Printer Friendly

Organic, Gas, and Element Geochemistry of Hydrothermal Fluids of the Newly Discovered Extensive Hydrothermal Area in the Wallis and Futuna Region (SW Pacific).

1. Introduction

Although back-arc settings are favourable environments for the formation of hydrothermal convection cells, hydrothermal exploration has long been conducted to a greater extent on Mid-Oceanic Ridges (MOR). Today, more than 600 active hydrothermal vent fields have been discovered and about half of them are located at MOR against a fifth in back-arc basins (BAB) [1]. Yet back-arc environments are likely to generate more diversity than their MOR homologs in terms of fluid chemistry because of the variety of lithologies the fluids can react with (e.g., basaltic to rhyolitic volcanic rocks with or without arc-like geochemical signature, various alteration mineralogical assemblages) as well as the possible contribution of magmatic-related aqueous fluids [2-5]. The Wallis and Futuna area was surveyed for hydrothermal activity because of its very peculiar geological settings within a back-arc system and its potential relevance for mineral resources [6, 7]. It is located about 200 km west of the northern tip of the Tonga-Kermadec trench where the fastest subduction rates have been recorded (18 to 24 cm per year) and occur at the junction of 2 BAB: the Lau and the North-Fiji BAB [8]. Here we report on the geochemistry of the fluids of the very first two vent fields discovered in the area and in this type of environment. We chose to bring a special focus on organic geochemistry because it has been hardly studied in modern hydrothermal systems despite the recent growing interest for organic matter (OM) in the ocean. The discussion focuses on processes controlling the geochemistry as well as implications of the presence of organic molecules at the local and regional scales.

Organic geochemistry of hydrothermal fluids has generally been far less studied than the mineral and gas geochemistry. In most cases works focused on small molecules (hydrocarbon gases, volatile fatty acids, and amino acids) and very few data are available on semivolatile organic compounds (SVOCs). Despite the growing interest for OM in the ocean and hydrothermal systems there is still a major lack in identification and quantification of organic compounds [10-15]. Notably numbers of studies agree on the major ligand role of organics in metal stabilisation, transportation, bioavailability, and ore-forming but there are hardly any clues on the nature of these ligands in hydrothermal environments [16-25]. Organic compounds in hydrothermal fluids may come from marine dissolved organic matter (DOM) recycling [12, 13], subsurface biomass degradation [26], entrainment of organic detritus from local recharge zones, and subsequent degradation, or abiotic formation in the deep subsurface [27-30]. The latter is supported by many theoretical [31-33] and experimental work summarised in two reviews [34, 35]. Conversely, some other studies reported the absence of organic compounds in hydrothermal fluids except at the Lost City alkaline vent field which is theoretically more favourable for abiotic synthesis [36]. Nevertheless, we report here the presence of semivolatile organic compounds in hydrothermal fluids from the Wallis and Futuna area and provide concentrations of a selection of extractable compounds that have been identified elsewhere as hydrothermally derived [27, 37]: n-alkanes, n-fatty acids (n-FAs), mono-, and polyaromatic hydrocarbons (BTEXs and PAHs). These very first quantitative field data might feed thermodynamic models of abiotic synthesis, guide the design of experiments to better understand hydrothermal organic geochemistry, and help assessing the importance of hydrothermally derived organic compounds in metal complexation and, as a nutrient for microorganisms, complete fluxes calculation and enter in the carbon cycle budget calculations.

2. Geological Settings

Wallis and Futuna Islands are located at the transition between the North Fiji and the Lau back-arc basins. This geodynamical setting accounts for complex volcanic and tectonic activity in the area. Pelletier et al. [38] and Fouquet et al. [6] observed multiple active extensional zones including widespread areas composed of numerous individual volcanoes (e.g., Southeast Futuna volcanic zone (SEVZ)) and well organised spreading centers such as the Futuna and Alofi oceanic ridge. West of Futuna Island, the 20-30[degrees] trending Futuna spreading center (FSC), is composed of a series of en echelon spreading segments. The opening rate of this oceanic ridge has been estimated at 4 cm/yr from the interpretation of magnetic anomalies [38]. East and southeast of Futuna Island, bathymetric maps, and reflectivity data clearly reveal that active extension and recent volcanism occur in the SEVZ as well as along the Alofi spreading center [6]. The SEVZ is a broad zone of diffuse volcanism bordered by the ENE-WSW trending volcanic graben (named Tasi Tulo graben) to the north and the NNE-SSW trending Alofi spreading center to the south. The SEVZ includes Kulo Lasi active volcano, the Fatu Kapa, and Tasi Tulo volcanic zones ([7], Figure 1).

Fluids were sampled at the Kulo Lasi and Fatu Kapa sites. Kulo Lasi has been described in detail by Fouquet and collaborators [39]. In summary, it is a shield volcano located about 100 km southeast of Futuna Island (Figure 1). It represents the most recent volcano in the SEVZ and is composed of basaltic to trachy-andesitic lava with no direct geochemical affinity with subduction [39]. The volcanic edifice is ca. 20 km in diameter and appears relatively flat with the top located at a depth of 1200 m and the base only 300 m deeper (ca. 1500 m below sea level). It exhibits a central caldera (5 km in diameter and 200-300 m deep) with a flat bottom covered by recent lavas and a central mound composed of older and tectonised lava flow. By contrast, the Fatu Kapa volcanic area is in a 20 km wide transition zone between the Tasi Tulo graben and the Kulo Lasi volcano. Here only small (<1 km) volcanic edifices are seen to be consisting of young mafic to felsic lavas (Figure 1).

3. Sampling and Analytical Procedures

Sampling was achieved at Kulo Lasi and Fatu Kapa by the HOV Nautile during the FUTUNA 1 and FUTUNA 3 cruises conducted by Ifremer in 2010 and 2012. Fluid samples were taken at the nose of smokers to minimise seawater contamination. Samples of volumes up to 750 mL of hydrothermal fluids were collected in titanium syringes that were modified after the model described in Von Damm et al. [40]. The gas-tightness was greatly improved and ensured the majority of the gas to be recovered. Those same syringes have been used in several studies by Charlou et al. and have shown good results notably for gas-Mg correlations (e.g., Charlou et al., 2002). Autonomous temperature sensors ([S.sub.2]T 6000-DH, NKE Instrumentation) were mounted on the sampler nozzle. As soon as the fluids were recovered, pH, [H.sub.2]S, and [Cl.sup.-] concentrations were measured to evaluate the quality of the sample. Total gases were immediately extracted and analysed; then aliquots of gas were conditioned for further stable isotopes measurements. Finally, the gas-free fluid was conditioned for major and minor elements analyses, on the one hand, and for organic compounds analyses, on the other hand.

3.1. Gas Extraction and Analyses. Total gas was extracted as described in Charlou and Donval [41]. Preliminary major gases (C[O.sub.2], [H.sub.2], C[H.sub.4], and [N.sub.2]) concentrations were obtained on board by using a portable chromatograph (Microsensor Technology Instruments Inc.) that was mounted on line with the gas extractor. Extracted gases were conditioned on board in stainless steel pressure-tight flasks and stored until analyses. Gases were separated by Gas-Chromatography (Agilent GC 7890A, Agilent Technologies) and quantitatively analysed by triple detection using mass (MS 5975C, Agilent technologies), flame ionisation, and thermal conductivity detectors. Aliquots of gas were stored both in vacuum tight tubes (Labco, Ltd.) and in copper tubes to be sent for further carbon isotope analyses (Isolab b.v., Netherlands) and He isotopes analyses (CEA, Saclay, France), respectively

3.2. Inorganic Geochemistry: Sample Preparation and Analyses. pH was measured using a combined glass electrode (Ecotrode Plus, Metrohm). [Cl.sup.-] and [H.sub.2]S were measured by potentiometry using AgN[O.sub.3] (0.05 M) and Hg[Cl.sub.2] (0.01 M) as titrating solutions, respectively. NaOH (2 M) was added to the aliquot before [H.sub.2]S measurement. S[O.sub.4], Br, Na, K, Mg, Ca, Li, and Cl were measured by ionic chromatography (Dionex Ion Chromatograph System 2000) after appropriate dilutions. Fe, Mn, Cu, Zn, Sr, Li, and Rb were measured by flame atomic absorption spectrometry using standard additions (AAnalyst, Perkin Elmer Inc.). Aliquots for silica determination were immediately diluted 100- to 200-fold and analysed by the silicomolybdate automatic colorimetric method [42, 43].

3.3. Organic Geochemistry. Total Organic Carbon (TOC) was measured using a multi N/C 3100 (Analytik Jena AG, Germany). Samples were acidified online with HCl and then purged with [O.sub.2] to remove inorganic carbon (IC). A TIC control analysis was performed and followed by three TOC measurements on each sample.

Acetate and formate concentrations were determined using a Dionex ICS-2000 Reagent-Free Ion Chromatography System equipped with an AS50 autosampler (Dionex Camberley, UK). Chromatographic separation was conducted using two Ionpac AS15 columns in series at 30[degrees]C and the determination of species was carried out using an Anion Self-Regenerating Suppressor (ASRS 300 4 mm) unit in combination with a DS6 heated conductivity cell (35[degrees] C). The gradient program was as follows: 6 mmol [L.sup.-1] KOH (43 min); increase from 27 mmol [L.sup.-1] KOH [min.sup.-1] to 60 mmol [L.sup.-1] (39 min); decrease from 54 mmol [L.sup.-1] KOH [min.sup.-1] to 6 mmol [L.sup.-1] (5 min).

SVOCs were extracted using Stir Bar Sorptive Extraction (SBSE). Basically any compound with a log Ko/w > 2.5 is recovered with a rate > 50% [44]. The method was improved after Konn et al. [37]. The entire content of the titanium syringe was transferred into a precombusted glass bottle and six 90 mL aliquots of the sample were poured into 100 mL precombusted glass vials. 10 mL of MeOH was added to avoid adsorption of the compounds onto the wall of the vials. Internal standards were added to the solutions in 2012 so that quantification could only be achieved in Fatu Kapa fluids. Extraction was performed in sealed vials with ultrainert septum crimps, at 300 rpm and using 48 [micro]L PDMS Twisters[R] (Gerstel GmbH). We focused on a selection of chemical groups that had previously been described as hydrothermally derived [27]. To that respect, pairs of aliquots were dedicated to analysis of n-alkanes, n-FAs, and both BTEXs and PAHs, respectively. Extraction kinetics experiments showed that chemical equilibrium was reached after 5 h of extraction for n-alkanes, 4 h for PAHs and 14 h for n-FAs (Konn, unpublished results). Twisters were then removed, rinsed with MQ water, dried, and stored at +4[degrees]C until analyses by Thermal Desorption-Gas Chromatography-Mass Spectrometry (TDGC-MS) [37]. Analytical parameters were adjusted for each group of compounds (Table 1).

For each batch of conditioned Twisters, one was spared, stored at +4[degrees]C, and analysed in the same run as the other Twisters. This dry blank aimed at showing any contamination that could have occurred during conditioning, storage, and transport. MQ water samples were prepared and extracted on board as regular hydrothermal samples to check if any contaminations could have occurred during the sample preparation step. Deep-sea water was also collected, processed, and analysed, using the same titanium syringes and according to the same protocols as for hydrothermal fluid samples, and thus constitute the reference blank experiment.

Calibration was achieved using a commercial standard solution of BTEXs and 3 custom standard solutions of [C.sub.9]-[C.sub.20] n-alkanes, [C.sub.6]-[C.sub.18] n-FAs, and PAHs containing naphthalene (N), Acenaphtene (A), Fluorene (F), Phenanthrene (Ph), Anthracene (An), Fluoranthene (Fl), and pyrene (Py) (LGC Standards, LGC Ltd.). Deuterated n-alkanes ([C.sub.10][D.sub.22] and [C.sub.14][D.sub.34]), methyl esters ([C.sub.9][H.sub.18][O.sub.2] and [C.sub.15][H.sub.30][O.sub.2]), and deuterated PAHs (naphthalene-D8, Biphenyl-D8, and Phenanthrene-D10) were used as internal standards (IS). Calibration curves (Concentration (analyte)/Concentration (IS) versus Area (analyte)/Area (IS)) were obtained using at least five concentration levels that were replicated 3 times (Table 2). Although the correlation coefficient of the linear regressions was satisfactory for all compounds, the significance and lack of fit of the model were checked by statistical tests before validation. A series of Student, Barlett, Chi-square, and Fisher tests was run for each individual compound using the Lumiere software. The best fitting model was then chosen for each case and confidence intervals were calculated.

4. Results

Altogether 35 hot fluid samples were collected in the study area from 8 different sites: Kulo Lasi caldera (6), on the one hand, and Stephanie (7), Carla (4), [Idef.sup.X] (4), [Obel.sup.X] (3), [Aster.sup.X] (1), Fati Ufu (6), and Tutafi (4), on the other hand, all located in the Fatu Kapa area (Figure 1). The Kulo Lasi smokers occurred at ~1500m depth on recent lava flows and consisted in a multitude of short (~25 cm) and narrow (~3-5 cm) diameter anhydrite chimneys containing a small percentage of sphalerite (ZnS), chalcopyrite (CuFe[S.sub.2]), isocubanite (Cu[Fe.sub.2][S.sub.3]), pyrrhotite ([Fe.sub.1-x]S), and pyrite (Fe[S.sub.2]) (Figure 2). The temperature was consistently about 343[degrees]C and the pH approached 2.2-2.3 (Table 3). In the Fatu Kapa area we could distinguish two types of hydrothermal environments at 1550-1650 m depth. Translucent 270-290[degrees]C fluids associated with anhydrite chimneys (up to 25 m tall and 2.5 m in diameter) characterised Stephanie, Carla, [Idef.sup.X], [Obel.sup.X], and [Aster.sup.X] sites, while >300[degrees]C milky to grey fluids associated with sulphide chimneys were characteristic of the southwest region including Fati Ufu and Tutafi sites (Figure 3, Table 3).

4.1. Gas. Concentrations of gases in all fluids as well as stable isotopes data are compiled in Table 4. Samples recovered from Kulo Lasi were extremely poor in C[H.sub.4] (<0.01 mM) but contained the series of [C.sub.2]-[C.sub.5] hydrocarbons. Samples from Fatu Kapa had higher concentration of C[H.sub.4] (0.05-0.235 mM) but only n-pentane (0.5-3.2 [micro]M) could be detected and quantified in terms of longer hydrocarbons. One sample from Kulo Lasi was found to be extremely rich in [H.sub.2] with nearly 20 mM while the others ranged from 1 to 6 mM and were below 0.05 mM at Fatu Kapa. [H.sub.2]S was highly variable between the 3 sampled chimneys at Kulo Lasi (0.39, 1.66, and 5.05 mM) while it was found rather homogeneous at Fatu Kapa with values around 1mM. C[O.sub.2] concentrations were more elevated at Fatu Kapa (4.5-29 mM) compared to Kulo Lasi (1-5 mM).

