Printer Friendly

Pezothrips kellyanus (Thysanoptera: Thripidae) nymphs on orange fruit: importance of the second generation for its management.

Kelly's citrus thrips, Pezothrips kellyanus (Bagnall) (Thysanoptera: Thripidae), is a new pest of citrus (Stevens et al. 1998; Webster et al. 2006; Vassiliou 2007; Navarro et al. 2008). It became a pest in New Zealand (Blank & Gill 1997) and southern Australia (Mound & Jackman 1998) during the 1990s. In the Mediterranean Region, the first damage caused by P kellyanus was recorded a few years later, and now this thrips is considered a pest in Greece (Varikou et al. 2010), Cyprus (Vassiliou 2007), Sicily (Italy) (Marullo 1998; Conti et al. 2003), and Spain (Navarro-Campos et al. 2012a). Pezothrips kellyanus nymphs feed on the surface of young citrus fruits for 5 to 6 wk starting at petal fall (Navarro-Campos et al. 2013). This feeding habit causes patches or rings of scarred tissue around the fruit apex that enlarge as the fruit grows.

This damage is particularly severe on navel orange, lemon (Conti et al. 2003), and grapefruit (Mound & Jackman 1998; Baker et al. 2004; Vassiliou 2007, 2010). Although feeding damage does not affect the internal quality of the fruit, this damage leads to economic losses due to reduced market value of the affected fruits. The percentage of citrus fruits with a complete ring scar may reach 70% per orchard (Varikou 2002; Vassiliou 2010).

Despite the worldwide distribution and economic importance of P kellyanus, its biological control is still under development (Baker et al. 2011; Navarro-Campos et al. 2012a). Therefore, chemical control is currently the only practical alternative for growers. However, its implementation, results, and side effects are poorly known. First of all, the number of treatments necessary to reduce thrips populations is unclear. From 1 to 3 insecticide applications are directed to these pests (Conti et al. 2004; Vassiliou 2007). Second, the efficacy of insecticides on P kellyanus nymphs, the stage that produces the damage, has never been determined. The efficacy of the treatments has been determined based on fruit damage, but whether these applications reduce either the 1st or the 2nd generations of thrips, or both, remains unknown. Third, the side effects of these treatments on the natural enemies of other important citrus pests have not been studied. Importantly, insecticides are sprayed in spring, when the populations of key natural enemies are increasing after winter (MartinezFerrer 2007; Tena et al. 2008; Urbaneja et al. 2008, 2009; Sorribas & Garcia-Mari 2010). These natural enemies are responsible for the excellent biological control of many occasional and secondary citrus pests on orange cultivars in Spain (Jacas & Urbaneja 2009). Finally, P. kellyanus may develop resistance to insecticides if its chemical control relies on only a single class of insecticides (Baker et al. 2004).

Therefore, it is important to determine the efficacy against P kellyanus of insecticides with different modes of action. Chlorpyrifos, an organophosphate insecticide, is one of the most-widely used insecticides for pest control in citrus against hemipterans (scales and aphids) and thrips (Morse & Grafton-Cardwell 2012a; NavarroCampos et al. 2012b; Planes et al. 2013). It is used against the latter because of its fast-acting effect. However, its persistence against more than 1 generation of P kellyanus is unknown. Spinosad, a mixture of tetracyclic-macrolide compounds, has been identified as potential candidate for integrated pest management (IPM) programs in citrus because of its fast action (insects dying of exhaustion within 1-2 d) and its low persistence (Thompson et al. 2000; Cisneros et al. 2002). Its residues on the leaf surface are degraded by sunlight within a few days (Salgado 1998). Because of these characteristics, spinosad is recommended in citrus against Scirtothrips citri (Moulton) (Thysanoptera: Thripidae) in California (Immaraju et al. 1989; Khan & Morse 2006; Morse & Grafton-Cardwell 2012b). Spirotetramat is a new systemic and persistent foliar insecticide. It is a tetramic acid derivative with a novel mode of action that interferes with lipid biosynthesis, leading to the death of immature stages of the target insect 2 to 10 d after application (IRAC 2014). Spirotetramat is active against a wide spectrum of sucking insects, including aphids, scales (soft and armored), mealybugs, whiteflies, psyllids, and selected thrips species (Grafton-Cardwell et al. 2007). Therefore, it could be used against Aonidiella aurantii (Maskell) (Hemiptera: Diaspididae) and P kellyanus with a single application at the end of spring. Moreover, its long persistence could make it active against a possible 2nd generation of P kellyanus.

In this study, we determined: i) the efficacy of 3 insecticides with different modes of action (chlorpyrifos, spinosad, and spirotetramat) against nymphs and adults of P kellyanus in the field; ii) their persistence against subsequent generations of this thrips; and iii) their effectiveness in decreasing the percentage of damaged fruit. These results would allow us to make an educated recommendation about the number of treatments necessary when these insecticides are used. Finally, iv) we also determined the side effects of these treatments on phytoseiid mite predators, one of the key group of natural enemies in citrus.

Materials and Methods

INSECTICIDES

The insecticides evaluated were chlorpyrifos, , and spirotetramat (Table 1). Following the recommendations of IPM for citrus (Urbaneja et al. 2013), insecticides were applied in the morning, when conditions were calm. The concentrations of the commercial products tested in these assays were the maximum authorized in citrus in Spain. For spirotetramat, the concentrations used were recommended by the technical department of Bayer Crop Science (Valencia, Spain). Insecticides were applied when the percentage of occupied fruits was above the economic injury level set at 7% occupied fruits (Navarro-Campos et al. 2012b). For this purpose, orchards were sampled weekly for 5 to 6 wk starting at petal fall.

FIELD ASSAYS

Alzira Orchard

This assay was conducted in a 16-yr-old navel orange 'Lane-late' orchard (Citrus sinensis Blanco var. Navel Lane-Late grafted on Citrange 'Carrizo' [Citrus sinensis L. Osbeck x Poncirus trifoliata Blanco]; Sapindales: Rutaceae) located near the town Alzira (39[degrees]08'59"N, 0[degrees]25'59"W) (Valencia, Spain) in 2010. The orchard had 1.4 ha and the planting pattern was 6 x 5 m. It was drip irrigated and the naturally occurring cover crop was mowed annually at the beginning of spring. The population density of nymphs was above the economic threshold at petal fall (25 May). On this day, 35 trees were sampled and selected according to their similar infestation level by P kellyanus nymphs (15-25% occupied fruits). On the next day, insecticides were applied with a hand gun, using outside coverage with a volume of about 4.5 L per tree (approx. 1,500 L/ha). Ten, 8, and 8 trees (replicates) were sprayed with chlorpyrifos, spinosad, and spirotetramat, respectively, and the remaining 9 trees were not treated and served as controls. To avoid possible interferences, the 8 trees surrounding every treated tree received the same treatment.

