 2278-88.

(74.) Butsch WS. Obesity medications: what does the future look like? Curr Opin Endocrinol Diabetes Obes 2015; 22:360-6.

(75.) Higgins GA, Silenieks LB, Rossmann A, Rizos Z, Noble K, Soko AD, Fletcher PJ. The 5-HT2C receptor agonist lorcaserin reduces nicotine self-administration, discrimination, and reinstatement: relationship to feeding behavior and impulse control. Neuropsychopharmacology 2012;37: 1177-91.

(76.) Arbaizar B, Gomez-Acebo I, Llorca J. Efficacy of topiramate in bulimia nervosa and binge-eating disorder: a systematic review. Gen Hosp Psychiatry 2008;30: 471-5.

(77.) Yip SW, Potenza MN. Treatment of gambling disorders. Curr Treat Options Psychiatry 2014;1:189-203.

(78.) Torgerson JS, Hauptman J, Boldrin MN, Sjostrom L. XENical in the Prevention of Diabetes in Obese Subjects (XENDOS) Study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care 2004;27: 155-61.

(79.) Bray GA, Blackburn GL, Ferguson JM, Greenway FL, Jain AK, Mendel CM, et al. Sibutramine produces dose-related weight loss. Obes Res 1999;7:189-98.

(80.) Shin JH, Gadde KM, Ostbye T, Bray GA. Weight changes in obese adults 6-months after discontinuation of double-blind zonisamide or placebo treatment. Diabetes Obes Metab 2014;16:766-8.

Kishore M. Gadde, [1] * John W. Apolzan, [1] and Hans-Rudolf Berthoud [1]

[1] Pennington Biomedical Research Center, Baton Rouge, LA.

* Address correspondence to this author at: Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA 70810. E-mail

Received June 13, 2017; accepted September 14, 2017.

Previously published online at DOI: 10.1373/clinchem.2017.272815 [c] 2017 American Association for Clinical Chemistry

[2] Nonstandard abbreviations: T2D, type 2 diabetes; CNS, central nervous system; RCT, randomized controlled trial; FDA, Food and Drug Administration; MACE, major adverse cardiovascular events; NDA, new drug application; CVOT, cardiovascular outcomes trial.

Caption: Fig. 1. Schematic diagram showing potential pharmacological targets in the neural controls of food intake and regulation of body weight.

A selection of only key neurotransmitters, hormones, and other factors (normal font) and receptors (italic) are shown at their major sites of action. Abbreviations: AChR, cholinergic acetylcholine receptor; Adipo, adiponectin; AGRP, Agouti-related protein; AMY, amylin; AR[alpha], [alpha]-adrenergic receptor; ARB, [beta]-adrenergic receptor; CART, cocaine- and amphetamine-related transcript; CB1R, cannabinoid receptor-1; CCK, cholecystokinin; CGRP, calcitonin gene-related peptide; DA, dopamine; DARs, dopamine receptors; ECs, endocannabinoids; FGF19/ 20, fibroblast growth factors 19 & 21; FGFRs, fibroblast growth factor receptors; GABA, gamma-aminobutyric acid; GABARs, GABA receptors; GLUT, glutamate; GUTRs, glutamate receptors; GLP-1, glucagon-like peptide 1; GLP-1R, glucagon-like peptide-1 receptor; IL-6, interleukin-6; INS, insulin; InsR, insulin receptor; Lep, leptin; LepR, leptin receptor; MCH, melanin- concentrating hormone; NT, neurotensin; NTR, neurotensin receptor; OPIO, opioids; OPIORs, opioid receptors; ORX, orexin/hypocretin; OT, oxytocin; POMC, proopiomelanocortin ([alpha]-MSH); PYY, polypeptide tyrosine-tyrosine; 5-HT, serotonin; 5-HTR2c, serotonin 2c receptor.
Table 1. History of prescription antiobesity drugs.