Helium isotope ratios were in the range 70-9.9 Ra over the Fatu Kapa area, in agreement with plume data [7]. They could not be measured at Kulo Lasi unfortunately. Carbon isotopes ratios were around -5 [per thousand] for C[O.sub.2] at Fatu Kapa whereas at Kulo Lasi the ratio showed very different results ranging from -0.2 to -4.1 [per thousand]. As for methane, [delta][sup.13]C were slightly lower at Kulo Lasi (~-28 [per thousand]) versus Fatu Kapa (~-23 [per thousand]) and [delta]D was about -110 [per thousand] in all samples from Fatu Kapa. [delta]D (C[H.sub.4]) could not be measured in the Kulo Lasi fluids because of the too low concentrations of C[H.sub.4]. Carbon isotope ratios of longer hydrocarbons were in the -27 to -22 [per thousand] at both vent fields. To be noted one sample from Fati Ufu in the Fatu Kapa area showed remarkably lower isotopic ratios with [delta][sup.13]C (C[O.sub.2]) = -2.3 [per thousand], [delta][sup.13]C (C[H.sub.4]) = -6.1 [per thousand] and [delta]D (C[H.sub.4]) = -93 [per thousand]. We do not have any explanation for this but do not have any reasons either to consider it as an outlier.

4.2. Major and Minor Elements. Major and minor elements measurements data are compiled in Table 3. Fluids from Fatu Kapa all exhibited a higher salinity than seawater up to 4.6 wt% NaCl whereas at Kulo Lasi fluids with both lower (2.8 wt% NaCl) and higher (4.3 wt% NaCl) salinity were sampled. Mg and S[O.sub.4] concentrations tend to be zero in the purest samples at Fatu Kapa. But, the purest fluids from Kulo Lasi showed significant levels of Mg and S[O.sub.4], associated with an extremely acidic pH (<2.5) and a high T (343 [degrees]C). Although we cannot totally discard that some mixing with seawater occurred, endmember concentrations of the Kulo Lasi fluids were then estimated to be close to the purest fluids sampled whereas they were obtained from mixing lines at Fatu Kapa assuming Mg zero (Table 5).

Fluids from Fatu Kapa were enriched compared to seawater in alkali, alkaline Earth, and transition metals as well as in strontium, bromide, and silica. Conversely, the fluids from Kulo Lasi exhibited a much more complex pattern. They were all highly enriched in transition metals and silica compared to seawater and fluids from Fatu Kapa (e.g., Fe up to ~10 mM). The enrichment versus seawater in alkali metals was not as striking as for Fatu Kapa fluids. As for the alkaline Earth metals, the amount of Ca was identical to seawater and fluids were depleted in Sr compared to seawater. Finally, both depletion and enrichment in Br were observed in the fluids from Kulo Lasi.

4.3. Organic Geochemistry. First of all, we would like to mention that because solubility of organic compounds decreases with T and because samples were processed at room temperature, the measured concentrations are probably lower than in situ concentrations. Moreover, it is very likely that a portion of the OM was adsorbed on small particles in the fluids which are not taken into account using our extraction and analytical techniques. As a result, the concentrations we report here probably represent lower estimates of in situ concentrations. However, since in situ measurement techniques are not available yet, these values are the best estimates we can obtain. Note that they also are the first to be published for SVOCs.

Formate and acetate reached 16.3 and 15.5 [micro]M, respectively, and covaried with Mg in the Kulo Lasi fluids (Figure 4). Concentrations of formate and acetate were significantly higher in the Fatu Kapa area but no correlation with Mg could be observed. Nevertheless, the purest fluids usually showed the highest concentrations. Formate reached 68 ppb at Stephanie and 722 ppb at Fati Ufu whereas it could not be detected at [Idef.sup.X] and Tutafi and was not measured at Carla. Acetate was detected in all analysed samples and concentrations were an order of magnitude higher than the ones of formate (543-2309 ppb) (Table 6).

Heavier extractable organic compounds were not detected in the dry control experiment and only a few were detectable but below limit of quantification (LOQ) in the MQ water blank experiment (Table 6). This showed that sample preparation and storage could be considered as contamination-free steps. The levels of heavier extractable organic compounds appeared rather high in the reference water at Fatu Kapa certainly because of the overall spread hydrothermal discharges and diffuse venting in the region [7] (Table 6, Figure 5). This sample was indeed taken mid-way between [Obel.sup.X] and [Aster.sup.X] fields at about 20 m above the seafloor. As a consequence, it is difficult to assess possible contamination originating from sampling device or seawater contribution in the present case. However, earlier studies have shown that they generally did not represent major sources of contamination as for the studied compounds [27, 37]. Nevertheless, in comparison to deep-sea water both the qualitative (Kulo Lasi) and quantitative (Fatu Kapa) data obtained suggested enrichment of the fluids in hydrothermally derived compounds, namely, n-alkanes ([C.sub.9]-[C.sub.12]), n-FAs ([C.sub.9], [C.sub.12], [C.sub.14]-[C.sub.18]), and PAHs (fluorene, phenanthrene, pyrene) ([39]; Table 6, Figures 5 and 6). Such enrichment was unclear for >[C.sub.12] n-alkanes; [C.sub.10], [C.sub.11], [C.sub.13] n-FAs; BTEXs; naphthalene, acenaphthene, and fluoranthene because of their very low concentration and/or the measurement uncertainty.

Differences in concentrations seemed to exist among the vents over the Fatu Kapa area. Fluids from the Stephanie vent field had concentrations in hydrocarbons equal or below the reference water sample whereas they were clearly enriched in [C.sub.9], [C.sub.12], [C.sub.14]-[C.sub.18] n-FAs. The Carla fluids were slightly enriched in [C.sub.9]-[C.sub.12] n-alkanes and showed the highest concentrations in PAHs. Fluids from [Idef.sup.X], Fati Ufu, and Tutafi shared some similarities: a strong enrichment in decane and undecane, alike concentrations in PAHs, and the presence of significant amounts of xylene. However, fluids expelled at the Tutafi vent appeared the most enriched in [C.sub.9]-[C.sub.11] n-alkanes and xylenes. In terms of fatty acids and considering the analytical error, the 5 vents showed consistent concentrations with [C.sub.9], [C.sub.16], and [C.sub.18] being major. Note that fluids from Fati Ufu seemed depleted in [C.sub.17] and [C.sub.18].

Generally we did not observe strong linear correlation between the concentration of individual compounds and Mg. Nonetheless, these relations showed that both enrichment and depletion of organic compounds seemed to occur in hydrothermal fluids versus deep-sea water.

5. Discussion

The elemental and gas composition of hydrothermal fluids is mainly affected by water/rock interactions and thus the nature of the host rocks, phase separation, magmatic fluid contribution, conductive cooling, and seawater mixing in local recharge zones [45]. In the following discussion we attempt to unravel the occurrence of these various processes both at Kulo Lasi and at Fatu Kapa. Much less is known on processes that control organic geochemistry and are therefore discussed here as well as some implications of the presence of organic compounds in hydrothermal fluids. Implications related to the composition of the fluids are dependent on fluxes; therefore, we give here an attempt to provide order of magnitude estimates of heat and mass fluxes.

5.1. Plume-Fluids Relations. The geochemistry and dynamics of the plumes over the Wallis and Futuna region have been studied elsewhere [7]. The Kulo Lasi plume has been proposed to be the result of both high-T and diffuse venting from multiple vents located both on the floor and on the wall of the caldera. Consistently, both types of venting have been observed [6]. Helium, nephelometry, and Mn profiles recorded above the northern sampling area showed constant elevated concentrations in the 300 masf and were assumed to be the results of diffuse venting. Our results show that they are obviously the result of the numerous small black smokers observed on the seafloor (Figure 2). The methane concentration in the sampled fluids was extremely low which cannot account for the elevated concentration of C[H.sub.4] in the water column reported by Konn et al. [7]. The strong difference in the C[H.sub.4]/Mn ratios between the plume (0.7-4.5) and the sampled fluids (0.001-0.01) is another line of evidence that the methane plume has another origin compared to hydrothermal fluids and likely come from degassing of the lava flows as suggested by the authors. Although other fluid discharges likely remain undiscovered, this is consistent with a past eruption and accumulation of the water mass in the caldera [39].

A great diversity of the fluid compositions was expected from the geological settings and the water column survey and was indeed confirmed by the mixing lines that point to as many endmembers as sampled areas (Figure S1). C[H.sub.4]/TDM ratios also differed among the vents but it was not due to sole C[H.sub.4] concentration variations as suggested earlier (Table 5) [7]. Finally, the very weak nephelometry of the Fatu Kapa plume is likely best explained by the low metal contents of the fluids.

5.2. Reaction Zone Depth. The solubility of Quartz in hydrothermal fluids has been studied by different authors (e.g., [46]). According to these works silica concentration in the fluid may be used to estimate the depth of the reaction zone. The silica concentration measured in the Kulo Lasi and Fatu Kapa fluids indicates a hydrothermal reaction zone at seafloor or in the water column (Figure S2). Both observations suggest that, in this area, fluids are not in equilibria with Quartz at the pressure and temperature of the fluid emission. And this prevents using Si as a geothermometer to determine the depth of the reaction zone.

All fluids at Fatu Kapa were indeed highly depleted in Si with respect to the Quartz saturation curve at 170 bar, 300[degrees]C (Si ~12 mM in Figure [S.sub.2]). A higher temperature in the reaction zone (>350[degrees]C at 200 bar) may explain a lower Si concentration in the fluid at equilibrium as Quartz solubility decreases (Figure [S.sub.2]). The dispersion of a great number of vent fields over a large area of recent lava flows may be due to complex fluid pathways that favour conductive cooling of the fluid and subsurface loss of silica before venting on the seafloor. Consistently, amorphous silica was common in the seafloor deposits at Fatu Kapa where opal was abundant as a late mineral in sulphides and as silica crusts (slabs) at the surface of the deposits [6]. In conclusion, this would indicate a fairly shallow reaction zone at Fatu Kapa (a few 100 mbsf) in agreement with the geological settings and the possible occurrence of dikes.

5.3. Chlorinity. Phase separation is often accounted for salinity deviation in hydrothermal fluids versus seawater [47,48]. Phase separation is of great importance in metal transportation and ore-forming processes, for example, [24, 49-51]. It also implies that seawater experiences dramatic changes in its physical and chemical properties as it reaches the super- or subcritical state. In particular, strong modification of the density and ionic strength of seawater enables unconventional chemical reactions, hence a likely importance in hydrothermal organic geochemistry, for example, [52]. The measured P and T of the Kulo Lasi fluids are almost on the critical curve of seawater meaning that liquid and vapor phase may coexist at Kulo Lasi. An adiabatic decompression of supercritical seawater (initial fluid and equivalent to 3.2 wt% NaCl) as it rises towards the seafloor would cause it to separate, at about 320-350 bar and 415-420[degrees]C, into two phases having the NaCl percentages observed at Kulo Lasi (Figure [S.sub.3]) [53, 54].

Similarly, the excess salinity of the Fatu Kapa fluids (9 to 41%) could be explained by phase separation and is supported by the Br/Cl ratios which significantly differed from seawater [45, 55]. Since we have not sampled any Cl-depleted fluids we may infer that phase separation may have occurred in the past and that only the brine phase was venting at the time of the cruise. Alternatively water-rock reactions could represent a significant Cl source to the fluids [56]. Indeed, the felsic lavas collected in the Fatu Kapa area contained up to 10 times more Cl than MORB (Aurelien Jeanvoine, personal communication).

5.4. Water-Rock Reactions. Generally, fluids from Kulo Lasi and Fatu Kapa were not typical of back-arc settings but shared similarities with ridge, arc, and back-arc settings fluid signatures [3]. The Kulo Lasi fluids have unusually high concentrations of Mg (24.6 to 34.9 mM) and S[O.sub.4] (6.2 to 12.0 mM) at low pH (2.24 to 3.32) and high T (338-343[degrees]C) which indicate that significant seawater mixing at subsurface or during sampling is rather unlikely. In back-arc context, the occurrence of Mg and S[O.sub.4] in endmember fluids can be explained by a magmatic fluid input as observed at the Desmos [5, 57], Rota 1 and Brother sites [58, 59]. Magmatic-derived S[O.sub.2] would disproportionate according to reaction (1) at temperatures measured at Kulo Lasi (e.g., [5, 60]). This is consistent with widespread occurrences of native sulfur on fresh lava near the active vents [39] as well as the low pH of the fluids.

3S[O.sub.2] (aq) + 2[H.sub.2]O = [S.sup.0] (s) + 4[H.sup.+] + 2S[O.sub.4] (1)

Yet C[O.sub.2] concentrations are low and the Na: K: Mg ratios are strongly different to seawater. The latter suggests a contribution of Mg by dissolution of magnesium silicates [39]. Besides, the high Li and Rb concentrations and the presence of recent lava injected in the caldera point to water/fresh hot volcanic rocks interactions. Notably, such interactions are capable of producing the extremely high concentration of [H.sub.2] measured in the [Cl.sup.-]depleted sample and thus the very unusual [H.sub.2]/C[H.sub.4] observed [61] (Figure S4). High concentrations of metals are consistent with the highly acidic nature of the fluids coupled with high [H.sub.2]/[H.sub.2]S ratios [62, 63].

The relatively mild pH, [sup.3]He/C[O.sub.2], and R/Ra ratios of the Fatu Kapa fluids are diagnostic of the occurrence of seawater/MORB interactions [64-66] (Figure S5). Consistently, the geochemistry of the Fatu Kapa fluids was very similar to the Vienna Woods ones whose composition is mainly the result of interactions with basalts [3, 4]. Yet metal concentrations were lower at Fatu Kapa while Ca, K, and Rb were higher and Li is similar. Plausible explanations for the extremely low metal concentrations observed in the Fatu Kapa fluids are conductive cooling; water/metal-poor rocks interactions; subsurface metal trapping under silica and barite slabs [6]. Given the wide variety of lithologies sampled in the area, fluid compositions are likely the results of interactions with a wide range of rock source chemistries. To that respect, the composition of the local lavas that are characteristic of andesite, trachy-andesite, dacite, and trachy-dacite probably best explains the enrichment in Ca and in the mobile alkali metals K and Rb.