To monitor thrips populations and determine the efficacy of the insecticides, we sampled 32 fruits (8 per orientation) per tree 1 d prior to the spray, 2 d later, and then weekly until the end of the study. On each fruit, we determined the presence of P kellyanus nymphs. Insecticide efficacy was calculated using Abbott's formula (Abbott 1925). The percentage of damaged fruit was determined on 22 Nov in the same trees. We sampled 40 fruits per tree for damage assessment and distinguished between slightly and severely damaged fruits. We considered severely damaged fruits to be those that had complete ring-like scars and slightly damaged ones to be those with incomplete ring-like scars.

Tavernes Orchard

This assay was conducted in a 10-yr-old navel orange 'Lane-late' orchard (Citrus sinensis Blanco var. Navel Lane-Late grafted on Cleopatra mandarin [Citrus reshni Hort. ex. Tan.]; Sapindales: Rutaceae) located near the town Tavernes de la Valldigna (39[degrees]4'20"N, 0[degrees]15'57"W) (Valencia, Spain) in 2010. The orchard had 3.5 ha and the planting pattern was 6 x 4 m. It was drip irrigated and the naturally occurring cover crop was mowed annually at the beginning of spring. The experimental design was a randomized block with 4 replicates of 4 treatments. Each replicate contained 3 rows of 16 to 30 trees. The population density of nymphs exceeded the economic threshold 2 wk after petal fall (31 May). On this day, 10 trees from each central row were labeled and sampled. One day later, 1,500 L/ha were applied with an air blast sprayer at 30 atm of pressure (Fede mod. Select dynamic; Fede S. L; Cheste, Spain) to achieve outside tree coverage as is normal for citrus aphids-thrips treatments (Chueca et al. 2009). To follow thrips populations and determine the efficacy of the insecticides, we sampled 32 fruits per tree (8 per orientation) the day prior to the spray, 2 d later, and then weekly until the end of the study. We determined the presence of P. kellyanus nymphs on each fruit. On 23 Nov, the percentage of damaged fruit was determined as above.

To determine the population trends of P. kellyanus adults and natural enemies of citrus pests under the different insecticide treatments, a portable, engine-powered suction device was used to collect all arthropods (Tena et al. 2008). The device was constructed by modifying a commercial vacuum-blower (Flusqvarna Zenoah Co., model FIBZ2601, Japan) adapted to collect insects from the foliage. We modified it by adding a cylindrical plastic pipe 50 cm long with a 30 cm diameter opening. The sampling was standardized by placing the opening of the cylindrical pipe 4 times, for 5 to 8 s each time, on the foliage of 10 citrus trees per date and tree (40 times in total). We sampled 10 trees from the central row in each replicate (4 replicates per treatment). The material collected was bagged and transported to the laboratory, where it was held at -20 [degrees]C to kill all insects. Adult thrips and natural enemies were counted and identified up to genus or species level under a binocular microscope. Insecticide efficacy on P. kellyanus adults was calculated using Abbott's formula (Abbott 1925).

We also determined the side effects of the selected insecticides (Table 1) on phytoseiid abundance. We counted the number of live phytoseiids on the underside of 5 interior and mature leaves per tree. Leaves were randomly selected in the canopies of the same trees sampled for P. kellyanus. The mean number of phytoseiids per leaf was determined for each block and treatment on each date sampled. Cumulative phytoseiid-days per leaf were calculated as an index of phytoseiid population for each replicate as:

[summation] [I.sub.t] ([[x.sub.i] + [x.sub.j]]/2)

Where [summation] is summation over all sampling dates from the 1st evaluated day, on 31 May, to the last one, on 13 Jul; [l.sub.t] is the interval between two successive sampling dates; and [x.sub.i] and [x.sub.j] are phytoseiid densities on those dates (Flardman et al. 2006; Kahn & Morse 2006).

STATISTICAL ANALYSES

Datasets were first tested for normality and homogeneity of variance using Kolmogorov-Smirnovand Cochran's tests, respectively, and transformed (angular transformation for percentage data) if needed. Subsequently, 1-way ANOVA followed by Tukey post hoc tests for multiple comparisons inside the different application time sub-datasets were carried out for dates and locations with statistically significant differences, or nearly significant differences.

Results

EFFICACY AGAINST P. KELLYANUS NYMPHS

The percentage of fruits occupied by P. kellyanus nymphs exceeded the economic thresholds (7%) at petal fall at the orchard in Alzira, and 1 wk after the petal fall at Tavernes. This percentage was similar in all the treatments in both orchards (Table 2).

In Alzira, the percentage of occupied fruits was significantly higher in the control trees than in the treated trees 2 d after the treatments (Table 2). The efficacy of spinosad and chlorpyrifos was significantly higher than that of spirotetramat (Table 2). Seven and 14 d after the treatments, the percentage of occupied fruits was low, and there were no significant differences among treatments; therefore, efficacy could not be calculated.

In Tavernes, the percentage of occupied fruits was significantly higher in control and spirotetramat plots than in spinosad and chlorpyrifos plots 2 and 7 d after the treatment (Table 2). The efficacy of spinosad and chlorpyrifos was high, and there were no significant differences between them on both sampling days. Fourteen days after the treatment, the percentage of occupied fruits decreased, and there were no significant differences among treatments. Twenty-one days after the treatments, the percentage of occupied fruits increased again and remained close to the economic thresholds for the following weeks in all the treatments. On 8 Jul, the orchard was treated with chlorpyrifos, and P kellyanus populations decreased.

EFFICACY AGAINST P. KELLYANUS ADULTS

Of the 2,275 adult thrips collected with the vacuum device in Tavernes, 1,951 (85.8%) were P kellyanus. The number of P kellyanus adults captured 1 d before the treatments was similar among treatments ([F.sub.3,15] = 1.87; P = 0.19) (Fig. 1). However, 2 d after the treatments, the number of adults increased and became significantly greater in control plots and in plots treated with spirotetramat ([F.sub.3,15] = 8.59; P = 0.002) than in the other treatments. The efficacy of spinosad (89.4 [+ or -] 4.1 %, mean [+ or -] Se) and chlorpyrifos (86.5 [+ or -] 4.4 %) was high, and there were no significant differences between them ([F.sub.1,7] = 0.22; P = 0.65). Seven days after the treatments, the numbers of captured adults remained significantly smaller than in the control only in the plots treated with spinosad ([F.sub.3,15] = 5.33; P = 0.015). Fourteen days after the treatment, the numbers of captured adults decreased in the control plots and were the same in all treated plots ([F.sub.3,15] = 0.68; P = 0.58).