Drug                         Year                 Comments

Phentermine                  1959      Short-term use; most prescribed
                                       drug in the US; withdrawn in
                                       Europe in 2000 for unfavorable

Diethylpropion               1959      Short-term use

Phendimetrazine              1959      Short-term use

Benzphetamine                1960      Short-term use

Mazindol                     1973      Short-term use; discontinued in

Fenfluramine                 1973      Short-term use; withdrawn in
                                       1997 due to increased risk of
                                       valvular heart disease

Dexfenfluramine              1996      Long-term use; withdrawn in
                                       1997 due to increased risk of
                                       valvular heart disease

Sibutramine                  1997      Long-term use; withdrawn in
                                       2010 due to increased risk of
                                       major adverse cardiovascular

Orlistat                     1999      Long-term use; Approved in 2003
                                       for pediatric obesity (a)

Rimonabant                   2006      Long-term use; approved in
                                       Europe only; withdrawn in 2008
                                       due to serious psychiatric
                                       adverse events

Phentermine + Topiramate     2012      Long-term use; marketed under
                                       REMS (b) to reduce
                                       teratogenicity risk

Lorcaserin                   2012      Long-term use; marketing
                                       delayed by a year due to DEA
                                       classification process

Naltrexone + Bupropion       2014      Long-term use

Liraglutide 3.0 mg           2014      Long-term use; also approved at
                                       a lower dose for type 2
                                       diabetes in 2010

(a) Alli is lower-dose (60 mg) orlistat approved in 2007 for use
without prescription.

(b) REMS, Risk Evaluation and Mitigation Strategy.

Table 2. 1-Year weight loss and secondary efficacy of currently
available antiobesity drugs.

Drug                        Weight loss        Glycemic      Blood
                         relative to placebo   measures    pressure

Orlistat                 Approximately 3.0%    +++ (a)        ++
Lorcaserin                   3.0 to 3.6%         +++           +
Liraglutide                  4.0 to 5.4%         ++++         ++
Phentermine/Topiramate       8.6 to 9.3%         +++          ++
Naltrexone/Bupropion         3.3 to 4.8%          ++      Unfavorable

Drug                     Lipids

Orlistat                   ++
Lorcaserin                 +
Liraglutide                ++
Phentermine/Topiramate     ++
Naltrexone/Bupropion       +

(a) + least efficacy; +++++ most efficacy.

When several doses have been studied, data are shown for the most
effective dose.

Table 3. Dosing of currently available antiobesity drugs.

Drug                     Trade Name (s)        Recommended Dose

Phentermine              Adipex-P          18.75-37.5 mg QD (a)
                         Fastin Suprenza   30 mg QD 15-30 mg QD
                         Lomaira           8 mg TID

Diethylpropion           Tenuate           25 mg TID
                         Tenuate Dospan    75 mg QD

Phendimetrazine          Bontril           35 mg TID
                         Prelu-2           105 mg QD

Benzphetamine            Didrex            25-50 mg TID

Orlistat                 Xenical           120 mg TID
                         Alii              60 mg TID

Phentermine/Topiramate   Qsymia            7.5/46 mg QD 15/92 mg QD

Lorcaserin               Belviq            10 mg BID
                         Belviq XR         20 mg QD

Naltrexone/Bupropion     Contrave          16/180 mg BID

Liraglutide 3.0 mg       Saxenda           3 mg QD

Drug                       DEA                   Comments

Phentermine              IV         Recommended TID dosing is 30-60
                                    min before meals. QD dosing is in
                                    the morning. Avoid dosing close to

Diethylpropion           IV         As above

Phendimetrazine          III        As above

Benzphetamine            III        Recommended TID dosing is 30-60
                                    min before meals.

Orlistat                 None       Recommended to take at mealtime.
                                    Dosing is same for adults and

Phentermine/Topiramate   IV         Start at 3.75/23 mg QD. Increase
                                    to 7.5/46 mg after 2 weeks. If
                                    weight loss is <3% after 3 months,
                                    discontinue or increase dose to
                                    15/92 mg QD. Consider using a
                                    transition dosing of 11.25/69 mg
                                    while moving to 15/92 mg.
                                    Discontinue if weight loss is <5%
                                    after 3 months on the 15/92 mg

Lorcaserin               IV         Discontinue if weight loss is <5%
                                    after 3 months.

Naltrexone/Bupropion     None       Available as 8/90 mg tablets only.
                                    Start 1 tablet every morning.
                                    Increase to 1 tablet BID during
                                    second week. Increase to 2 in the
                                    morning and 1 in the evening
                                    during third week. From Week 4,
                                    dose 2 tablets BID.