5.5. What Controls Organic Geochemistry? The origin of hydrocarbon gases and SVOCs in natural systems including hydrothermal systems has been the focus of many studies since the abiotic origin of some hydrocarbons was postulated ([67, 68] for a review). Both field and experimental studies have tried to unravel the origin of hydrocarbons making use of stable isotopes (e.g., reviews of [34, 35]). Although there are strong discrepancies among studies, the variation of [delta][sup.13]C with the carbon number may be a reasonable indicator of the origin. The trend observed in the [Cl.sup.-]depleted sample of Kulo Lasi was very similar to the ones attributed to an abiogenic origin in the Precambrian shields or in the Lost City hydrothermal field [69,70]. The Kulo Lasi [Cl.sup.-]rich sample exhibited a pattern that has been observed in several Fischer-Tropsch type (FTT) experiments [34]. The strong positive or negative fractionation between [C.sub.1] and [C.sub.2] observed in the hot fluids of Kulo Lasi is likely due to chain initiation [71]. Conversely, the low-T (135[degrees] C) sample that was collected in a beehive-type smoker covered with bacterial mats showed a regular positive trend which has been proposed to be diagnostic of a thermogenic origin. Although we concede that the abiogenic origin of [C.sub.2+] hydrocarbon gases in the Kulo Lasi field will need more investigation, methane is clearly at the border of abiogenic and thermogenic domains both at Kulo Lasi and at Fatu Kapa with [delta][sup.13]C values ranging from -29 to -6.1 [per thousand] ([72] and Figure 7). Carbon isotopes of C[H.sub.4] and C[O.sub.2] suggest that methane underwent oxidation, possibly by bacteria, at both sites and may explain the extremely low concentrations observed (Figure 8 in [73]). Consistently and according to thermodynamic calculations, methanogenesis should be limited under the P, T, and redox conditions present at the Futuna sites and C[H.sub.4] consumption might be prevalent [31].

By contrast, carbon isotopes have not appeared to be useful up to date in determining the origin of heavier organic compounds [74]. Several processes are likely to occur simultaneously and to use several C sources, resulting in a nondiagnostic bulk [delta][sup.13]C signature. Several experimental and theoretical studies indicate that a range of organic compounds including linear alkanes and FAs could form and persist in natural hydrothermal systems (e.g., [31-35]). However, according to the calculated f[H.sub.2] at P and T of the study sites, the redox conditions are likely buffered by Hematite-Magnetite (HM) or an even more oxidizing mineral assemblage which appear less favourable for abiotic synthesis than Pyrite-Pyrrhotite-Magnetite, Fayalite-Magnetite-Quartz, or ultramafic rocks assemblages [27,32,33] (Table 4). The occurrence of organic compounds in our fluids must thus be attributed to a great part to other processes. Microbial production and thermal degradation of microorganisms, OM detritus, and/or refractory dissolved OM represent good candidates to produce soluble organic compounds. PAHs are indeed common products of pyrolysis of OM [26, 75, 76]. Long chained fatty acids are major constituent of organisms and their presence in the Futuna fluids could be easily associated with thermal degradation of biomass or OM [26, 77]. Yet the distribution of the compounds found in the fluids does not match a simple process of OM degradation. Only >[C.sub.13] n-FAs occurred in sediments with [C.sub.16] being the most abundant (Figure S6). However, similar to our samples, both odd and even carbon number n-FAs were observed in the [C.sub.14]-[C.sub.20] range with odd FAs being less abundant. Petroleum exhibits nearly equal levels of [C.sub.14]-[C.sub.20] n-FAs. Only the even series has been reported in both massive sulphide deposits (MSD) and hydrothermal mussels with [C.sub.16] being the most abundant. Short chain FAs (<[C.sub.13]) have onlybeen reported in Lost City fluids but here again only the even series occurred. In any case [C.sub.9] was reported whereas it was nearly the most abundant in our fluids. Abiotic processes may still be considered as nonanoic acid could be synthesized from C[O.sub.2] and [H.sub.2] [31], nonane [78], or undecane [79]. As a difference the presence of [C.sub.16] and [C.sub.18] n-FAs in significant amount in the fluids from Fatu Kapa may represent a direct microbial contribution. The distribution observed in the Fatu Kapa fluids likely reflects the occurrence of several concomitant processes possibly including production reactions (abiotic and thermogenic) and consumption mechanisms (adsorption and complexation).

Nonvolatile n-alkanes are usually associated with lower T processes such as in oil fields or at the Middle Valley hydrothermal vent field [80]. In the Guaymas basin, where n-alkane-rich sediment samples have been reported, it is less clear what temperature they were exposed to. However and as far as we understood high temperatures were rather associated with absence of n-alkanes and presence of PAHs consistently with high-temperature OM pyrolysis [26,81,82]. Pyrolytic processes resulted in the presence of light hydrocarbon gases with an exception of some high T (>200[degrees]C) fluids containing [C.sub.9] and [C.sub.10] n-alkanes. n-Alkanes also occur in solids from unsedimented hydrothermal vent fields ([76] and references therein). Notably, the n-alkanes distribution in our fluids does not resemble any aspects neither the ones resulting of low-T processes nor the ones created by high-T FTT reactions [83, 84] (Figure S7). [C.sub.10]-[C.sub.20] n-alkanes usually occur in equivalent amounts in petroleum or show a consistent decrease with molecular weight. Experimental FTT reactions produced consistent increasing concentrations from [C.sub.9] to [C.sub.12] and then consistent decreasing concentrations to [C.sub.20]. Similar patterns are also associated with the kerosene fraction of petroleum [85]. Distribution patterns in hydrothermal solids are difficult to picture as usually only chromatograms are provided in the studies, for example, [86], but they largely differ by the simple fact that <[C.sub.14] alkanes were not detected in most cases as in sediments from various locations [87]. The smaller alkanes may well be preferentially entrained in fluid circulation but they are more likely the result of other processes, especially high-temperature ones, and including abiotic reactions. Note that the latter should not be reduced to sole FTT reactions because supercritical water is a fabulous medium for unconventional reactions [88-90].

Formate and acetate have been given more attention in both laboratory [91-93] and field hydrothermal studies [28, 29] as these small molecules are likely to prevail according to thermodynamic studies (e.g., [31-33]). Where usually formate dominates, acetate was found to be more abundant in fluids from Fatu Kapa. According to Shock studies, at 280-300[degrees]C, formic acid concentrations should not be much higher than acetic acid, but this is not enough to explain our "reverse" concentrations. And especially it is not consistent with higher amounts in the 300[degrees]C fluids. A ratio close to 1 was observed at Kulo Lasi which may indicate that different production/consumption processes occur. Also the concentrations of the formate and acetate plotted on a line versus Mg which suggest that the fate of these volatile fatty acids at Kulo Lasi is controlled by simple mixing; that is there would be no consumption/production when fluid mixes with seawater (Figure 4). The deep-seawater concentrations were high compared to what is usually reported in the literature which was most likely due to plume contribution [27, 28]. This supports the simple mixing model hypothesis and is consistent with the near absence of organisms around those chimneys.

5.6. Organic Compounds: Implications for Biology, Mineral Resources, and C Cycling. The idea that life could have originated in hydrothermal systems from abiotic reactions was postulated in the late 70s [94]. However, the question of the origin of organic compounds in hydrothermal systems has remained ever since they were evidenced in natural environments [95]. On the one hand, a biogenic or thermogenic origin seems most likely for most compounds investigated so far; on the other hand, one cannot exclude that some of the formate and aliphatic hydrocarbons form abiotically [13, 26-28, 30, 96]. As detailed in the previous section, our results are consistent with a mix of origin although abiotic synthesis likely occurs to a far smaller extent than other processes that would overprint an abiotic signature.

Upon the hot topic of the origin of life, the mere presence of organic compounds is highly important for the fauna at the local and regional scales. It is well established that VFAs constitute a significant food source for some microorganisms and thus help sustaining hydrothermal ecosystems [97-100]. Besides, some bacteria have proven to be capable of using naphthalene [101] and tubeworms, hydrocarbons [102].

Organics can form complexes with metals [20, 21]. This greatly improves the dispersion of metals in the ocean and prevents them from precipitation as sulphides or oxyhydroxydes [23, 103]. Notably fatty acids are efficient ligands that play a major role in making metals bioavailable as well as in transporting them both through the upper crust ([17] and references therein) and through the water column in the plume [11, 104-106]. In addition, they have been shown to be involved in growth/dissolution processes of some minerals [19, 107]. For these reasons, they are of particular importance in ore-forming processes. Hydrocarbons which are weaker ligands would react with sulfates to generate bisulfide (H[S.sup.-]), which in turn would easily react with metal chlorides to form metal sulphides according to the following mass balance equations:

3S[O.sub.4.sup.2-] + 3[H.sup.+] + 4R-C[H.sub.3]

[right arrow] 4R-C[O.sub.2]H + H[S.sup.-] + 4[H.sub.2]O (2)

H[S.sup.-] + Me[Cl.sub.2] [right arrow] MeS + [H.sup.+] + 2[Cl.sup.-] (3)

where R is a carbonated chain, either aliphatic or aromatic, and represents OM [108]. To that respect hydrocarbons are likely to be involved in depositional processes of metals. Notably associations of aliphatic and aromatic hydrocarbons with mineral deposits have also been observed on the EPR [109] and in sulphide sedimentary deposits on land [104].

5.7. Fluxes: Importance of Back-Arc Hydrothermal Systems to the Ocean Geochemistry. Hydrothermal input to the ocean via plumes has long been neglected but recent results of the GEOTRACES program clearly show its importance in terms of metals and trace elements transportation and implications for ocean biogeochemistry [13, 110-113]. While it is now well established that MOR hydrothermal discharge has a large impact on the global ocean chemistry and element cycles, the relative impact of hydrothermal activity from other hydrothermal settings has not been established. The extensive hydrothermal activity reported in the Wallis and Futuna region suggests that back-arc system hydrothermalism may be of much greater importance than previously anticipated [7, 114]. Estimation of hydrothermal fluxes is generally challenging and very few data are available in the literature [115-118]. Therefore we believe that any kind of estimation, even orders of magnitudes are of importance to make advances in this field. We propose to combine two different approaches based on geophysical data and video recordings (see here), respectively, to propose such estimates with some confidence.

5.7.1. Estimation Using Geophysics. We can make an order of magnitude estimate of the heat flux from the different hydrothermally active areas based on the physical characteristics of the plumes. Marshall and coworkers [119-121] have proposed a scaling relationship between the heat flux at an interface, Hf, the ambient buoyancy frequency (N) in the surroundings of the plume, the characteristic size ([R.sub.s]) of the heat transfer region, and the equilibrium height (or depth; h) reached by the plume, as

Hf = ([rho] x Cp)/(g x [alpha] x [R.sub.s]) x [(N x h/5).sup.3], (4)

where [rho] is seawater density (1030 kg x [m.sup.-3]), Cp is heat capacity of seawater (~4000 J x [kg.sup.-1] x [K.sup.-1]), and g is gravitational acceleration (9.81 m x [s.sup.-2]), and [alpha] is the thermal expansion coefficient of seawater ([10.sup.-4] [K.sup.-1]). The ambient buoyancy frequency (N) can be estimated to be between 0.001 and 0.002 [s.sup.-1] from CTD profiles in the area using a routine in the UNESCO Sea Water Library described by Jackett and Mcdougall [122]. The radius ([R.sub.s]) of the Kulo Lasi caldera is 2500 m and the plume rose in average about 200 m above seafloor (top layer boundary) [7]. For order of magnitude estimates, the ~130 [km.sup.2] Fatu Kapa area can be approximated by a disk of radius 6400 m, with a similar plume height. Introducing these numbers in (4) leads to heat flux estimates ranging between 100 and 800 W x [m.sup.-2] for the Kulo Lasi caldera and 50 and 400 W x [m.sup.-2] for the Fatu Kapa area, which is greatly dependent on the value for buoyancy frequency. While these estimates scale proportionally with the area considered to be hydrothermally active, they integrate the sources within the area which do not demand that the whole area be active. We estimate that total heat inputs are in the 2-16 GW for the Kulo Lasi caldera and 5-40 GW for the Fatu Kapa areas.

5.7.2. Estimation Based on Video Postprocessing. Video recordings could be used to estimate fluid velocities of the Carla and [Obel.sup.X] chimneys and of a few smokers at Kulo Lasi using for instance the Typhoon algorithm [123] (Figures S8-S11). This optical flow method recovers the (2D) fluid flow from the apparent displacements, in an image sequence, of tracers advected by the flow. Here, the plume acts as the tracer. Compensation for the camera and vehicle motion and parallax correction were not possible, so the investigated video sequences where chosen according to (i) the overall stability of the camera and vehicle and (ii) the plume being as perpendicular to the camera as possible. The relevant lengths scales (image spatial resolution and diameter of the chimneys) had to be estimated from known object sizes in the same ground, typically shrimps. External diameters of the chimney were used for calculation as any estimation of the internal diameter on video recordings would be too speculative. Note that (i) chimney samples taken at Kulo Lasi exhibited similar internal and external diameters; (ii) the large anhydrite chimneys (e.g., [Obel.sup.X], Carla) at Fatu Kapa did not seem to have any central conduit but rather exhibited a sponge-like structure leaking fluid at a high velocity from the entire volume. As a result, we believe the overestimation resulting from this assumption to be limited. Finally, the observed flow velocity is assumed to be constant across the jet section. Given all these limitations and assumptions, the resulting fluxes values should be taken as an indication of their order of magnitude.

The fluid velocity was estimated to be on average 0.05, 0.15, and 1 m [s.sup.-1] for Kulo Lasi, Carla, and [Obel.sup.X], respectively In terms of heat fluxes, Carla (diameter ca. 70 cm) would generate ~6 MW while [Obel.sup.X] (diameter ca. 250 cm) would produce ~5.7 GW, respectively. Associated mass fluxes would be 54 L [s.sup.-1] and 5 [m.sup.3] [s.sup.-1] which means, for instance, that the single [Obel.sup.X] chimney could generate an input of 2.6 x 107 moly-1 C[H.sub.4] to the ocean. Comparatively, estimation of the total efflux of methane from serpentinisation ranges from 15 to 84 x [10.sup.9] mol [y.sup.-1] including 9 x [10.sup.9] mol [y.sup.-1] for the sole slow spreading ridges. Similarly, the Carla chimney would release about 5.7 x [10.sup.3] mol [y.sup.-1] of dodecane that may help forming 1.4 mol [y.sup.-1] of metal sulphides (see Section 5.6). Cumulative observations during the dives brought to a total of 220 smokers of various sizes (~5 cm to ~2.5 m in diameter) and apparent flows (strong, medium, slow). We assigned the strong, medium, and slow flows observed to the velocities of [Obel.sup.X], Carla, and Kulo Lasi, respectively. At Kulo Lasi about 100 smokers were counted during the Nautile dives and all appeared very similar in diameter (~3 cm) and fluid flow (0.05). Keeping in mind these uncertainties, an order of magnitude of the heat and mass fluxes generated by hot smokers at Fatu Kapa are estimated to be 6.8 GW and 6 [m.sup.3] [s.sup.-1] for the Fatu Kapa area versus 9 MW and 6 L [s.sup.-1] for the Kulo Lasi caldera. This means, for example, that the total Fe flux from hot fluids emanating from the caldera would be up to 1.9 x [10.sup.6] mol [y.sup.-1] versus recent estimations of the global hydrothermal iron input that are about 109 mol [y.sup.-1] [112, 124]. The average nonanoic acid concentration in Fatu Kapa purest fluids is 7.25 ppb, which would result in 1.4 x [10.sup.6] mol [y.sup.-1] released in the ocean by the Fatu Kapa hot smokers. The carboxylic acid functional group of fatty acids makes them good potential ligands to form coordination complexes with iron, which stabilises iron in the plume in its reduced form [103, 125]. Hence, the example of nonanoic acid suggests that fatty acids could largely contribute to iron stabilisation.