DAMAGE

In Alzira, the percentage of severely damaged fruits was significantly lower in the treated trees than in control trees (Fig. 2A), and it was significantly lower in trees treated with chlorpyrifos and spinosad than with spirotetramat ([F.sub.3,34] = 13.85; P < 0.001). The efficacy of chlorpyrifos and spinosad was significantly higher than that of spirotetramat ([F.sub.2,25] = 5.53; P = 0.01). The percentage of slightly damaged fruits was significantly lower for the trees treated with chlorpyrifos and spinosad than control and spirotetramat trees ([F.sub.3,34] = 5.72; P = 0.003). There were no significant differences between the efficacy of chlorpyrifos and spinosad ([F.sub.1,16] = 1.81; P = 0.22).

In Tavernes, however, the percentages of slightly and severely damaged fruits were high, and there were no significant differences among the 3 treatments and the control (slightly damaged: [F.sub.3,15] = 0.33; P = 0.09; severely damaged: [F.sub.3,15] = 0.53; P = 0.67) (Fig. 2B).

SIDE EFFECTS

The numbers of phytoseiids per leaf were similar in all plots the day before treatments in Tavernes (Table 3). Their densities did not differ significantly the following days. However, the accumulated phytoseiidday values, used as an overall summary statistic, were significantly lower in the plots treated with spinosad and spirotetramat than in those untreated or treated with chlorpyrifos.

We captured and identified 1,740 natural enemies with the vacuum device (Table 4). Hymenopteran parasitoids were the most abundant, in total 927 were collected, followed by neuropteran predators (286) and arachnid predators (241). In general, the total number of natural enemies captured was higher in untreated plots (control) than in the treated plots in the following days. There were no significant differences among treatments on day -1 ([F.sub.3,15] = 0.85; P = 0.49), day 14 (F315 = 0.50; P = 0.69), and day 21 ([F.sub.3,15] = 0.85; P = 0.49) in the total number of natural enemies captured. However, the total numbers of natural enemies captured in the plots treated with spinosad and chlorpyrifos were significantly smaller than in those untreated on day 2 ([F.sub.3,15] = 6.27; P = 0.0084). Similarly, the total numbers of natural enemies captured in the plots treated with the 3 insecticides were significantly smaller than in those untreated on day 7 ([F.sub.3,15] = 10.71; P = 0.001). We could not determine the side effects of the insecticides on the main natural enemies of citrus, namely the hymenopteran parasitoids Aphytis melinus DeBach (Aphelinidae), Cales noacki Howard (Aphelinidae), Citrostichus phyllocnlstoides (Narayanan) (Eulophidae), and Metaphycus spp. (Encyrtidae) and the predators of the family Coccinellidae, because of the small numbers of specimens of these species collected (Table 4).

Discussion

Our results, based on weekly monitoring of P. kellyanus immature populations on fruit, indicated that a single insecticide application of either chlorpyrifos or spinosad can suppress P. kellyanus nymphs when only 1 generation of R kellyanus attacks the fruit. This was the case of the assay in Alzira. Both chlorpyrifos and spinosad displayed a knockdown effect against R kellyanus nymphs and, 2 d after the treatment, reduced the percentage of occupied fruits below economic thresholds. Both pesticides reached efficacies higher than 90% mortality of the thrips populations. Afterwards, thrips populations remained low in both treated and untreated trees. Thus, only 1 generation attacked the fruit in this assay. As a consequence of this attack, the percentage of damaged fruit at harvest was less than 25% in the trees treated with chlorpyrifos or spinosad, whereas it reached almost 50% in untreated trees. Therefore, these insecticides were able to reduce the abundance of R kellyanus and its damage with a single application when only 1 generation of this thrips attacked the fruit. Both pesticides had been tested previously against this pest with similar results (Benfatto et al. 2000; Purvis et al. 2002). Baker et al. (2004) considered spinosad to be a potential candidate for IPM of R kellyanus in Australia, and Vassiliou (2007) identified chlorpyrifos as the most effective insecticide among 15 tested in his study. The results of these 2 studies were based on the observation of damaged fruit at harvest, though they did not monitor R kellyanus populations before or after the treatments.

By contrast, our assay in Tavernes showed that a single application of chlorpyrifos or spinosad could not suppress a 2nd generation of P. kellyanus. As in Alzira, both insecticides reduced the percentage of occupied fruits to below economic thresholds 2 d after treatment. These percentages remained low for 21 d after the treatments, when a new generation of nymphs attacked the fruit in all blocks. Thus, the persistence of chlorpyrifos and spinosad applied against the 1st generation was not enough to control the 2nd one. Consequently, a 2nd treatment would have been necessary to suppress it. Although the percentage of occupied fruits was only one-third as large as the 1st generation, and fruits were larger, this 2nd application seems necessary because the percentage of damaged fruit was very high (above 50%) in this assay. Importantly, all insecticides applied against the 1st generation were able to reduce the percentage of damaged fruit when compared with the control. Vassiliou (2007) sprayed twice against R kellyanus, but the percentage of damaged fruit was approximately 70%. Therefore, a 2nd application does not guarantee a reduction of damaged fruits. In his assay, Vassiliou (2007) did not monitor R kellyanus populations, and it is not known whether the application timing was correct. Consequently, this 2nd application can be recommended only when thrips populations are monitored. Finally, if a 2nd treatment is necessary, the insecticides used should be different from those used against the 1st generation to help avoid development of resistance and to assure continued effectiveness of the available pesticides.

Some populations of citrus thrips have developed resistance to pesticides (Morse & Brawner 1986; Immaraju et al. 1989). In Californian citrus, S. citri developed resistance to a long list of insecticides (Morse & Brawner 1986; Immaraju et al. 1989; Khan & Morse 1998). Baker et al. (2004) found that some R kellyanus populations in south ern Australia had substantial levels of chlorpyrifos resistance. In Spain, chlorpyrifos has been used widely to control A. aurantii and other armored scales during the last 2 decades. The high efficacy obtained with chlorpyrifos in our assays suggests that Spanish populations of P kellyanus have not yet developed resistance to this insecticide. To avoid development of resistance, citrus growers should avoid applying chlorpyrifos against both generations of P kellyanus or against A. aurantii and P kellyanus within the same year. The most obvious way of delaying the development of resistance to insecticides is to use them only when required, relying whenever possible on other methods of control that are included in IPM programs (Morse & Brawner 1986). In Spain, growers spray twice during this period to protect the fruit from P kellyanus scarring. The 1st treatment is generally applied at petal fall and the 2nd one is usually applied 15 d later as a routine. However, insecticides should not be applied at petal fall as a habitual practice because the 1st generation of thrips may appear later, as occurred in the Tavernes assay. Furthermore, the existence of a 2nd generation may vary among years and locations. In fact, we did not observe a 2nd generation of nymphs in this orchard in 2012 (pers. observations). Consequently, population monitoring is critical to determine the optimum spray timing, assure the efficacy of treatments, and delay the appearance of resistant populations. In California, timing is considered vital to achieve adequate control of S. citri with a single application of a relatively short residual pesticide, so that destruction of beneficial organisms is minimized (Morse & Brawner 1986; Morse et al. 1988).