Liraglutide 3.0 mg       None       Available as a pre-filled, multi-
                                    dose injector pen that delivers
                                    solution in selected doses. Start
                                    0.6 mg QD. At weekly intervals,
                                    increase the dose by 0.6 mg until
                                    3.0 mg QD dose is reached. Inject
                                    subcutaneously in the abdomen,
                                    thigh or upper arm. Discontinue if
                                    weight loss is <4% after 4 months.

(a) QD, once daily; BID, two times daily; TID, three times daily.

Table 4. Most frequent adverse events and limitations of use of
currently available antiobesity drugs.

Drug                                 Adverse events

Phentermine       Dry mouth, constipation, insomnia

Orlistat          Fecal urgency, fecal incontinence, flatus with
                  discharge, oily spotting

Lorcaserin        Headache, dizziness, fatigue, nausea, dry mouth,
                  constipation, cough, hypoglycemia in patients with

Liraglutide       Nausea, vomiting, diarrhea, constipation, dyspepsia,
3.0 mg            abdominal pain, headache, fatigue, hypoglycemia,
                  increased lipase

Phentermine/      Paresthesia, dizziness, insomnia, dysguesia,
Topiramate        constipation, dry mouth

Naltrexone/       Nausea, vomiting, headache, dizziness, insomnia, dry
Bupropion         mouth, diarrhea

Drug                       Limitations of use and precautions

Phentermine       Contraindicated in patients with advanced
Diethylpropion    cardiovascular disease, moderate to severe
Phendimetrazine   hypertension, hyperthyroidism, glaucoma, and agitate
Benzphetamine     states. Small increases in heart rate and blood
                  pressure may be observed. Mild to moderate abuse

Orlistat          Contraindicated in chronic malabsorption syndrome,
                  and cholestasis. Must take a multivitamin supplement
                  containing fat-soluble vitamins. Rare cases of liver

Lorcaserin        Safety of coadministration with antidepressants has
                  not been established. Monitor for symptoms of
                  toxicity related to serotonin excess. Potential for
                  serotonin syndrome, a rare but serious condition.
                  Monitor for signs and symptoms of valvular heart

Liraglutide       Contraindicated in patients with personal or family
3.0 mg            history of medullary thyroid carcinoma or Multiple
                  Endocrine Neoplasia syndrome type 2. Should not be
                  used with insulin. Do not use with other GLP-1
                  agonists. Causes thyroid C-cell tumors in rats and
                  mice. Discontinue if pancreatitis is suspected.

Phentermine/      Contraindicated in patients with glaucoma,
Topiramate        hyperthyroidism, and during and within 2 weeks of
                  taking monoamine oxidase inhibitors.

                  Available under a Risk Evaluation and Mitigation
                  Strategy (REMS) that requires negative pregnancy
                  test before treatment and monthly thereafter to
                  reduce the risk of teratogenicity. Small increase in
                  heart rate. Monitor electrolytes to detect metabolic
                  acidosis and elevated creatinine. Monitor closely
                  for depression, anxiety, and memory problems.

Naltrexone/       Contraindicated in patients with uncontrolled
Bupropion         hypertension, chronic opioid use, seizure disorders,
                  anorexia nervosa or bulimia, during withdrawal from
                  alcohol, barbiturates, benzodiazepines, and
                  antiepileptic drugs. Should not use with other
                  bupropion-containing products and during or within 2
                  weeks of taking monoamine oxidase inhibitors.
                  Monitor for suicidal ideation and behavior. Monitor
                  for increases in heart rate and blood pressure. Rare
                  cases of hepatotoxicity.

All antiobesity drugs are contraindicated in pregnancy.
COPYRIGHT 2018 American Association for Clinical Chemistry, Inc.
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2018 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Gadde, Kishore M.; Apolzan, John W.; Berthoud, Hans-Rudolf
Publication:Clinical Chemistry
Article Type:Report
Date:Jan 1, 2018
Previous Article:The Impact of Obesity on Medical Care Costs and Labor Market Outcomes in the US.
Next Article:Precision Medicine in Obesity and Type 2 Diabetes: The Relevance of Early-Life Exposures.

Terms of use | Privacy policy | Copyright © 2020 Farlex, Inc. | Feedback | For webmasters