However, the high-temperature fluxes calculated above failed to include heat fluxes from diffusive venting, which was largely present in both areas and is thought to be an important part of the global hydrothermal heat flux (up to 98%) [126]. The surface of the diffusive areas was also assessed on the videos. However, because the velocity of diffusive fluids could not be estimated using Typhoon, we assumed hydrothermal waters are exiting the seafloor at the minimum velocity reported for low temperature flow (0.04 m [s.sup.-1]) [127]. The cumulative surface of diffusive areas with a typical temperature of 10[degrees]C reached 100 [m.sup.2] at Kulo Lasi and 2885 [m.sup.2] at Fatu Kapa. In addition, a particular area of about 300 [m.sup.2] at Kulo Lasi consisted in hundreds of silica chimney diffusing a 40[degrees]C fluid [6]. The resulting contribution of diffuse venting to the heat flux would be 2.14 GW and 5.3 GW at Kulo Lasi and Fatu Kapa, respectively. This brings the total heat flux estimates at 2.15 GW and 12 GW, respectively, which is consistent with the estimates obtained using the lower N value as well as the fact that only a small portion of the total surface of the sites was explored with the submersible.

5.7.3. Summary. According to these different estimates heat efflux at Kulo Lasi and Fatu Kapa are conservatively estimated to be at least for 1-2 GW and 5-10 GW, respectively; this estimate is based on the low N value, whereas using the higher N suggests a flux almost 10x higher. It seems highly likely that the Wallis and Futuna active areas combined with the 3 calderas to the East [114] have a heat flux of >10 GW. Vent fields on MOR have been reported to generate between 10 MW and 25 GW ([116, 117, 127, 128] and references therein) and the total hydrothermal heat flux at MORs is estimated to be about 1000 GW [129, 130]. This suggests that the presently discovered area might be of significant importance in the global budget and that back-arc hydrothermal activity contributes as much as MOR systems, and, possibly more, to the global ocean chemistry and cycles. Few estimates of hydrothermal heat flux have been published and the relative importance of heat, fluid, and geochemical hydrothermal fluxes from different environments will require studies designed to more accurately gauge these fluxes.

6. Concluding Remarks

The study of the geochemical characteristics of hydrothermal fluids from the Wallis and Futuna area confirmed the great potential of the region to generate a variety of fluid chemistries, as it was expected considering its particular geological context. This supports the idea that the hydrothermal contribution of back-arc environments is of great interest for the global ocean chemistry. Our order of magnitude estimates of fluxes suggest that back-arc hydrothermal activity contributes as much as MOR systems and possibly more. Notably the sole [Obel.sup.X] chimney could generate ~1 [per thousand] of the total hydrothermally derived C[H.sub.4]. The diversity observed in the Wallis and Futuna area also emphasizes that each new field presents its own characteristics and that exploration should continue. A huge number of sites remain to be discovered according to the newly published estimation of vent fields occurring on Earth [131].

A special focus was brought on organic geochemistry because of the few data available in modern hydrothermal systems despite the recent growing interest for oceanic OM. Concentrations of SVOCs are the first to be reported which will have implications in a wide range of questions and fields. Our results are relevant to the understanding of C cycling and complete the works by Hawkes and Rossel who demonstrated that DOM is recycled if not removed partially through hydrothermal systems but who could not identify compounds in DOM. Identification of organic molecules is especially needed to better understand organometallic chemistry at hydrothermal vents and thus utilisation by microbes, metal export, and ore-forming processes. The distribution patterns obtained revealed the occurrence of several processes controlling organic geochemistry and notably that one cannot exclude abiotic synthesis to occur in the study area but very likely to a so small extent that the signature would be overprinted.

This brings the idea that using natural concentrations to feed thermodynamic models of abiotic synthesis and/or guide the design of experimental work should enable making progress in unravelling the origin of organic compounds in hydrothermal systems. In addition, growing techniques as clumped isotopes [132] and position specific isotopes measurements [133] are available and should also help answering this question.

https://doi.org/10.1155/2018/7692839

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The 2010 and 2012 cruises to the French EEZ of Wallis and Futuna were financed through a public/private consortium of the French state, Ifremer, AAMP, and BRGM and industrial groups including Eramet, Technip, and Areva. The authors are very grateful to the ship crew and the ship captains JR. Glehen, P. Moimeaux, and R. Picard for running these three cruises with skills and professionalism. They acknowledge all the scientific parties of these cruises for their collaboration. They are also grateful to D. Pierre, C. Guerin, and A. Normand for processing bathymetric data on board and thank A.-S. Alix for providing the final maps. They are indebted to the physical oceanographers L. Marie and B. Le Cann who helped a lot with fluxes estimations and water mass physics. Finally, many thanks are due to P. Derian from the Fluminance team (Inria, Rennes, France) who postprocessed video recordings using Thyphoon for fluxes estimation.

Supplementary Materials

Supplementary 1. S1: mixing lines used for calculation of the endmember composition of the Fatu Kapa fluids. S2: modified after Von Damm et al. [46]. Plot of the molality of dissolved SiO2 in equilibrium with quartz in seawater versus temperature for isobars from 1500 to 1000 bar according to Von Damm et al. model. The Si most enriched fluid collected at Kulo Lasi is represented by the blue star. The red circle covers the range of Si concentrations and T encountered in fluids from the Fatu Kapa vent field. S3: modified after Bischoff and Pitzer [53]. Stars stand for Kulo Lasi fluid phases characteristics. They nearly plot on the 150-bar isobar. The close-up of the 400[degrees]C, 300-bar region shows that seawater could produce the observed salinities at Kulo Lasi by phase separation at about 320-350 bar and 415-420[degrees]C. S4: modified after Kawagucci et al. [134]. Plots of H2 concentration versus CH4 concentration in various hydrothermal fluids. The grey area represents values observed in a hydrothermal experiment using natural seafloor sediments. Values obtained for the Wallis and Futuna vent fields are reported: Kulo Lasi brine and condensed vapour phases are marked by the red square and the blue diamond, respectively, and the blue shaded area covers the range of values obtained in the Fatu Kapa field. S5: modified after Lupton et al. [66]. (a) Plot summarizing 3He/4He ratio versus C/3He for various mantle provinces, including mid-ocean ridges (black-filled symbols), submarine arc volcanoes (blue), and sub aerial arc volcanoes (green). Values for the Fatu Kapa vent field are reported as orange diamonds. 3He/4He is expressed as R/Ra. Crosses indicate average values for MORBs and for subaerial arcs from. (b) Similar plot including values for hotspot volcanoes such as Loihi, Kilauea fumarole, Yellowstone Park gases, Reunion, and Fatu Kapa (orange diamonds). S6: distribution of linear fatty acids in various environments. Data are from [135] for Massive Sulphide Deposits (MSD); [36] for Lost City (LC) fluids; [136] for petroleum and recent and ancient sediments; [137] for 13[degrees]N mussels. S7: distribution of linear alkanes obtained by thermogenic maturation in various crude oil basins and abiotic Fischer-Tropsch type experiment [84]. S11: time series of the estimated displacements corresponding to the video sequences shown in Figures S8, S9, and S10.

Supplementary 2. S8: example of a postprocessed video

sequence using the Typhoon algorithm to estimate displacements (instantaneous, left panel; averaged on 25 frames, right panel) on one of the small black smokers in the Kulo Lasi caldera.

Supplementary 3. S9: example of a postprocessed video sequence using the Typhoon algorithm to estimate displacements (instantaneous, left panel; averaged on 25 frames, right panel) at the base of the Carla chimney.

Supplementary 4. S10: example of a postprocessed video sequence using the Typhoon algorithm to estimate displacements (instantaneous, left panel; averaged on 25 frames, right panel) at the top of the massive [Obel.sup.X] chimney. S11: time series of the estimated displacements corresponding to the video sequences shown in Figures S8, S9, and S10.

References

[1] S. E. Beaulieu, "InterRidge Global Database of Active Submarine Hydrothermal Vent Fields: prepared for InterRidge, Version 3.3," World Wide Web electronic publication., Version 3.4, 2015.

[2] Y. Fouquet, U. Vonstackelberg, J. L. Charlou et al., "Hydrothermal activity in the Lau back-arc basin:Sulfides and water chemistry," Geology, vol. 19, pp. 303-306, 1991.

[3] M. D. Hannington, C. D. J. de Ronde, and S. Petersen, "Sea-floor tectonics and submarine hydrothermal systems," in Economic Geology 100th Anniversary Volume. Society of Economic Geologists, J. W. Hedenquist, J. F. H. Thompson, R. J. Goldfarb, and J. P. Richards, Eds., pp. 111-141, Society of Economic Geologists, Littelton, Colorado, USA, 2005.

[4] E. P. Reeves, J. S. Seewald, P. Saccocia et al., "Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea," Geochimica et Cosmochimica Acta, vol. 75, no. 4, pp. 1088-1123, 2011.

[5] J. S. Seewald, E. P. Reeves, W. Bach et al., "Submarine venting of magmatic volatiles in the Eastern Manus Basin, Papua New Guinea," Geochimica et Cosmochimica Acta, vol. 163, pp. 178-199, 2015.

[6] Y. Fouquet, A. S. Alix, D. Birot et al., "Discovery of Extensive Hydrothermal Fields in the Wallis and Futuna Back-Arc Environment (SW Pacific)," in Proceedings of the SGA--13th Biennial Meeting--Mineral Resources in a Sustainable World, SGA, Ed., pp. 1223-1226, Nancy, France, 2015.

[7] C. Konn, E. Fourre, P. Jean-Baptiste et al., "Extensive hydrothermal activity revealed by multi-tracer survey in the Wallis and Futuna region (SW Pacific)," Deep-Sea Research Part I: Oceanographic Research Papers, vol. 116, pp. 127-144, 2016.

[8] M. Bevis, F. W. Taylor, B. E. Schutz et al., "Geodetic observations of very rapid convergence and back-arc extension at the tonga arc," Nature, vol. 374, no. 6519, pp. 249-251, 1995.

[9] G. Etiope and B. Sherwood Lollar, "Abiotic methane on earth," Reviews of Geophysics, vol. 51, no. 2, pp. 276-299, 2013.

[10] R. M. W. Amon, "Carbon cycle: Ocean dissolved organics matter," Nature Geoscience, vol. 9, no. 12, pp. 864-865, 2016.

[11] S. A. Bennett, P. J. Statham, D. R. H. Green et al., "Dissolved and particulate organic carbon in hydrothermal plumes from the East Pacific Rise, 9[degrees]50'N," Deep-Sea Research Part I: Oceanographic Research Papers, vol. 58, no. 9, pp. 922-931, 2011.

[12] J. A. Hawkes, C. T. Hansen, T. Goldhammer, W. Bach, and T. Dittmar, "Molecular alteration of marine dissolved organic matter under experimental hydrothermal conditions," Geochimica et Cosmochimica Acta, vol. 175, pp. 68-85, 2016.

[13] J. A. Hawkes, P. E. Rossel, A. Stubbins et al., "Efficient removal of recalcitrant deep-ocean dissolved organic matter during hydrothermal circulation," Nature Geoscience, vol. 8, no. 11, pp. 856-860, 2015.

[14] S. Q. Lang, D. A. Butterfield, M. D. Lilley, H. Paul Johnson, and J. I. Hedges, "Dissolved organic carbon in ridge-axis and ridge-flank hydrothermal systems," Geochimica et Cosmochimica Acta, vol. 70, no. 15, pp. 3830-3842, 2006.

[15] K. Longnecker, "Dissolved organic matter in newly formed sea ice and surface seawater," Geochimica et Cosmochimica Acta, vol. 171, pp. 39-49, 2015.

[16] J. A. Breier, B. M. Toner, S. C. Fakra et al., "Sulfur, sulfides, oxides and organic matter aggregated in submarine hydrothermal plumes at 9[degrees]50'N East Pacific Rise," Geochimica et Cosmochimica Acta, vol. 88, pp. 216-236, 2012.

[17] J. Brugger, W. Liu, B. Etschmann, Y. Mei, D. M. Sherman, and D. Testemale, "A review of the coordination chemistry of hydrothermal systems, or do coordination changes make ore deposits?" Chemical Geology, vol. 447, pp. 219-253, 2016.

[18] J. N. Fitzsimmons, S. G. John, C. M. Marsay et al., "Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange," Nature Geoscience, vol. 10, no. 3, pp. 195-201, 2017.

[19] Q. Gautier, U.-N. Berninger, J. Schott, and G. Jordan, "Influence of organic ligands on magnesite growth: A hydrothermal atomic force microscopy study," Geochimica et Cosmochimica Acta, vol. 155, pp. 68-85, 2015.

[20] L. J. A. Gerringa, M. J. A. Rijkenberg, V. Schoemann, P. Laan, and H. J. W. de Baar, "Organic complexation of iron in the West Atlantic Ocean," Marine Chemistry, vol. 177, pp. 434-446, 2015.

[21] J. A. Hawkes, D. P. Connelly, M. Gledhill, and E. P. Achterberg, "The stabilisation and transportation of dissolved iron from high temperature hydrothermal vent systems," Earth and Planetary Science Letters, vol. 375, pp. 280-290, 2013.

[22] W. B. Homoky, "Biogeochemistry: Deep ocean iron balance," Nature Geoscience, vol. 10, no. 3, pp. 162-164, 2017

[23] S. G. Sander and A. Koschinsky, "Metal flux from hydrothermal vents increased by organic complexation," Nature Geoscience, vol. 4, no. 3, pp. 145-150, 2011.

[24] T. M. Seward, A. E. Williams-Jones, and A. A. Migdisov, "The Chemistry of Metal Transport and Deposition by Ore-Forming Hydrothermal Fluids A2," in Treatise on Geochemistry, H. D. Holland and K. K. Turekian, Eds., pp. 29-57, Elsevier, Oxford, England, 2nd edition, 2014.

[25] B. M. Toner, S. C. Fakra, S. J. Manganini et al., "Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume," Nature Geoscience, vol. 2, no. 3, pp. 197-201, 2009.

[26] C. Konn, D. Testemale, J. Querellou, N. G. Holm, and J. L. Charlou, "New insight into the contributions of thermogenic processes and biogenic sources to the generation of organic compounds in hydrothermal fluids," Geobiology, vol. 9, no. 1, pp. 79-93, 2011.

[27] C. Konn, J. L. Charlou, J. P. Donval, N. G. Holm, F. Dehairs, and S. Bouillon, "Hydrocarbons and oxidized organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafic-hosted vents," Chemical Geology, vol. 258, no. 3-4, pp. 299-314, 2009.

[28] S. Q. Lang, D. A. Butterfield, M. Schulte, D. S. Kelley, and M. D. Lilley, "Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field," Geochimica et Cosmochimica Acta, vol. 74, no. 3, pp. 941-952, 2010.