Spirotetramat has been registered recently against A. aurantii, Panonychus citri (McGregor) (Prostigmata: Tetranychidae), and thrips (Grafton-Cardwell et al. 2007; Grafton-Cardwell & Scott 2008; Morse & Grafton-Cardwell 2009; MAGRAMA 2014). Spirotetramat might be an especially useful insecticide as it could control A. aurantii and P kellyanus with a single application in spring. In our study, spirotetramat showed an efficacy around 60% and reduced both slight and severe scarring around 40% relative to control at Alzira in 2009. However, its efficacy was lower than that of chlorpyrifos and spinosad. Also, it did not display a knockdown effect, likely because its contact efficacy is rather limited (Nauen et al. 2008). Thus, its effect on P kellyanus seems to be limited when compared with spinosad and chlorpyrifos. Moreover, despite its systemic and translaminar activity (Nauen et al. 2008), it did not prevent the attack of the 2nd generation in Tavernes.

To avoid the disruption of the excellent biological control of some important orange pests (Jacas & Urbaneja 2009), the insecticides selected for use against P kellyanus should have relatively short residual effects, so their impact on beneficial organisms will be minimized (Morse & Brawner 1986; Morse et al. 1988). This is especially important because P kellyanus is treated at the end of spring when most natural enemy populations are increasing in Spanish citrus (MartinezFerrer 2003; Tena et al. 2008; Urbaneja et al. 2008, 2009; Sorribas & Garcia-Mari 2010).

Spinosad and spirotetramat decreased the number of cumulative phytoseiid-days. Spinosad also reduced the number of cumulative phytoseiids-days in a similar study carried out in California (Kahn & Morse 2006). Although spinosad and spirotetramat showed low toxicity in our study, more detailed study is needed to clarify the side effects of spinosad on phytoseiids because it was highly effective against P kellyanus and is therefore a candidate to be used within IPM programs. This is especially relevant if 2 treatments are necessary to control P kellyanus.

In addition to counting phytoseiids, we also collected beneficial insects with a vacuum device. Our data showed that the 3 insecticides had a negative effect on the total number of beneficial insects, and this detrimental effect lasted 1 wk. However, we could not determine the side effects of the insecticides tested on the other 2 groups of natural enemies that are key to Spanish IPM programs in citrus, namely coccinellid predators and hymenopteran parasitoids (Urbaneja et al. 2008). Therefore, we would recommend determining the side effects on representative parasitoids and coccinellids of citrus IPM programs under laboratory conditions to ascertain the actual impact. Some of these studies have already demonstrated that chlorpyrifos is harmful to the parasitoid A. melinus (Gonzalez-Zamora et al. 2013; Vanaclocha et al. 2013) and the coccinellid Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinellidae) (Planes et al. 2013).

In conclusion, our study shows that chlorpyrifos and spinosad display a knockdown effect and can control the 1st generation of P kellyanus in citrus with a single application. However, their persistence is not enough to avoid a 2nd generation when it occurs. Therefore, an additional application might be necessary in those cases where this 2nd generation occurs. However, this 2nd application, as the 1st, is justified only when thrips populations are correctly monitored and exceed the potential damage threshold. Finally, because IPM programs on navel oranges in Spain are based on biological control of most of their pests, the development of alternative control strategies to avoid the disruption of the established biological control is urgently needed.

Acknowledgments

We are grateful to Bautista Domenech and Bernardo Villalba for allowing us to sample their orchards. We also thank P. Bru, H. Monton, C. Monzo, B. Sabater, E. Llacer, Khaled, and F. Gomez-Marco (IVIA) for their technical assistance and J. Izquierdo (Bayer Crop Science, Spain) for his collaboration. L. Planes was a recipient of a fellowship from IVIA. A. Tena was a recipient of a postdoctoral fellowship from the MCINN (Juan de la Cierva program). This research was partly funded by the Spanish Ministry of Science and Innovation (project: AGL200805287-C04/AGR) and by the Conselleria d'Agricultura, Pesca i Alimentacio from Generalitat Valenciana.

References Cited

Abbott WS. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265-267.

Baker G, Keller M, Purvis S, Jackman D, Crips P. 2004. Improving the management of Kelly's citrus thrips in citrus: summary, conclusions and recommendations of the years 2000-04. http://www.sardi.sa.gov.au/pestsdiseases/horticulture/horticultural_pests/kelly_citrus_thrips/research_report_2000-2004 (last accessed 15 Jan 2014).

Baker GJ, Keller M, Crisp P, Jackman DJ, Barbour D, Purvis S. 2011.The biological control of Kelly's citrus thrips, in Australian citrus orchards. IOBC-WPRS Bulletin 62: 267-274.

Benfatto D, Conti F, Frittitta C, Perrotta G, Raciti E, Tumminelli R. 2000. Risultati di prove di lotta contro il nuovo tripide degli agrumi Pezothrips kellyanus (Bagnall). Atti Giornate Fitopatologiche 1: 381-386.

Blank RH, Gill GSC. 1997. Thrips (Thysanoptera: Terebrantia) on flowers and fruit of citrus in New Zealand. New Zealand Journal of Crop and Horticultural Science 25: 319-332.

Chueca P, Garcera C, Molto E. 2010. Optimizacion de las dosis de aplicacion de fitosanitarios en tratamientos mecanizados. Vida Rural 317: 23-28.

Cisneros J, Goulson D, Derwent LC, Penagos DI, Hernandez O, Williams T. 2002. Toxic effects of spinosad on predatory insects. Biological Control 123: 156-163.

Conti F, Tumminelli R, Fisicaro R, Perrotta G, Marullo R, Liotta G. 2003. An IPM system for new citrus thrips in Italy. IOBC/WPRS Bulletin 26: 203-208.

Conti F, Perrotta G, Colazza S, Maltese U, Azzaro F. 2004. Efficacy and selectivity of pesticides on citrus thrips Pezothrips kellyanus Bagnall Thysanoptera: Thripidae. 2004. Oral presentation. Montesilvano Pescara, 4-6 maggio. Atti Giornate Fitopatologiche 1: 59-64.

Gonzalez-Zamora JE, Castillo ML, Avilla C. 2013. Side effects of different pesticides used in citrus on the adult stage of the parasitoid Aphytis melinus DeBach (Hymenoptera: Aphelinidae) and its progeny. Spanish Journal of Agricultural Research 11: 494-504.

Grafton-Cardwell EE, Scott SJ. 2008. Efficacy of acaricides for control of citrus red mite. Arthropod Management Tests 33 (D5).