[29] J. M. McDermott, J. S. Seewald, C. R. German, and S. P. Sylva, "Pathways for abiotic organic synthesis at submarine hydrothermal fields," Proceedings of the National Acadamy of Sciences of the United States of America, vol. 112, no. 25, pp. 7668-7672, 2015.

[30] E. P. Reeves, J. M. McDermott, and J. S. Seewald, "The origin of methanethiol in midocean ridge hydrothermal fluids," Proceedings of the National Acadamy of Sciences of the United States of America, vol. 111, no. 15, pp. 5474-5479, 2014.

[31] E. Shock and P. Canovas, "The potential for abiotic organic synthesis and biosynthesis at seafloor hydrothermal systems," in GEOFLUIDS, pp. 161-192, Blackwell Publishing Ltd, Hoboken, New Jersey, USA, 2010.

[32] E. L. Shock, "Geochemical constraints on the origin of organic compounds in hydrothermal systems," Origins of Life and Evolution of Biospheres, vol. 20, no. 3-4, pp. 331-367, 1990.

[33] E. L. Shock, "Chapter 5 Chemical environments of submarine hydrothermal systems," Origins of Life and Evolution of Biospheres, vol. 22, no. 1-4, pp. 67-107, 1992.

[34] T. M. McCollom, "Laboratory simulations of abiotic hydrocarbon formation in earth's deep subsurface," Reviews in Mineralogy and Geochemistry, vol. 75, pp. 467-494, 2013.

[35] T. M. McCollom and J. S. Seewald, "Abiotic synthesis of organic compounds in deep-sea hydrothermal environments," Chemical Reviews, vol. 107, no. 2, pp. 382-401, 2007

[36] T. M. McCollom, J. S. Seewald, and C. R. German, "Investigation of extractable organic compounds in deep-sea hydrothermal vent fluids along the Mid-Atlantic Ridge," Geochimica et Cosmochimica Acta, vol. 156, pp. 122-144, 2015.

[37] C. Konn, J.-L. Charlou, J.-P. Donval, and N. G. Holm, "Characterisation of dissolved organic compounds in hydrothermal fluids by stir bar sorptive extraction--gas chomatography mass spectrometry. Case study: The Rainbow field (36[degrees]N, Mid-Atlantic Ridge)," Geochemical Transactions, vol. 13, article no. 8, 2012.

[38] B. Pelletier, Y. Lagabrielle, M. Benoit et al., "Newly identified segments of the Pacific-Australia plate boundary along the North Fiji transform zone," Earth and Planetary Science Letters, vol. 193, no. 3-4, pp. 347-358, 2001.

[39] Y. Fouquet, E. Pelleter, C. Konn et al., "Volcanic and hydrothermal processes in submarine calderas: the Kulo Lasi example (SW Pacific," Ore Geology Reviews, 2017, In Revision.

[40] K. L. Von Damm, J. M. Edmond, B. Grant, C. I. Measures, B. Walden, and R. F. Weiss, "Chemistry of submarine hydrothermal solutions at 21 [degrees]N, East Pacific Rise," Geochimica et Cosmochimica Acta, vol. 49, no. 11, pp. 2197-2220, 1985.

[41] J.-L. Charlou and J.-P. Donval, "Hydrothermal methane venting between 12[degrees]N and 26[degrees]N along the Mid-Atlantic Ridge," Journal of Geophysical Research: Atmospheres, vol. 98, no. 6, pp. 9625-9642, 1993.

[42] K. Grasshoff, "A simultaneous multiple channel system for nutrient analysis in seawater with analog and digital data record," in Advances in Automated Analysis, pp. 135-145, Mediad Inc, New York, NY, USA, 1970.

[43] J. B. Mullin and J. P. Riley, "The colorimetric determination of silicate with special reference to sea and natural waters," Analytica Chimica Acta, vol. 12, no. C, pp. 162-176, 1955.

[44] E. Baltussen, P. Sandra, F. David, and C. Cramers, "Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: theory and principles," Journal of Microcolumn Separations, vol. 11, no. 10, pp. 737-747, 1999.

[45] C. R. German and K. L. Von Damm, "Hydrothermal Processes," Treatise on Geochemistry, vol. 6-9, pp. 181-222, 2004.

[46] K. L. Von Damm, J. L. Bischoff, and R. J. Rosenbauer, "Quartz solubility in hydrothermal seawater: an experimental study and equation describing quartz solubility for up to 0.5 M NaCl solutions," American Journal of Science, vol. 291, no. 10, pp. 977-1007, 1991.

[47] J. L. Bischoff and R. J. Rosenbauer, "The critical point and two-phase boundary of seawater, 200-500[degrees]C," Earth and Planetary Science Letters, vol. 68, no. 1, pp. 172-180, 1984.

[48] K. L. Von Damm, "Seafloor hydrothermal activity: black smoker chemistry and chimneys," Annual Review of Earth & Planetary Sciences, vol. 18, pp. 173-204, 1990.

[49] J. L. Bischoff and R. J. Rosenbauer, "Phase separation in seafloor geothermal systems; an experimental study of the effects on metal transport," American Journal of Science, vol. 287, no. 10, pp. 953-978, 1987.

[50] Y. Mei, D. M. Sherman, W. Liu, B. Etschmann, D. Testemale, and J. Brugger, "Zinc complexation in chloride-rich hydrothermal fluids (25-600[degrees]C): A thermodynamic model derived from ab initio molecular dynamics," Geochimica et Cosmochimica Acta, vol. 150, pp. 265-284, 2015.

[51] N. J. Pester, K. Ding, and W. E. Seyfried, "Vapor-liquid partitioning of alkaline earth and transition metals in NaCl-dominated hydrothermal fluids: An experimental study from 360 to 465[degrees]C, near-critical to halite saturated conditions," Geochimica et Cosmochimica Acta, vol. 168, pp. 111-132, 2015.

[52] M. Watanabe, T. Sato, H. Inomata et al., "Chemical reactions of C1 compounds in near-critical and supercritical water," Chemical Reviews, vol. 104, no. 12, pp. 5803-5821, 2004.

[53] J. L. Bischoff and K. S. Pitzer, "Liquid-vapor relations for the system NaCl-H2O: summary of the P-T- x surface from 300[degrees] to 500[degrees] C," American Journal of Science, vol. 289, no. 3, pp. 217-248, 1989.

[54] D. I. Foustoukos and W. E. Seyfried Jr., "Quartz solubility in the two-phase and critical region of the NaCl-KCl-H2O system: Implications for submarine hydrothermal vent systems at 9[degrees]50/N East Pacific Rise," Geochimica et Cosmochimica Acta, vol. 71, no. 1, pp. 186-201, 2007

[55] S. D. Scott, "Chapter 16: Submarine hydrthermal systems and deposits," in Geochemistry of Hydrothermal Ore Deposits, H. L. Barnes, Ed., pp. 797-876, 3rd edition, 1997

[56] M. J. Mottl, J. S. Seewald, C. G. Wheat et al., "Chemistry of hot springs along the Eastern Lau Spreading Center," Geochimica et Cosmochimica Acta, vol. 75, no. 4, pp. 1013-1038, 2011.

[57] T. Gamo, K. Okamura, J.-L. Charlou et al., "Acidic sulfate-rich hydrothermal fluids from the Manus back-arc basin, Papua New Guinea," Geology, vol. 25, no. 2, pp. 139-142, 1997

[58] D. A. Butterfield, K.-I. Nakamura, B. Takano et al., "High SO2 flux, sulfur accumulation, and gas fractionation at an erupting submarine volcano," Geology, vol. 39, no. 9, pp. 803-806, 2011.

[59] C. E. J. de Ronde, G. J. Massoth, D. A. Butterfield et al., "Submarine hydrothermal activity and gold-rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand," Mineralium Deposita, vol. 46, no. 5, pp. 541-584, 2011.

[60] C. E. J. de Ronde and V. K. Stucker, "Chapter 47--Seafloor hydrothermal venting at volcanic arcs and backarcs A2," in The Encyclopedia of Volcanoes, Haraldur Sigurdsson, Ed., pp. 823-849, Academic Press, Amsterdam, Netherlands, 2nd edition, 2015.

[61] F. J. Sansone, J. A. Resing, G. W. Tribble, P. N. Sedwick, K. M. Kelly, and K. Hon, "Lava-seawater interactions at shallow-water submarine lava flows," Geophysical Research Letters, vol. 18, no. 9, pp. 1731-1734, 1991.

[62] M. J. Mottl, H. D. Holland, and R. F. Corr, "Chemical exchange during hydrothermal alteration of basalt by seawater-II. Experimental results for Fe, Mn, and sulfur species," Geochimica et Cosmochimica Acta, vol. 43, no. 6, pp. 869-884, 1979.

[63] W. E. Seyfried, N. Pester, and Q. Fu, "Phase Equilibria Controls on the Chemistry of Vent Fluids from Hydrothermal Systems on Slow Spreading Ridges: Reactivity Of Plagioclase and Olivine Solid Solutions and the pH-Silica Connection," Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges, pp. 297-320, 2013.

[64] P. Jean-Baptiste, J. L. Charlou, M. Stievenard, J. P. Donval, H. Bougault, and C. Mevel, "Helium and methane measurements in hydrothermal fluids from the mid-Atlantic ridge: The Snake Pit site at 23[degrees]N," Earth and Planetary Science Letters, vol. 106, no. 1-4, pp. 17-28, 1991.

[65] P. Jean-Baptiste, E. Fourre, J.-L. Charlou, C. R. German, and J. Radford-Knoery, "Helium isotopes at the Rainbow hydrothermal site (Mid-Atlantic Ridge, 36[degrees]14/N)," Earth and Planetary Science Letters, vol. 221, no. 1-4, pp. 325-335, 2004.

[66] J. Lupton, K. H. Rubin, R. Arculus et al., "Helium isotope, C/3He, and Ba-Nb-Ti signatures in the northern Lau Basin: Distinguishing arc, back-arc, and hotspot affinities," Geochemistry, Geophysics, Geosystems, vol. 16, no. 4, pp. 1133-1155, 2015.

[67] G. P. Glasby, "Abiogenic origin of hydrocarbons: An historical overview," Resource Geology, vol. 56, no. 1, pp. 83-96, 2006.

[68] V. G. Kutcherov and V A. Krayushkin, "Deep-seated abiogenic origin of petroleum: From geological assessment to physical theory," Reviews of Geophysics, vol. 48, no. 1, Article ID RG1001, 2010.

[69] G. Proskurowski, M. D. Lilley, J. S. Seewald et al., "Abiogenic hydrocarbon production at lost city hydrothermal field," Science, vol. 319, no. 5863, pp. 604-607, 2008.

[70] B. Sherwood Lollar, T. D. Westgate, J. A. Ward, G. F. Slater, and G. Lacrampe-Couloume, "Abiogenic formation of alkanes in the earth's crust as a minor source for global hydrocarbon reservoirs," Nature, vol. 416, no. 6880, pp. 522-524, 2002.

[71] S. Sherwood Lollar, G. Lacrampe-Couloume, K. Voglesonger, T. C. Onstott, L. M. Pratt, and G. F. Slater, "Isotopic signatures of CH4 and higher hydrocarbon gases from Precambrian Shield sites: A model for abiogenic polymerization of hydrocarbons," Geochimica et Cosmochimica Acta, vol. 72, no. 19, pp. 4778-4795, 2008.

[72] G. Etiope, S. Vance, L. E. Christensen, J. M. Marques, and I. Ribeiro da Costa, "Methane in serpentinized ultramafic rocks in mainland Portugal," Marine and Petroleum Geology, vol. 45, pp. 12-16, 2013.

[73] M. J. Whiticar, "Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane," Chemical Geology, vol. 161, no. 1, pp. 291-314, 1999.

[74] C. Konn, J. L. Charlou, N. G. Holm, and O. Mousis, "The production of methane, hydrogen, and organic compounds in ultramafic-hosted hydrothermal vents of the mid-atlantic ridge," Astrobiology, vol. 15, no. 5, pp. 381-399, 2015.

[75] O. E. Kawka and B. R. T. Simoneit, "Polycyclic aromatic hydrocarbons in hydrothermal petroleums from the Guaymas Basin spreading center," Applied Geochemistry, vol. 5, no. 1-2, pp. 17-27, 1990.

[76] B. R. T. Simoneit, "Chapter 4 Aqueous organic geochemistry at high temperature/high pressure," Origins of Life and Evolution of Biospheres, vol. 22, no. 1-4, pp. 43-65, 1992.

[77] J. S. Seewald, W. E. Seyfried Jr., and E. C. Thornton, "Organic-rich sediment alteration: an experimental and theoretical study at elevated temperatures and pressures," Applied Geochemistry, vol. 5, no. 1-2, pp. 193-209, 1990.

[78] M. D. Schulte and E. L. Shock, "Aldehydes in hydrothermal solution: Standard partial molal thermodynamic properties and relative stabilities at high temperatures and pressures," Geochimica et Cosmochimica Acta, vol. 57, no. 16, pp. 3835-3846, 1993.

[79] J. S. Seewald, "Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: Constraints from mineral buffered laboratory experiments," Geochimica et Cosmochimica Acta, vol. 65, no. 10, pp. 1641-1664, 2001.

[80] B. R. T. Simoneit, W. D. Goodfellow, and J. M. Franklin, "Hydrothermal petroleum at the seafloor and organic matter alteration in sediments of Middle Valley, Northern Juan de Fuca Ridge," Applied Geochemistry, vol. 7, no. 3, pp. 257-264, 1992.

[81] O. E. Kawka and B. R. T. Simoneit, "Hydrothermal pyrolysis of organic matter in Guaymas Basin: I. Comparison of hydrocarbon distributions in subsurface sediments and seabed petroleums," Organic Geochemistry, vol. 22, no. 6, pp. 947-978, 1994.

[82] B. R. T. Simoneit, O. E. Kawka, and M. Brault, "Origin of gases and condensates in the Guaymas Basin hydrothermal system (Gulf of California)," Chemical Geology, vol. 71, no. 1-3, pp. 169-182, 1988.

[83] Y. V. Kissin, "Catagenesis and composition of petroleum: Origin of n-alkanes and isoalkanes in petroleum crudes," Geochimica et Cosmochimica Acta, vol. 51, no. 9, pp. 2445-2457, 1987

[84] T. M. McCollom and J. S. Seewald, "Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions," Earth and Planetary Science Letters, vol. 243, no. 1-2, pp. 74-84, 2006.

[85] S. C. Vishnoi, S. D. Bhagat, V. B. Kapoor, S. K. Chopra, and R. Krishna, "Simple gas chromatographic determination of the distribution of normal alkanes in the kerosene fraction of petroleum," Analyst, vol. 112, no. 1, pp. 49-52, 1987

[86] B. R. T. Simoneit, "Petroleum generation in submarine hydrothermal systems: an update," The Canadian Mineralogist, vol. 26, pp. 827-840, 1988.

[87] J. B. Rapp, "A statistical approach to the interpretation of aliphatic hydrocarbon distributions in marine sediments," Chemical Geology, vol. 93, no. 1-2, pp. 163-177, 1991.

[88] N. Akiya and P. E. Savage, "Roles of water for chemical reactions in high-temperature water," Chemical Reviews, vol. 102, no. 8, pp. 2725-2750, 2002.

[89] S. Deguchi and K. Tsujii, "Supercritical water: A fascinating medium for soft matter," Soft Matter, vol. 3, no. 7, pp. 797-803, 2007

[90] J. P. Ferris, "Chapter 6 Chemical markers of prebiotic chemistry in hydrothermal systems," Origins of Life and Evolution of Biospheres, vol. 22, no. 1-4, pp. 109-134, 1992.

[91] D. I. Foustoukos and J. C. Stern, "Oxidation pathways for formic acid under low temperature hydrothermal conditions: Implications for the chemical and isotopic evolution of organics on Mars," Geochimica et Cosmochimica Acta, vol. 76, pp. 14-28, 2012.

[92] T. M. McCollom and J. S. Seewald, "Experimental constraints on the hydrothermal reactivity of organic acids and acid anions: I. Formic acid and formate," Geochimica et Cosmochimica Acta, vol. 67, no. 19, pp. 3625-3644, 2003.

[93] T. M. McCollom and J. S. Seewald, "Experimental study of the hydrothermal reactivity of organic acids and acid anions: II. Acetic acid, acetate, and valeric acid," Geochimica et Cosmochimica Acta, vol. 67, no. 19, pp. 3645-3664, 2003.

[94] D. E. Ingmanson and M. J. Dowler, "Chemical evolution and the evolution of the Earth's crust," Origins of Life, vol. 8, no. 3, pp. 221-224, 1977

[95] N. G. Holm and J. L. Charlou, "Initial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system, Mid-Atlantic Ridge," Earth and Planetary Science Letters, vol. 191, no. 1-2, pp. 1-8, 2001.

[96] P. E. Rossel, A. Stubbins, T. Rebling, A. Koschinsky, J. A. Hawkes, and T. Dittmar, "Thermally altered marine dissolved organic matter in hydrothermal fluids," Organic Geochemistry, vol. 110, pp. 73-86, 2017

[97] J. G. Ferry, "The chemical biology of methanogenesis," Planetary and Space Science, vol. 58, no. 14-15, pp. 1775-1783, 2010.

[98] Y. J. Kim, H. S. Lee, E. S. Kim et al., "Formate-driven growth coupled with H2 production," Nature, vol. 467, no. 7313, pp. 352-355, 2010.

[99] S. Q. Lang, G. L. Fruh-Green, S. M. Bernasconi et al., "Microbial utilization of abiogenic carbon and hydrogen in a serpentinite-hosted system," Geochimica et Cosmochimica Acta, vol. 92, pp. 82-99, 2012.

[100] T. Windman, N. Zolotova, F. Schwandner, and E. L. Shock, "Formate as an energy source for microbial metabolism in chemosynthetic zones of hydrothermal ecosystems," Astrobiology, vol. 7, no. 6, pp. 873-890, 2007

[101] A. Galushko, D. Minz, B. Schink, and F. Widdel, "Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium," Environmental Microbiology, vol. 1, pp. 415-420, 1999.

[102] S. A. Bennett, C. V. Dover, J. A. Breier, and M. Coleman, "Effect of depth and vent fluid composition on the carbon sources at two neighboring deep-sea hydrothermal vent fields (Mid-Cayman Rise)," Deep-Sea Research Part I: Oceanographic Research Papers, vol. 104, pp. 122-133, 2015.

[103] S. A. Bennett, E. P. Achterberg, D. P. Connelly, P J. Statham, G. R. Fones, and C. R. German, "The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes," Earth and Planetary Science Letters, vol. 270, no. 3-4, pp. 157-167, 2008.

[104] P. F. Greenwood, J. J. Brocks, K. Grice et al., "Organic geochemistry and mineralogy. I. Characterisation of organic matter associated with metal deposits," Ore Geology Reviews, vol. 50, pp. 1-27, 2013.

[105] W. Liu, D. C. McPhail, and J. Brugger, "An experimental study of copper(I)-chloride and copper(I)-acetate complexing in hydrothermal solutions between 50[degrees]C and 250[degrees] and vapor-saturated pressure," Geochimica et Cosmochimica Acta, vol. 65, no. 17, pp. 2937-2948, 2001.

[106] D. A. Palmer and K. E. Hyde, "An experimental determination of ferrous chloride and acetate complexation in aqueous solutions to 300[degrees]C," Geochimica et Cosmochimica Acta, vol. 57, no. 7, pp. 1393-1408, 1993.

[107] S. P. Franklin, A. Hajash Jr., T. A. Dewers, and T. T. Tieh, "The role of carboxylic acids in albite and quartz dissolution: An experimental study under diagenetic conditions," Geochimica et Cosmochimica Acta, vol. 58, no. 20, pp. 4259-4279, 1994.

[108] H. G. Machel, H. R. Krouse, and R. Sassen, "Products and distinguishing criteria of bacterial and thermochemical sulfate reduction," Applied Geochemistry, vol. 10, no. 4, pp. 373-389, 1995.

[109] B. R. T. Simoneit, M. Brault, and A. Saliot, "Hydrocarbons associated with hydrothermal minerals, vent waters and talus on the East Pacific Rise and Mid-Atlantic Ridge," Applied Geochemistry, vol. 5, no. 1-2, pp. 115-124, 1990.

[110] J. A. Resing, P N. Sedwick, C. R. German et al., "Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean," Nature, vol. 523, no. 7559, pp. 200-203, 2015.

[111] S. Roshan and J. Wu, "The distribution of dissolved copper in the tropical-subtropical north Atlantic across the GEOTRACES GA03 transect," Marine Chemistry, vol. 176, pp. 189-198, 2015.

[112] A. Tagliabue, L. Bopp, J.-C. Dutay et al., "Hydrothermal contribution to the oceanic dissolved iron inventory," Nature Geoscience, vol. 3, no. 4, pp. 252-256, 2010.

[113] J. Wu, S. Roshan, and G. Chen, "The distribution of dissolved manganese in the tropical-subtropical North Atlantic during US GEOTRACES 2010 and 2011 cruises," Marine Chemistry, vol. 166, pp. 9-24, 2014.

[114] J. E. Lupton, R. J. Arculus, J. Resing et al., "Hydrothermal activity in the Northwest Lau Backarc Basin: Evidence from water column measurements," Geochemistry, Geophysics, Geosystems, vol. 13, no. 1, Article ID Q0AF04, 2012.

[115] H. Elderfield and A. Schultz, "Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean," Annual Review of Earth and Planetary Sciences, vol. 24, pp. 191-224, 1996.

[116] C. R. German, A. M. Thurnherr, J. Knoery, J.-L. Charlou, P. Jean-Baptiste, and H. N. Edmonds, "Heat, volume and chemical fluxes from submarine venting: A synthesis of results from the Rainbow hydrothermal field, 36[degrees]N MAR," Deep-Sea Research Part I: Oceanographic Research Papers, vol. 57, no. 4, pp. 518-527, 2010.

[117] E. Mittelstaedt, J. Escartin, N. Gracias et al., "Quantifying diffuse and discrete venting at the Tour Eiffel vent site, Lucky Strike hydrothermal field," Geochemistry, Geophysics, Geosystems, vol. 13, no. 4, Article ID Q04008, 2012.

[118] J. Sarrazin, P Rodier, M. K. Tivey, H. Singh, A. Schultz, and P. M. Sarradin, "A dual sensor device to estimate fluid flow velocity at diffuse hydrothermal vents," Deep-Sea Research Part I: Oceanographic Research Papers, vol. 56, no. 11, pp. 2065-2074, 2009.

[119] K. G. Speer and J. Marshall, "The growth of convective plumes at seafloor hot springs," Journal of Marine Research, vol. 53, no. 6, pp. 1025-1057, 1995.

[120] M. Visbeck, J. Marshall, and H. Jones, "Dynamics of isolated convective regions in the ocean," Journal of Physical Oceanography, vol. 26, no. 9, pp. 1721-1734, 1996.

[121] J. A. Whitehead, J. Marshall, and G. E. Hufford, "Localized convection in rotating stratified fluid," Journal of Geophysical Research: Oceans, vol. 101, no. 11, pp. 25705-25721, 1996.

[122] D. R. Jackett and T. J. Mcdougall, "Minimal Adjustment of Hydrographic Profiles to Achieve Static Stability," Journal of Atmospheric and Oceanic Technology, vol. 12, pp. 381-389, 1995.

[123] P Derian, C. F. Mauzey, and S. D. Mayor, "Wavelet-based optical flow for two-component wind field estimation from single aerosol lidar data," Journal of Atmospheric and Oceanic Technology, vol. 32, no. 10, pp. 1759-1778, 2015.

[124] G. Carazzo, A. M. Jellinek, and A. V. Turchyn, "The remarkable longevity of submarine plumes: Implications for the hydrothermal input of iron to the deep-ocean," Earth and Planetary Science Letters, vol. 382, pp. 66-76, 2013.

[125] I. Bauer and H.-J. Knolker, "Iron Complexes in Organic Chemistry," Iron Catalysis in Organic Chemistry: Reactions and Applications, pp. 1-27, 2008.

[126] E. T. Baker, G. J. Massoth, S. L. Walker, and R. W. Embley, "A method for quantitatively estimating diffuse and discrete hydrothermal discharge," Earth and Planetary Science Letters, vol. 118, no. 1-4, pp. 235-249, 1993.

[127] P Ramondenc, L. N. Germanovich, K. L. Von Damm, and R. P Lowell, "The first measurements of hydrothermal heat output at 9[degrees]50/N, East Pacific Rise," Earth and Planetary Science Letters, vol. 245, no. 3-4, pp. 487-497, 2006.

[128] P Jean-Baptiste, H. Bougault, A. Vangriesheim et al., "Mantle 3He in hydrothermal vents and plume of the Lucky Strike site (MAR 37[degrees]17 /N) and associated geothermal heat flux," Earth and Planetary Science Letters, vol. 157, no. 1-2, pp. 69-77, 1998.

[129] A. Schultz and H. Elderfield, "Controls on the physics and chemistry of seafloor hydrothermal circulation," Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 355, no. 1723, pp. 387-425, 1997

[130] C. A. Stein and S. Stein, "Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow," Journal of Geophysical Research: Atmospheres, vol. 99, no. 2, pp. 3081-3095, 1994.

[131] E. T. Baker, J. A. Resing, R. M. Haymon et al., "How many vent fields? New estimates of vent field populations on ocean ridges from precise mapping of hydrothermal discharge locations," Earth and Planetary Science Letters, vol. 449, pp. 186-196, 2016.

[132] D. A. Stolper, A. M. Martini, M. Clog et al., "Distinguishing and understanding thermogenic and biogenic sources of methane using multiply substituted isotopologues," Geochimica et Cosmochimica Acta, vol. 161, pp. 219-247, 2015.

[133] A. Gilbert, K. Yamada, K. Suda, Y. Ueno, and N. Yoshida, "Measurement of position-specific 13C isotopic composition of propane at the nanomole level," Geochimica et Cosmochimica Acta, vol. 177, pp. 205-216, 2016.

[134] S. Kawagucci, Y. Ueno, K. Takai et al., "Geochemical origin of hydrothermal fluid methane in sediment-associated fields and its relevance to the geographical distribution of whole hydrothermal circulation," Chemical Geology, vol. 339, pp. 213-225, 2013.

[135] M. Blumenberg, R. Seifert, S. Petersen, and W. Michaelis, "Biosignatures present in a hydrothermal massive sulfide from the Mid-Atlantic Ridge," Geobiology, vol. 5, no. 4, pp. 435-450, 2007.

[136] J. E. Cooper and E. E. Bray, "A postulated role of fatty acids in petroleum formation," Geochimica et Cosmochimica Acta, vol. 27, no. 11, pp. 1113-1127, 1963.

[137] F. Ben-Mlih, J.-C. Marty, and A. Fiala-Medioni, "Fatty acid composition in deep hydrothermal vent symbiotic bivalves," Journal of Lipid Research, vol. 33, no. 12, pp. 1797-1806, 1992.

C. Konn (iD), (1) J. P. Donval, (1) V. Guyader, (1) E. Roussel, (2) E. Fourre, (3) P. Jean-Baptiste, (3) E. Pelleter, (1) J. L. Charlou, (1) and Y. Fouquet (1)

(1) Ifremer, Laboratoire des Cycles Geochimiques et Ressources, CS10070, 29280 Plouzane, France

(2) Ifremer, Laboratoire de Microbiologie des Environnements Extremes, CS10070, 29280 Plouzane, France

(3) LSCE, UMR 8212 CEA-CNRS-UVSQ, 91191 Gif-sur-Yvette, France

Correspondence should be addressed to C. Konn; cecile.konn@ifremer.fr

Received 23 June 2017; Revised 31 October 2017; Accepted 17 December 2017; Published 11 March 2018

Academic Editor: Xing Ding

Caption: Figure 1: Bathymetric map of the study area. Close-ups of Fatu Kapa and Kulo Lasi are shown in boxes where sample positions are marked with red disks. Copyrights from Ifremer, FUTUNA 1, 2, and 3 cruises.

Caption: Figure 2: Photographs of sulphide chimneys and young lava flows observed on the floor of the Kulo Lasi caldera. Copyrights from Ifremer, FUTUNA 1 cruise.

Caption: Figure 3: (a) and (b) Photographs of anhydrite structures observed at Stephanie, Carla, [Idef.sup.X], [Aster.sup.X], and [Obel.sup.X] site. (c) Photographs of grey smokers associated with sulphides structures observed at Fati Ufu and Tutafi. Copyrights from Ifremer, FUTUNA 3 cruise.

Caption: Figure 4: Mixing lines of formate and acetate versus Mg for the Kulo Lasi fluids. Note that the reference deep-sea water sample (FU-PL05-TiG2 noted as SW here) was taken at 1150 m depth above the southern wall of the caldera (see Figure 1 for location and Table 3) and thus very likely within the plume [7]. This would account for the unusual concentrations of formate and acetate detected.

Caption: Figure 5: Distribution of n-alkanes, n-fatty acids, mono-, and polyaromatic hydrocarbons (BTEX and PAH) in the purest fluids of the Stephanie, Carla, [Idef.sup.X], Fati Ufu, and Tutafi sites collected within the Fatu Kapa vent field. Because organic geochemistry does not seem to follow a simple mixing model, endmember concentrations cannot be calculated. To that respect composition of the purest fluids is presented and assumed to be close to endmembers composition. Note that quantitative results are not available for the Kulo Lasi fluids (see Figure 6 for chromato grams).

Caption: Figure 6: Only qualitative results could be obtained at Kulo Lasi. This figure presents a selection of representative chromatograms obtained for the Kulo Lasi fluid samples. For the sake of clarity, close-ups of a few peaks are shown to illustrate the enrichment of fluids (FU-PL06-TiG1 in red and FU-PL06-TiD3 in green) versus the reference deep-sea water (FU-PL05-TiG2 in blue).