Grafton-Cardwell EE, Reagan CA, Haviland DR. 2007. efficacy of Movento to control California red scale. Arthropod Management Tests 32 (D6).

Hardman JM, Franklin JL, Jensen KIN, Moreau DL. 2006. Effects of pesticides on mite predators (Acari: Phytoseiidae) and colonization of apple trees by Tetranychus urticae. Phytoparasitica 34: 449-462.

Immaraju J, Morse J, Kersten D. 1989. Citrus thrips (Thysanoptera: Thripidae) pesticide resistance in the Coachella and San Joaquin Valleys of California. Journal of Economic Entomology 82: 374-380.

IRAC. 2014. Resistance management for sustainable agriculture and improved public health. http://www.irac-online.org (last accessed 20 Jan 2014).

Jacas JA, Urbaneja A. 2009. Control Biologico de Plagas Agricolas. PhytomaEspana S.L., Valencia, Spain. 496 pp.

Khan I, Morse JG. 1998. Citrus thrips (Thysanoptera: Thripidae) resistance monitoring in California. Journal of Economic Entomology 91: 361-366.

Khan I, Morse JG. 2006. Impact of citrus thrips treatments on the predatory mite Euseis tularensis. Journal of Applied Entomology 130: 386-392.

MAGRAMA. 2014. Ministerio de Agricultura, Alimentacion y Medio Ambiente. Registro de productos fitosanitarios. http://www.magrama.gob.es/es/agricultura/temas/sanidad-vegetal/productos- fitosanitarios/registro/produc- tos/consusact.asp (last accessed 15 Jan 2014).

Martinez-Ferrer MT. 2003. Biologia y control del cotonet Planococcus citri (Homoptera: Pseudococcidae) en huertos de citricos. Ph.D. thesis. Universidad Politecnica de Valencia, Spain.

Marullo R. 1998. Pezothrips kellyanus, un nuovo tripide parassita delle colture meridionali. Informatore Fitopatologico 10: 72-74.

Morse J, Brawner OL. 1986. Toxicity of pesticides to Scirtothrips citri (Thysanoptera: Thripidae) and implications to resistance management. Journal of Economic Entomology 79: 565-570.

Morse JG, Grafton-Cardwell EE. 2009. Managing insecticide resistance will be key to the future of effective citrus pest management. Topics in Subtropics 7: 6-8.

Morse JG, Grafton-Cardwell. 2012a. The evolution of biologically-based integrated pest management in California citrus: history and perspective. Citrograph Mar/Apr: 32-43.

Morse JG, Grafton-Cardwell. 2012b. Management of citrus thrips to reduce the evolution of resistance. Citrograph Mar/Apr: 22-30.

Morse JG, Immaraju JA, Brawner OL. 1988. Citrus thrips: looking to the future. Citrograph 73: 112-115.

Mound LA, Jackman DJ. 1998. Thrips in the economy and ecology of Australia, pp. 472-478 In Zalucki MP, Drew RAI, White GG [eds.], Pest Management--Future Challenges, Proceedings of the 6th Australian Applied Entomological Research Conference. University of Queensland, St. Lucia, Australia.

Nauen R, Reckmann U, Thomzik J, Thielert W. 2008. Biological profile of spirotetramat (Movento), a new two-way systemic (ambimobile) insecticide against sucking pest species. Bayer CropScience Journal 61: 245-278.

Navarro C, Pastor MT, Ferragut FJ, Garcia-Mari F. 2008. Trips (Thysanoptera) asociados a parcelas de citricos en la Comunidad Valenciana: abundancia, evolucion estacional y distribucion espacial. Bolelin de Sanidad Vegetal de Plagas 34: 53-64.

Navarro-Campos C, Aguilar A, Garcia-Mari F. 2012a. Aggregation pattern, sampling plan, and intervention threshold for Pezothrips kellyanus in citrus groves. Entomologia Experimentalis et Applicata 142: 130-139.

Navarro-Campos C, Pekas A, Moraza ML, Garcia-Mari FG, Aguilar A. 2012b. Soil-dwelling predatory mites in citrus: their potential as natural enemies of thrips with special reference to Pezothrips kellyanus (Thysanoptera: Thripidae). Biological Control 63: 201-209.

Navarro-Campos C, Pekas A, Aguilar A, Garcia-Mari F. 2013. Factors influencing citrus fruit scarring caused by Pezothrips kellyanus. Journal of Pesticide Science 86: 459-467.

Planes L, Catalan J, Tena A, Porcuna JL, Jacas JA, Izquierdo J, Urbaneja A. 2013. Lethal and sublethal effects of spirotetramat on the mealybug destroyer, Cryptolaemus montrouzieri. Journal of Pesticide Science 86: 321-327.

Purvis S. 2002. Talking Thrips in Citrus. Issue 1. http://www.sardi.sa.gov.au/_ data/assets/pdf_file/0003/44922/talking_thrips_1.pdf (last accessed 5 Jan 2014).

Salgado VL. 1998. Studies on the mode of action of spinosad: insect symptoms and physiological correlates. Pesticide Biochemistry and Physiology 60: 91-102.

Sorribas J, Garcia-Mari F. 2010. Comparative efficacy of different combinations of natural enemies for the biological control of California red scale in citrus groves. Biological Control 55: 42-48.

Stevens PS, Steven D, Froud KJ. 1998. Kelly's citrus thrips--a tough customer. The Orchardist 71: 58-61.

Tena A, Soto A, Garcia-Mari F. 2008. Parasitoid complex of black scale Saissetia oleae on citrus and olives: parasitoid species composition and seasonal trend. Biocontrol 53: 473-487.

Thompson GD, Dutton R, Sparks TC. 2000. Spinosad--a case study: an example from a natural products discovery program. Pest Management Science 56: 696-702.

Urbaneja A, Pascual-Ruiz S, Pina T, Abad-Moyano R, Vanaclocha P, Monton H, Dembilio O, Castanera P, Jacas JA . 2008. Efficacy of five selected acaricides against Tetranychus urticae (Acari: Tetranychidae) and their side effects on relevant natural enemies occurring in citrus orchards. Pest Management Science 64: 834-842.

Urbaneja A, Chueca P, Monton H, Pascual-Ruiz S, Dembilio O, Vanaclocha P, Abad-Moyano R, Pina T, Castanera P. 2009. Chemical alternatives to malathion for controlling Ceratitis capitata (Diptera: Tephritidae), and their side effects on natural enemies in Spanish citrus orchards. Journal of Economic Entomology 102: 144-151.

Urbaneja A, Catalan A, Tena A, Jacas JA. 2013. Gestion Integrada de Plagas. http://gipcitricos.ivia.es (last accessed 5 Jan 2014).