Caption: Figure 7: Modified after Etiope and Sherwood Lollar [9]. The isotopic composition of C[H.sub.4] in the Fatu Kapa fluids falls into the abiotic gas category but differs from the typical isotopic signature of C[H.sub.4] at Mid-Atlantic Ridge's vent fields.
Table 1: Main GC analytical parameters used for calibration and
analyses of hydrothermal fluid samples. Each group of compounds
(n-alkanes, BTEXs, PAHs, and n-fatty acids) was analysed using
separate twisters.

                                           n-Alkanes
Oven
Initial T ([degrees]C)                         40
Initial t (min)                                1
ramp                        40 to 320[degrees]C at 12[degrees]C/min
Final T ([degrees] C)                         320
Final t (min)                                  2
Injector
T ([degrees]C)                                250

                                          BTEX & PAHs
Oven
Initial T ([degrees]C)                         40
Initial t (min)                                1
ramp                        40 to 320[degrees]C at 12[degrees]C/min
Final T ([degrees] C)                         320
Final t (min)                                  2
Injector
T ([degrees]C)                                250

                                         n-Fatty acids
Oven
Initial T ([degrees]C)                         40
Initial t (min)                                1
ramp                        40 to 320[degrees]C at 20[degrees]C/min
Final T ([degrees] C)                         320
Final t (min)                                  2
Injector
T ([degrees]C)                                325

Table 2: Experimental conditions used for calibration curves. Linear
regressions were performed on one order of magnitude concentration
domain depending on the concentration range of the samples.

                                n-Alkanes

Concentration levels         0.5, 1, 2, 5, 10
([micro]g x [L.sup.-1])
IS concentration                    5
([micro]g x [L.sup.-1])

                                       BTEX & PAHs

Concentration levels         0.05, 0.1, 0.25, 0.5,1, 2, 5,10
([micro]g x [L.sup.-1])
IS concentration                            5
([micro]g x [L.sup.-1])

                                  n-Fatty acids

Concentration levels         0.25, 0.5, 1, 2, 5, 10
([micro]g x [L.sup.-1])
IS concentration                       10
([micro]g x [L.sup.-1])

Table 3: Measured concentration of major and minor elements in
hydrothermal fluids from the Kulo Lasi and Fatu Kapa vent fields.
FUX-PLYY-TiDZ and FUX-PLYY-TiGZ are replicate samples taken in the same
orifice, one after the other, but using 2 individual Ti syringes.
T max (chimney) is the maximum T of the discharged fluid for the
given chimney which was recorded by the T probe of the submarine before
sampling. T max (sample) is the maximum T of the fluid entering the
sampler recorded during sampling by the autonomous sensor that was
coupled at the nozzle of the sampler.

Sample name           Zone           Site

IAPSO                  --             --
FU-PL-05-TiG2      Kulo Lasi     South (out)
FU-PL-05-TiG1      Kulo Lasi      South (in)
FU-PL-06-TiG4      Kulo Lasi      North (in)
FU-PL-06-TiD4      Kulo Lasi      North (in)
FU-PL-06-TiG3      Kulo Lasi      North (in)
FU-PL-06-TiD3      Kulo Lasi      North (in)
FU-PL-06-TiD1      Kulo Lasi      North (in)
FU-PL-06-TiG1      Kulo Lasi      North (in)
FU3-PL-03-TiD3     Fatu Kapa       20 masf
FU3-PL-14-TiG2     Fatu Kapa       23 masf
FU3-PL-04-TiD3     Fatu Kapa      Stephanie
FU3-PL-04-TiG3     Fatu Kapa      Stephanie
FU3-PL-08-TiD1     Fatu Kapa      Stephanie
FU3-PL-08-TiG1     Fatu Kapa      Stephanie
FU3-PL-08-TiD2     Fatu Kapa      Stephanie
FU3-PL-09-TiD2     Fatu Kapa      Stephanie
FU3-PL-09-TiG2     Fatu Kapa      Stephanie
FU3-PL-06-TiD1     Fatu Kapa        Carla
FU3-PL-06-TiG1     Fatu Kapa        Carla
FU3-PL-08-TiD3     Fatu Kapa        Carla
FU3-PL-08-TiG3     Fatu Kapa        Carla
FU3-PL-11-TiD3     Fatu Kapa     [Idef.sup.X]
FU3-PL-11-TiG3     Fatu Kapa     [Idef.sup.X]
FU3-PL-14-TiD1     Fatu Kapa     [Idef.sup.X]
FU3-PL-14-TiG1     Fatu Kapa     [Idef.sup.X]
FU3-PL-14-TiD2     Fatu Kapa     [Obel.sup.X]
FU3-PL-14-TiD3     Fatu Kapa     [Obel.sup.X]
FU3-PL-14-TiG3     Fatu Kapa     [Obel.sup.X]
FU3-PL-18-TiD1     Fatu Kapa    [Aster.sup.X]
FU3-PL-17-TiD2     Fatu Kapa       Fati Ufu
FU3-PL-17-TiG2     Fatu Kapa       Fati Ufu
FU3-PL-21-TiD1     Fatu Kapa       Fati Ufu
FU3-PL-21-TiG1     Fatu Kapa       Fati Ufu
FU3-PL-21-TiD2     Fatu Kapa       Fati Ufu
FU3-PL-21-TiG2     Fatu Kapa       Fati Ufu
FU3-PL-20-TiD1     Fatu Kapa        Tutafi
FU3-PL-20-TiG1     Fatu Kapa        Tutafi
FU3-PL-21-TiD3     Fatu Kapa        Tutafi
FU3-PL-21-TiG3     Fatu Kapa        Tutafi

                                                             Tmax
                                                           (sample)
Sample name                Description            Depth   [degrees]C

IAPSO                    Standard, water           --         --
FU-PL-05-TiG2            Reference water          1150        --
FU-PL-05-TiG1       Diffuse fluid above worms     1414       32.8
FU-PL-06-TiG4       Beehive type black smoker     1475       134.1
FU-PL-06-TiD4       Beehive type black smoker     1475        136
FU-PL-06-TiG3           Translucent smoker        1475       342.3
FU-PL-06-TiD3           Translucent smoker        1475       337.7
FU-PL-06-TiD1              Black smoker           1475       343.2
FU-PL-06-TiG1              Black smoker           1475       343.2
FU3-PL-03-TiD3           Reference water          1488        --
FU3-PL-14-TiG2           Reference water          1572         2
FU3-PL-04-TiD3          Translucent smoker        1554        213
FU3-PL-04-TiG3          Translucent smoker        1554        213
FU3-PL-08-TiD1          Translucent smoker        1555        289
FU3-PL-08-TiG1          Translucent smoker        1555        289
FU3-PL-08-TiD2          Translucent smoker        1555        291
FU3-PL-09-TiD2         Beehive type black         1650        197
                      smoker + bacterial mat
FU3-PL-09-TiG2         Beehive type black         1559        197
                      smoker + bacterial mat
FU3-PL-06-TiD1          Translucent smoker        1663        278
FU3-PL-06-TiG1          Translucent smoker        1663        278
FU3-PL-08-TiD3          Translucent smoker        1664        281
FU3-PL-08-TiG3          Translucent smoker        1664        281
FU3-PL-11-TiD3          Translucent smoker        1573        259
FU3-PL-11-TiG3          Translucent smoker        1573        259
FU3-PL-14-TiD1          Translucent smoker        1572        271
FU3-PL-14-TiG1          Translucent smoker        1572        271
FU3-PL-14-TiD2          Translucent smoker        1669        272
FU3-PL-14-TiD3          Translucent smoker        1636        287
FU3-PL-14-TiG3          Translucent smoker        1636        287
FU3-PL-18-TiD1          Translucent smoker        1540        265
FU3-PL-17-TiD2             Grey smoker            1522        299
FU3-PL-17-TiG2             Grey smoker            1522        299
FU3-PL-21-TiD1             Grey smoker            1523        302
FU3-PL-21-TiG1             Grey smoker            1523        302
FU3-PL-21-TiD2             White smoker           1503        --
FU3-PL-21-TiG2             White smoker           1503        --
FU3-PL-20-TiD1             Grey smoker            1580        316
FU3-PL-20-TiG1             Grey smoker            1580        316
FU3-PL-21-TiD3             White smoker           1626        293
FU3-PL-21-TiG3             White smoker           1626        293

                      Tmax               [d.sup.20]
                   (chimney)                 Kg
Sample name        [degrees]C     pH      [m.sup.-3]

IAPSO                  --         --
FU-PL-05-TiG2          --         --        1.023
FU-PL-05-TiG1          --        5.96       1.023
FU-PL-06-TiG4          332       6.07       1.022
FU-PL-06-TiD4          332       5.58       1.021
FU-PL-06-TiG3         330.7      2.24       1.017
FU-PL-06-TiD3         330.7      2.37       1.018
FU-PL-06-TiD1         345.1      2.36        1.02
FU-PL-06-TiG1         345.1      3.32       1.028
FU3-PL-03-TiD3         --         --          --
FU3-PL-14-TiG2         --         --          --
FU3-PL-04-TiD3         279       4.65        1.03
FU3-PL-04-TiG3         279       4.64        1.03
FU3-PL-08-TiD1         280         4        1.031
FU3-PL-08-TiG1         280       3.41       1.031
FU3-PL-08-TiD2         280       3.83       1.031
FU3-PL-09-TiD2         236       5.19       1.026
FU3-PL-09-TiG2         236       5.42       1.025
FU3-PL-06-TiD1         270       5.03       1.024
FU3-PL-06-TiG1         270       4.91       1.024
FU3-PL-08-TiD3         281       2.78       1.024
FU3-PL-08-TiG3         281       4.17       1.024
FU3-PL-11-TiD3         258        4.9       1.025
FU3-PL-11-TiG3         258       4.43       1.025
FU3-PL-14-TiD1         271       3.73       1.025
FU3-PL-14-TiG1         271       3.97       1.025
FU3-PL-14-TiD2         --        4.59        1.03
FU3-PL-14-TiD3         --        4.28        1.03
FU3-PL-14-TiG3         --        5.37       1.028
FU3-PL-18-TiD1         260       4.35       1.027
FU3-PL-17-TiD2         303       4.26       1.031
FU3-PL-17-TiG2         303       4.22       1.031
FU3-PL-21-TiD1         301       3.81       1.032
FU3-PL-21-TiG1         301       4.69        1.03
FU3-PL-21-TiD2         284       3.27       1.028
FU3-PL-21-TiG2         284       4.22       1.026
FU3-PL-20-TiD1         317        4.1       1.029
FU3-PL-20-TiG1         317       4.14       1.029
FU3-PL-21-TiD3         294       2.92       1.028
FU3-PL-21-TiG3         294       3.65       1.027

                         S            NaCl       Cl        Si
Sample name        [per thousand]     (wt%)      mM        mM

IAPSO                    35            3.2       546       0.0
FU-PL-05-TiG2            35            3.2       551       0.1
FU-PL-05-TiG1            35            3.2       549       0.2
FU-PL-06-TiG4            33            3.0       516       1.0
FU-PL-06-TiD4            31            2.8       485       2.1
FU-PL-06-TiG3            32            2.9       497       8.2
FU-PL-06-TiD3            33            3.0       517       8.4
FU-PL-06-TiD1            47            4.3       735      14.6
FU-PL-06-TiG1            44            4.0       689      10.8
FU3-PL-03-TiD3           --            3.3       565       0.0
FU3-PL-14-TiG2           36            3.3       557       0.0
FU3-PL-04-TiD3           45            4.1       704       0.7
FU3-PL-04-TiG3           44            4.0       686       1.0
FU3-PL-08-TiD1           49            4.5       770       3.8
FU3-PL-08-TiG1           49            4.5       772       4.7
FU3-PL-08-TiD2           48            4.4       748       4.3
FU3-PL-09-TiD2           40            3.7       629       1.7
FU3-PL-09-TiG2           38            3.5       600       1.0
FU3-PL-06-TiD1           37            3.4       576       1.7
FU3-PL-06-TiG1           37            3.4       579       0.7
FU3-PL-08-TiD3           38            3.5       594       4.5
FU3-PL-08-TiG3           38            3.5       592       4.0
FU3-PL-11-TiD3           41            3.7       637       1.4
FU3-PL-11-TiG3           43            3.9       664       4.1
FU3-PL-14-TiD1           43            3.9       665       4.2
FU3-PL-14-TiG1           42            3.9       661       4.1
FU3-PL-14-TiD2           49            4.5       769       4.5
FU3-PL-14-TiD3           47            4.3       729       3.7
FU3-PL-14-TiG3           43            3.9       672       2.5
FU3-PL-18-TiD1           44            4.1       693       3.7
FU3-PL-17-TiD2           47            4.3       739       3.3
FU3-PL-17-TiG2           48            4.4       748       3.5
FU3-PL-21-TiD1           50            4.6       784       4.7
FU3-PL-21-TiG1           45            4.1       708       2.7
FU3-PL-21-TiD2           44            4.1       694       4.9
FU3-PL-21-TiG2           42            3.9       661       3.9
FU3-PL-20-TiD1           46            4.2       720       2.6
FU3-PL-20-TiG1           46            4.2       723       2.3
FU3-PL-21-TiD3           45            4.1       701       5.1
FU3-PL-21-TiG3           45            4.1       700       5.0

                   S[O.sub.4]        Br        Na        K
Sample name             mM        [micro]M     mM        mM

IAPSO                  28.2          839       468      10.2
FU-PL-05-TiG2          29.0          833       457      9.8
FU-PL-05-TiG1          29.3          833       457      9.9
FU-PL-06-TiG4          27.0          822       448      10.6
FU-PL-06-TiD4          23.9          994       406      9.5
FU-PL-06-TiG3          8.8           738       388      18.5
FU-PL-06-TiD3          10.7          770       405      16.6
FU-PL-06-TiD1          6.2          1135       612      29.5
FU-PL-06-TiG1          12.0         1051       565      23.7
FU3-PL-03-TiD3         28.8          841       483      10.4
FU3-PL-14-TiG2         28.7          841       477      10.4
FU3-PL-04-TiD3         10.9         1300       519      39.8
FU3-PL-04-TiG3         12.9         1240       513      36.5
FU3-PL-08-TiD1         1.3          1574       535      54.2
FU3-PL-08-TiG1         0.7          1592       537      54.7
FU3-PL-08-TiD2         0.5          1537       520      52.9
FU3-PL-09-TiD2         19.8         1052       500      24.4
FU3-PL-09-TiG2         23.8          959       489      18.5
FU3-PL-06-TiD1         18.5          927       482      28.5
FU3-PL-06-TiG1         12.7          984       476      37.8
FU3-PL-08-TiD3         1.1          1139       479      59.6
FU3-PL-08-TiG3         1.9          1120       477      57.7
FU3-PL-11-TiD3         8.3          1142       509      49.8
FU3-PL-11-TiG3         1.9          1268       518      63.5
FU3-PL-14-TiD1         1.1          1282       519      66.2
FU3-PL-14-TiG1         0.8          1279       515      65.7
FU3-PL-14-TiD2         0.7          1506       577      69.4
FU3-PL-14-TiD3         15.0         1283       557      58.8
FU3-PL-14-TiG3         27.0         1103       528      42.5
FU3-PL-18-TiD1         1.0          1344       533      64.9
FU3-PL-17-TiD2         9.3          1378       555      38.4
FU3-PL-17-TiG2         8.7          1402       562      39.8
FU3-PL-21-TiD1         1.4          1554       577      47.3
FU3-PL-21-TiG1         10.5         1292       544      34.7
FU3-PL-21-TiD2         0.4          1359       534      39.3
FU3-PL-21-TiG2         7.0          1217       520      32.0
FU3-PL-20-TiD1         0.6          1409       543      54.6
FU3-PL-20-TiG1         1.0          1409       543      54.7
FU3-PL-21-TiD3         0.9          1367       528      51.3
FU3-PL-21-TiG3         0.8          1371       528      51.0