Vanaclocha P, Vidal-Quist S, Oeix H, Monton H, Planes L, Catalan J, Tena A, Verdu MJ, Urbaneja A. 2013. Acute toxicity in laboratory tests of fresh and aged residues of pesticides used in citrus on the parasitoid Aphytis melinus. Journal of Pest Science 86: 329-333.

Varikou KN, Tsitsipis I, Alexandrakis V 2010. Effect of diet on development and reproduction of Pezothrips kellyanus (Thysanoptera: Thripidae). Annals of the Entomological Society of America 103: 66-70.

Vassiliou VA. 2007. Chemical control of Pezothrips kellyanus (Thysanoptera: Thripidae) in citrus plantations in Cyprus. Crop Protection 26: 1579-1584.

Vassiliou VA. 2010. Ecology and behavior of Pezothrips kellyanus (Thysanoptera: Thripidae) on citrus. Journal of Economic Entomology 103: 47-53.

Webster KW, Cooper P, Mound LA. 2006. Studies on Kelly's citrus thrips, Pezothrips kellyanus (Bagnall) (Thysanoptera: Thripidae): sex attractants, host associations and country of origin. Australian Journal of Entomology 45: 67-74.

Laura Planes (1), Jose Catalan (1), Josep A. Jaques (2, b), Alberto Urbaneja (1), and Alejandro Tena (1) *

(1) Instituto Valenciano de Investigaciones Agrarias, IVIA; Unidad Asociada de Entomologia UJI-IVIA. Centro de Proteccion Vegetal y Biotecnologia; Ctra. de Moneada a Naquera km 4.5; E-46113, Moncada, Spain

(2) Universitat Jaume I, UJI; Unitat Associada d'Entomologia UJI-IVIA; Departament de Ciencies Agraries i del Medi Natural; Campus del Riu Sec; E-12071, Castello de la Plana, Spain

* Corresponding author; E-mail: atena@ivia.es

(b) Formerly Josep A. Jacas

Caption: Fig. 1. Number of Pezothrips kellyanus adults collected with a vacuum device in a navel orchard located in Tavernes (mean [+ or -] SE). Trees were treated with chlorpyrifos, spinosad, or spirotetramat.

Caption: Fig. 2. Percentage (mean [+ or -] SE) of fruits slightly and severely damaged by Pezothrips kellyanus nymphs in every insecticide plot in orchards of Alzira (A) and Tavernes (B). Trees were treated with chlorpyrifos, spinosad, or spirotetramat. Different letters indicate significant differences (P < 0.05) between treatments (1-way ANOVA followed by Tukey post hoc tests).

Table 1. Insecticides used in the assays.

Active ingredient (AI)       AI (g/L)   Trade name

Chlorpyrifos 48% [EC] w/v      480      Dursban-48
Spinosad 48% [EC] w/v          480      Spintor 480sc

Spirotetramat 15% [EC] w/v     150      Movento 150 OD

Active ingredient (AI)       Company                   Concentration
                                                       (mL/ha)

Chlorpyrifos 48% [EC] w/v    Syngenta Agro, S.A.            200
Spinosad 48% [EC] w/v        Dow Agrosciences               25
                               Iberica, S.A.
Spirotetramat 15% [EC] w/v   Bayer CropScience, S.L.        50

Table 2. Occupancy and insecticide efficacy (when occupancy was
significantly different from the control) of fruits by Pezothrips
kellyanus in 2 orchards located in Alzira and Tavernes.

                                 Day -1                   Day 2

Orchard    Treatments          % occupancy            % occupancy

Alzira     Control         20.00 [+ or -] 1.50   19.72 [+ or -] 2.45 a
           Chlorpyrifos    22.25 [+ or -] 1.77   0.75 [+ or -] 0.38 c
           Spinosad        18.13 [+ or -] 2.25    0.0 [+ or -] 0.0 c
           Spirotetramat   20.63 [+ or -] 1.75   9.06 [+ or -] 1.70 b
                           [F.sub.3,34] = 0-88   [F.sub.3,34] = 38.12
                                P = 3.34               P < 0.001
Tavernes   Control         15.00 [+ or -] 1.15   10.16 [+ or -] 0.53 a
           Chlorpyrifos    13.44 [+ or -] 1.81   0.55 [+ or -] 0.15 b
           Spinosad        14.53 [+ or -] 3.04   1.02 [+ or -] 0.45 b
           Spirotetramat   14.90 [+ or -] 0.77   8.38 [+ or -] 3.00 a
                           [F.sub.3,15] =0.14    [F.sub.3,15] = 10.15
                                P = 0.94               P = 0.001

                                    Day 2

Orchard    Treatments           % efficacy

Alzira     Control
           Chlorpyrifos    96.20 [+ or -] 1.90 a
           Spinosad        98.42 [+ or -] 1.58 a
           Spirotetramat   54.05 [+ or -] 8.60 b
                           [F.sub.2,25] = 27.39
                                 P < 0.001
Tavernes   Control
           Chlorpyrifos     94.62 [+ or -] 1.47
           Spinosad         90.00 [+ or -] 4.42
           Spirotetramat
                            [F.sub.1,7] = 0.18
                                 P = 0.68

                                                Day 7

Orchard    Treatments           % occupancy            % efficacy

Alzira     Control         1.61 [+ or -] 0.56 a
           Chlorpyrifos    1.70 [+ or -] 0.39 a
           Spinosad        1.62 [+ or -] 0.34 a
           Spirotetramat   1.41 [+ or -] 0.31 a
                            [F.sub.3,34] = 0.09
                                 P = 0.96
Tavernes   Control         2.44 [+ or -] 0.67 a
           Chlorpyrifos    0.63 [+ or -] 0.13 b    74.19 [+ or -] 5.17
           Spinosad        0.40 [+ or -] 0.24 b    83.26 [+ or -] 9.88
           Spirotetramat   1.64 [+ or -] 0.34 ab
                            [F.sub.3,15] 5=5.51    [F.sub.1,7] = 1.40
                                 P = 0.01               P = 0.28

                                   Day 14              Day 21

Orchard    Treatments          % occupancy           % occupancy

Alzira     Control         2.22 [+ or -] 0.90    2.40 [+ or -] 0.33
           Chlorpyrifos    2.75 [+ or -] 0.95    2.26 [+ or -] 0.36
           Spinosad        0.31 [+ or -] 0.31    1.54 [+ or -] 0.26
           Spirotetramat   1.56 [+ or -] 0.66    1.67 [+ or -] 0.32
                           [F.sub.3,34] = 1-79   [F.sub.3,34] = 1-76
                                P = 0.17              P = 0.21
Tavernes   Control         2.03 [+ or -] 0.70    5.46 [+ or -] 1.47
           Chlorpyrifos    1.09 [+ or -] 0.53    5.46 [+ or -] 1.13
           Spinosad        0.96 [+ or -] 0.45    5.49 [+ or -] 1.48
           Spirotetramat   1.44 [+ or -] 1.03    7.53 [+ or -] 3.02
                           [F.sub.3,15] = 0.43   [F.sub.3,15] = 0.25
                                P = 0.73              P = 0.86

                                 Day 28

Orchard    Treatments          % occupancy

Alzira     Control         1.61 [+ or -] 0.56
           Chlorpyrifos    1.70 [+ or -] 0.39
           Spinosad        1.62 [+ or -] 0.34
           Spirotetramat   1.41 [+ or -] 0.31
                           [F.sub.3,34] = 0.09
                                P = 0.96
Tavernes   Control         6.09 [+ or -] 0.82
           Chlorpyrifos    8.59 [+ or -] 0.86
           Spinosad        7.69 [+ or -] 1.42
           Spirotetramat   5.61 [+ or -] 1.65
                           [F.sub.3,15] = 1.11
                                P = 0.38

Data presented are mean % [+ or -] SE. Means followed by different
lowercase letters within a column and location are significantly
different (1-way ANOVA followed by Tukey post hoc tests, P < 0.05).

Table 3. Side effects of insecticides used against Pezothrips
kellyanus on phytoseiid populations.

Treatment       Mean ([+ or -] SE) number of phytoseiids per leaf

                       Day -1                 Day 2

Control         0.83 [+ or -] 0.48 a   0.78 [+ or -] 0.32 a
Chlorpyrifos    0.97 [+ or -] 0,36 a   0.65 [+ or -] 0.04 a
Spinosad        1.10 [+ or -] 0.40 a   0.35 [+ or -] 0.03 a
Splrotetramat   0.70 [+ or -] 0.27 a   0.50 [+ or -] 0.09 a
                [F.sub.3,15] = 0.20    [F.sub.3,15] = 1.18
                      P = 0.89               P = 0.35

Treatment       Mean ([+ or -] SE) number of phytoseiids per leaf

                        Day 7                  Day 14

Control         1.99 [+ or -] 0.24 ab   1.45 [+ or -] 0.50 a
Chlorpyrifos    1.44 [+ or -] 0.19 ab   1.47 [+ or -] 0.24 a
Spinosad        1.29 [+ or -] 0.19 b    1.08 [+ or -] 0.39 a
Splrotetramat    1.31 [+ or -] 0.21b    1.05 [+ or -] 0.27 a
                 [F.sub.3,15] = 2.53    [F.sub.3,15] = 0.39
                      P = 0.17                P = 0.76

Treatment       Mean ([+ or -] SE) number of phytoseiids per leaf

                       Day 22                 Day 28

Control         1.61 [+ or -] 0.56 a   2.40 [+ or -] 0.33 a
Chlorpyrifos    1.70 [+ or -] 0.39 a   2.26 [+ or -] 0.36 a
Spinosad        1.62 [+ or -] 0.34 a   1.54 [+ or -] 0.26 a
Splrotetramat   1.41 [+ or -] 0.31 a   1.67 [+ or -] 0.32 a
                [F.sub.3,15] = 0.09    [F.sub.3,15] = 1.76
                      P = 0.96               P = 0.21

Treatment       Mean ([+ or -] SE) number of phytoseiids per leaf

                       Day 35                  Day 42

Control         0.91 [+ or -] 0.09 ab   0.81 [+ or -] 0.14 a
Chlorpyrifos    1.08 [+ or -] 0.19 a    0.57 [+ or -] 0.11 a
Spinosad        0.54 [+ or -] 0.13 b    0.56 [+ or -] 0.13 a
Splrotetramat   0.67 [+ or -] 0.12 ab   0.61 [+ or -] 0.23 a
                 [F.sub.3,15] = 2.93    [F.sub.3,15] = 0.56
                      P = 0.07                P = 0.65

Treatment       Cumulative phytoseiid-days

Control         63.12 [+ or -] 6.32 a
Chlorpyrifos    59.76 [+ or -] 3.20 a
Spinosad        45.92 [+ or -] 2.10 b
Splrotetramat   46.34 [+ or -] 3.04 b
                 [F.sub.3,15] = 5.01
                      P = 0.02

Data presented are numbers of phytoseiids and cumulative phytoseiid-
days per leaf for each treatment. Means followed by different
lowercase letters within a column are significantly different (1-way
ANOVA followed by Tukey post hoc tests, P < 0.05).

Table 4. Side effects of insecticides used against Pezothrips
kellyonus on natural enemies evaluated by total number of insects
captured with a vacuum device per treatment and evaluation day.

                                                        Day -1

Order/Family        Species/Genus               Cont   Chlor   Spin

Araneae                                          21      20     19
  Coleoptera        Scymnus                       0       1      1
Diptera
  Cecidomyiidae     Aphidoletes                   2       1      1
  Hybotidae         Platypalpus                   0       1      1
Hemiptera
  Miridae           Campyloneura virgula         11       4     13
Hymenoptera
  Aphelinidae       Aphytis                       6       4      2
                    Cales noacki                  2       2      5
                    Aphelinus                     1       4      1
                    Others                        0       0      0
  Braconidae        Aphidiinae                   10      10     16
                    Alysiinae                     8      12      4
                    Others                        3       4      3
  Ceraphronoidea                                 12       7     19
  Cynipoidea                                      0       2      4
  Encyrtidae        Metaphycus                    2       2      4
                    Others                        1       0      0
  Platygastroidea                                 1       6      0
  Pteromalidae                                    5       4      2
Neuroptera
  Coniopterygidae   Conwentzia psociformis        3       2      4
                    Semidaelis aleyrodiformis     1       1      0
  Chrysopidae       Chrysoperla carnea            1       2      2
Total                                            90      89    101

                                                Day -1       Day 2

Order/Family        Species/Genus               Spiro    Cont   Chlor

Araneae                                            20     13       7
  Coleoptera        Scymnus                         1      0       1
Diptera
  Cecidomyiidae     Aphidoletes                     4      0       1
  Hybotidae         Platypalpus                     3      0       0
Hemiptera
  Miridae           Campyloneura virgula           10     14       5
Hymenoptera
  Aphelinidae       Aphytis                         4      3       3
                    Cales noacki                   10      5       2
                    Aphelinus                       2      4       4
                    Others                          0      0       0
  Braconidae        Aphidiinae                     15     15       5
                    Alysiinae                       7      2       0
                    Others                          3      3       1
  Ceraphronoidea                                   12     10       5
  Cynipoidea                                        4      3       3
  Encyrtidae        Metaphycus                      1      1       2
                    Others                          0      0       0
  Platygastroidea                                   5      5       2
  Pteromalidae                                      1      0       0
Neuroptera
  Coniopterygidae   Conwentzia psociformis          4      1       3
                    Semidaelis aleyrodiformis       0      0       0
  Chrysopidae       Chrysoperla carnea              3      5       1
Total                                             109     84      45

                                                    Day 2      Day 7

Order/Family        Species/Genus               Spin   Spiro   Cont

Araneae                                           5       7      10
  Coleoptera        Scymnus                       0       1       3
Diptera
  Cecidomyiidae     Aphidoletes                   1       0       4
  Hybotidae         Platypalpus                   0       0       1
Hemiptera
  Miridae           Campyloneura virgula          9      11      16
Hymenoptera
  Aphelinidae       Aphytis                       2       1       2
                    Cales noacki                  0       0       5
                    Aphelinus                     1       7       3
                    Others                        0       0       1
  Braconidae        Aphidiinae                    7       5      26
                    Alysiinae                     4       6      10
                    Others                        1       4       1
  Ceraphronoidea                                  3       5      11
  Cynipoidea                                      3       7       8
  Encyrtidae        Metaphycus                    0       1       3
                    Others                        0       0       0
  Platygastroidea                                 0       0       3
  Pteromalidae                                    1       0       1
Neuroptera
  Coniopterygidae   Conwentzia psociformis        0       2       3
                    Semidaelis aleyrodiformis     0       0       1
  Chrysopidae       Chrysoperla carnea            0       0       5
Total                                            37      57     117

                                                        Day 7

Order/Family        Species/Genus               Chlor   Spin   Spiro

Araneae                                            6      4       3
  Coleoptera        Scymnus                        2      3       2
Diptera
  Cecidomyiidae     Aphidoletes                    2      0       0
  Hybotidae         Platypalpus                    0      0       1
Hemiptera
  Miridae           Campyloneura virgula           4      6      18
Hymenoptera
  Aphelinidae       Aphytis                        0      0       0
                    Cales noacki                   0      1       1
                    Aphelinus                      4      0       3
                    Others                         0      1       0
  Braconidae        Aphidiinae                     9      5      16
                    Alysiinae                      7      4       7
                    Others                         3      6       0
  Ceraphronoidea                                  10     10       5
  Cynipoidea                                       6      5       4
  Encyrtidae        Metaphycus                     2      0       0
                    Others                         0      0       0
  Platygastroidea                                  3      3       1
  Pteromalidae                                     0      2       0
Neuroptera
  Coniopterygidae   Conwentzia psociformis         4      1       3
                    Semidaelis aleyrodiformis      1      0       1
  Chrysopidae       Chrysoperla carnea             6      1       6
Total                                             69     52      71

                                                         Day 14

Order/Family        Species/Genus               Cont   Chlor   Spin

Araneae                                           8       4      8
  Coleoptera        Scymnus                       6      11     11
Diptera
  Cecidomyiidae     Aphidoletes                   0       3      3
  Hybotidae         Platypalpus                   1       0      0
Hemiptera
  Miridae           Campyloneura virgula          3       5      4
Hymenoptera
  Aphelinidae       Aphytis                       0       1      0
                    Cales noacki                  0       0      0
                    Aphelinus                     0       0      1
                    Others                        0       0      0
  Braconidae        Aphidiinae                    0       0      2
                    Alysiinae                     1       2      2
                    Others                        2       1      1
  Ceraphronoidea                                  6       8     14
  Cynipoidea                                      0       1      4
  Encyrtidae        Metaphycus                    3       5      1
                    Others                        3       0      1
  Platygastroidea                                 2       5      4
  Pteromalidae                                    0       0      0
Neuroptera
  Coniopterygidae   Conwentzia psociformis        6       2      0
                    Semidaelis aleyrodiformis     0       0      0
  Chrysopidae       Chrysoperla carnea            7      13      4
Total                                            48      61     60

                                                Day 14      Day 21

Order/Family        Species/Genus               Spiro    Cont   Chlor

Araneae                                             8     36       6
  Coleoptera        Scymnus                         8     18      10
Diptera
  Cecidomyiidae     Aphidoletes                     0     11       3
  Hybotidae         Platypalpus                     0      1       0
Hemiptera
  Miridae           Campyloneura virgula            3      0       0
Hymenoptera
  Aphelinidae       Aphytis                         1     12       1
                    Cales noacki                    0     10       4
                    Aphelinus                       0      4       4
                    Others                          0      0       0
  Braconidae        Aphidiinae                      3      0       0
                    Alysiinae                       4      3       6
                    Others                          1      3       0
  Ceraphronoidea                                    5     21      16
  Cynipoidea                                        1      2       3
  Encyrtidae        Metaphycus                      3      5       5
                    Others                          0     10      10
  Platygastroidea                                   1      9       7
  Pteromalidae                                      1      3       7
Neuroptera
  Coniopterygidae   Conwentzia psociformis          4      8       9
                    Semidaelis aleyrodiformis       0      0       1
  Chrysopidae       Chrysoperla carnea              4     48      57
Total                                              47    204     149

                                                    Day 21

Order/Family        Species/Genus               Spin   Spiro   Total

Araneae                                          21      15     241
  Coleoptera        Scymnus                       7      16     102
Diptera
  Cecidomyiidae     Aphidoletes                   0       1      37
  Hybotidae         Platypalpus                   0       0       9
Hemiptera
  Miridae           Campyloneura virgula          0       2     138
Hymenoptera
  Aphelinidae       Aphytis                       5       3      50
                    Cales noacki                  1       4      52
                    Aphelinus                     1      13      57
                    Others                        0       0       2
  Braconidae        Aphidiinae                    0       0     144
                    Alysiinae                     6       8     103
                    Others                        2       3      45
  Ceraphronoidea                                 23      23     225
  Cynipoidea                                      0       0      60
  Encyrtidae        Metaphycus                    5       1      46
                    Others                       10       8      43
  Platygastroidea                                10       5      72
  Pteromalidae                                    1       0      28
Neuroptera
  Coniopterygidae   Conwentzia psociformis        9       4      72
                    Semidaelis aleyrodiformis     1       0       7
  Chrysopidae       Chrysoperla carnea           26      16     207
Total                                           128     122    1740

Cont: control; Chlor: chlorpyrifos; Spin: spinosad; Spiro:
spirotetramat.


----------

Please note: Some tables or figures were omitted from this article.
COPYRIGHT 2015 Florida Entomological Society
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2015 Gale, Cengage Learning. All rights reserved.

 
Article Details
Printer friendly Cite/link Email Feedback
Author:Planes, Laura; Catalan, Jose; Jaques, Josep A.; Urbaneja, Alberto; Tena, Alejandro
Publication:Florida Entomologist
Article Type:Report
Date:Sep 1, 2015
Words:7608
Previous Article:Orialella aerizulae (Hemiptera: Cicadidae): first record in brazil.
Next Article:Temperature-dependent development of Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae).
Topics:

Terms of use | Privacy policy | Copyright © 2018 Farlex, Inc. | Feedback | For webmasters