                     Mg         Ca          Li          Li
Sample name           mM         mM      [micro]M    [micro]M

IAPSO                53.2       10.3        27          27
FU-PL-05-TiG2        53.2       10.6        25          28
FU-PL-05-TiG1        53.2       10.6        28          52
FU-PL-06-TiG4        49.8       10.5        33          54
FU-PL-06-TiD4        45.7       10.2        32          55
FU-PL-06-TiG3        24.6       11.6        149         156
FU-PL-06-TiD3        28.6       10.8        115         149
FU-PL-06-TiD1        26.5       10.9        238         249
FU-PL-06-TiG1        34.9       10.8        176         197
FU3-PL-03-TiD3       54.5       10.7        22          51
FU3-PL-14-TiG2       54.2       10.8        23          nm
FU3-PL-04-TiD3       18.7       69.6        472         568
FU3-PL-04-TiG3       22.5       62.8        420         504
FU3-PL-08-TiD1       0.8        98.9        705         804
FU3-PL-08-TiG1       0.5        98.7        708         807
FU3-PL-08-TiD2       0.6        95.3        684         806
FU3-PL-09-TiD2       37.4       37.8        230         293
FU3-PL-09-TiG2       44.3       26.4        143         193
FU3-PL-06-TiD1       35.2       17.9        260         310
FU3-PL-06-TiG1       23.6       22.2        391         455
FU3-PL-08-TiD3       0.4        31.5        690         746
FU3-PL-08-TiG3       2.7        30.3        655         720
FU3-PL-11-TiD3       15.5       35.0        541         612
FU3-PL-11-TiG3       2.0        44.7        733         802
FU3-PL-14-TiD1       0.8        43.4        764         823
FU3-PL-14-TiG1       0.8        42.9        757         825
FU3-PL-14-TiD2       1.3        65.5        757         nm
FU3-PL-14-TiD3       11.1       65.0        621         nm
FU3-PL-14-TiG3       25.3       54.6        415         nm
FU3-PL-18-TiD1       1.2        51.1        755         nm
FU3-PL-17-TiD2       17.6       66.6        543         nm
FU3-PL-17-TiG2       15.9       69.7        569         nm
FU3-PL-21-TiD1       1.4        86.2        717         nm
FU3-PL-21-TiG1       19.3       60.3        474         nm
FU3-PL-21-TiD2       1.0        63.3        573         nm
FU3-PL-21-TiG2       13.3       50.6        435         nm
FU3-PL-20-TiD1       0.9        65.4        628         nm
FU3-PL-20-TiG1       0.7        66.4        630         nm
FU3-PL-21-TiD3       0.3        63.9        640         nm
FU3-PL-21-TiG3       0.8        63.3        633         nm

                      Rb          Sr          Fe          Mn
Sample name        [micro]M    [micro]M    [micro]M    [micro]M

IAPSO                 1.3         90         <LOD        <LOD
FU-PL-05-TiG2         4.4         93         <LOD        <LOD
FU-PL-05-TiG1         4.6         92         <LOD        <LOD
FU-PL-06-TiG4         5.3         84          123         32
FU-PL-06-TiD4         6.1         74          78          76
FU-PL-06-TiG3         26          7.3        4796         862
FU-PL-06-TiD3         24          9.4        4283         788
FU-PL-06-TiD1         46          3.4        9884        1416
FU-PL-06-TiG1         36          9.1        6845        1064
FU3-PL-03-TiD3         6         <LOD        <LOD        <LOD
FU3-PL-14-TiG2        nm          nm          nm          nm
FU3-PL-04-TiD3        80         <LOD         169         166
FU3-PL-04-TiG3        71          169         nm          141
FU3-PL-08-TiD1        121         268         655         265
FU3-PL-08-TiG1        122         283         167         269
FU3-PL-08-TiD2        116        <LOD         148         259
FU3-PL-09-TiD2        36          149         nm          65
FU3-PL-09-TiG2        23         <LOD         nm          23
FU3-PL-06-TiD1        42          101         nm          nm
FU3-PL-06-TiG1        63         <LOD         18          32
FU3-PL-08-TiD3        104         115         nm          48
FU3-PL-08-TiG3        96         <LOD         288         39
FU3-PL-11-TiD3        78         <LOD         38          26
FU3-PL-11-TiG3        110         160         nm          46
FU3-PL-14-TiD1        120         144         28          64
FU3-PL-14-TiG1        119        <LOD         nm          62
FU3-PL-14-TiD2        nm          nm          nm          nm
FU3-PL-14-TiD3        nm          nm          nm          nm
FU3-PL-14-TiG3        nm          nm          nm          nm
FU3-PL-18-TiD1        nm          nm          nm          nm
FU3-PL-17-TiD2        nm          nm          nm          nm
FU3-PL-17-TiG2        nm          nm          nm          nm
FU3-PL-21-TiD1        nm          nm          nm          nm
FU3-PL-21-TiG1        nm          nm          nm          nm
FU3-PL-21-TiD2        nm          nm          nm          nm
FU3-PL-21-TiG2        nm          nm          nm          nm
FU3-PL-20-TiD1        nm          nm          nm          nm
FU3-PL-20-TiG1        nm          nm          nm          nm
FU3-PL-21-TiD3        nm          nm          nm          nm
FU3-PL-21-TiG3        nm          nm          nm          nm

                      Cu          Zn                     Br/Cl
Sample name        [micro]M    [micro]M     Na/Cl     x [10.sup.3]

IAPSO                <LOD        <LOD        0.9           1.5
FU-PL-05-TiG2        <LOD        <LOD        0.83          1.5
FU-PL-05-TiG1         1.4         1.5        0.83          1.5
FU-PL-06-TiG4         1.7         3.1        0.87          1.6
FU-PL-06-TiD4         1.3         1.5        0.84          2.0
FU-PL-06-TiG3         14          45         0.78          1.5
FU-PL-06-TiD3         4.2         41         0.78          1.5
FU-PL-06-TiD1         2.5         175        0.83          1.5
FU-PL-06-TiG1         20          77         0.82          1.5
FU3-PL-03-TiD3       <LOD        <LOD        0.85          1.5
FU3-PL-14-TiG2        nm          nm         0.86          1.5
FU3-PL-04-TiD3        nm         <LOD        0.74          1.8
FU3-PL-04-TiG3        8.2        <LOD        0.75          1.8
FU3-PL-08-TiD1        6.6        <LOD        0.69          2.0
FU3-PL-08-TiG1        nm         <LOD        0.70          2.1
FU3-PL-08-TiD2        nm         <LOD        0.70          2.1
FU3-PL-09-TiD2        nm          1.0        0.79          1.7
FU3-PL-09-TiG2        nm         <LOD        0.81          1.6
FU3-PL-06-TiD1        nm         <LOD        0.84          1.6
FU3-PL-06-TiG1        nm         <LOD        0.82          1.7
FU3-PL-08-TiD3        nm          4.4        0.80          1.9
FU3-PL-08-TiG3        nm         <LOD        0.81          1.9
FU3-PL-11-TiD3        nm         <LOD        0.80          1.8
FU3-PL-11-TiG3        nm          2.5        0.78          1.9
FU3-PL-14-TiD1        nm          3.4        0.78          1.9
FU3-PL-14-TiG1        nm         <LOD        0.78          1.9
FU3-PL-14-TiD2        nm          nm         0.75          2.0
FU3-PL-14-TiD3        nm          nm         0.76          1.8
FU3-PL-14-TiG3        nm          nm         0.79          1.6
FU3-PL-18-TiD1        nm          nm         0.77          1.9
FU3-PL-17-TiD2        nm          nm         0.75          1.9
FU3-PL-17-TiG2        nm          nm         0.75          1.9
FU3-PL-21-TiD1        nm          nm         0.74          2.0
FU3-PL-21-TiG1        nm          nm         0.77          1.8
FU3-PL-21-TiD2        nm          nm         0.77          2.0
FU3-PL-21-TiG2        nm          nm         0.79          1.8
FU3-PL-20-TiD1        nm          nm         0.75          2.0
FU3-PL-20-TiG1        nm          nm         0.75          1.9
FU3-PL-21-TiD3        nm          nm         0.75          1.9
FU3-PL-21-TiG3        nm          nm         0.75          2.0

                           C[H.sub.4]
Sample name        Na/K        /Mn

IAPSO               46         --
FU-PL-05-TiG2       47         --
FU-PL-05-TiG1       46         --
FU-PL-06-TiG4       42         --
FU-PL-06-TiD4       43        0.010
FU-PL-06-TiG3       21        0.007
FU-PL-06-TiD3       24         --
FU-PL-06-TiD1       21         --
FU-PL-06-TiG1       24        0.001
FU3-PL-03-TiD3      46         --
FU3-PL-14-TiG2      46         --
FU3-PL-04-TiD3      13         --
FU3-PL-04-TiG3      14        0.805
FU3-PL-08-TiD1      10        0.886
FU3-PL-08-TiG1      10        0.762
FU3-PL-08-TiD2      10         --
FU3-PL-09-TiD2      21        0.902
FU3-PL-09-TiG2      26         --
FU3-PL-06-TiD1      17         --
FU3-PL-06-TiG1      13         --
FU3-PL-08-TiD3       8        1.365
FU3-PL-08-TiG3       8         --
FU3-PL-11-TiD3      10         --
FU3-PL-11-TiG3       8        1.848
FU3-PL-14-TiD1       8        1.078
FU3-PL-14-TiG1       8         --
FU3-PL-14-TiD2       8         --
FU3-PL-14-TiD3       9         --
FU3-PL-14-TiG3      12         --
FU3-PL-18-TiD1       8         --
FU3-PL-17-TiD2      14         --
FU3-PL-17-TiG2      14         --
FU3-PL-21-TiD1      12         --
FU3-PL-21-TiG1      16         --
FU3-PL-21-TiD2      14         --
FU3-PL-21-TiG2      16         --
FU3-PL-20-TiD1      10         --
FU3-PL-20-TiG1      10         --
FU3-PL-21-TiD3      10         --
FU3-PL-21-TiG3      10         --

Table 4: Measured gas concentration and associated stable isotopic
ratios hydrothermal fluids from the Kulo Lasi and Fatu Kapa vent
fields. Values of log f[H.sub.2] were calculated using SUPCRT92
with the slop98 data base.

                                [H.sub.2]S    [N.sub.2]
Sample name           Site          mM            mM

Seawater                                         0.59
FU-PL-05-TiG1      Kulo Lasi                     0.12
FU-PL-06-TiD4      Kulo Lasi       1.66          0.10
FU-PL-06-TiG3      Kulo Lasi       5.05          1.43
FU-PL-06-TiD1      Kulo Lasi       0.39          2.48
FU-PL-06-TiG1      Kulo Lasi                     0.79
FU3-PL-04-TiG3     Stephanie       0.91          0.93
FU3-PL-08-TiD1     Stephanie       1.23          1.98
FU3-PL-08-TiG1     Stephanie       0.98          2.47
FU3-PL-09-TiD2     Stephanie       0.23          0.48
FU3-PL-06-TiD1       Carla         1.34          0.50
FU3-PL-08-TiD3       Carla         0.19          3.33
FU3-PL-11-TiG3       Idefx         1.13          0.78
FU3-PL-14-TiD1       Idefx         1.00          1.20
FU3-PL-14-TiD2       Obelx         0.85          1.05
FU3-PL-14-TiD3       Obelx         0.54          0.93
FU3-PL-18-TiD1       Asterx        0.98          0.89
FU3-PL-17-TiG2      Fati Ufu       1.76          0.84
FU3-PL-21-TiD2      Fati Ufu       0.71          2.07
FU3-PL-20-TiD1       Tutafi        2.36          1.18
FU3-PL-21-TiD3       Tutafi        0.84          1.67

                    [sup.3]He                [H.sub.2]
Sample name             mM         R/Ra          mM

Seawater                nm          nm          <LOD
FU-PL-05-TiG1           nm          nm          <LOQ
FU-PL-06-TiD4           nm          nm          1.14
FU-PL-06-TiG3           nm          nm          19.8
FU-PL-06-TiD1           nm          nm          6.18
FU-PL-06-TiG1           nm          nm          1.04
FU3-PL-04-TiG3      1.1E - 08       8.6         0.03
FU3-PL-08-TiD1          nm                      0.06
FU3-PL-08-TiG1      4.4E - 09       7.6         0.05
FU3-PL-09-TiD2       1.9E-09        7.0         0.04
FU3-PL-06-TiD1      7.IE - 09       9.6         0.01
FU3-PL-08-TiD3       1.7E-08        9.8         0.05
FU3-PL-11-TiG3       1.8E-08        9.8         0.03
FU3-PL-14-TiD1      5.5E - 09       8.7         0.02
FU3-PL-14-TiD2       3.8E-08        9.8         0.03
FU3-PL-14-TiD3       5.2E-09        8.4         0.02
FU3-PL-18-TiD1          nm          nm          0.01
FU3-PL-17-TiG2      2.7E - 08       9.9         0.01
FU3-PL-21-TiD2      3.IE - 09       9.9         0.03
FU3-PL-20-TiD1       1.4E-08        9.2         0.05
FU3-PL-21-TiD3          nm          nm          0.03

                       log         C[H.sub.4]     C[O.sub.2]
Sample name         f[H.sub.2]         mM              mM

Seawater                --            <LOD            2.3
FU-PL-05-TiG1           --            0.001           2.6
FU-PL-06-TiD4           --            0.001           1.3
FU-PL-06-TiG3         -3.11           0.006           5.1
FU-PL-06-TiD1         -3.62           0.004           3.0
FU-PL-06-TiG1         -4.40           0.001           1.0
FU3-PL-04-TiG3        -1.87           0.114           15.5
FU3-PL-08-TiD1        -1.57           0.235           29.0
FU3-PL-08-TiG1        -1.65           0.205           25.7
FU3-PL-09-TiD2        -1.75           0.059           6.0
FU3-PL-06-TiD1        -2.35           0.021           4.5
FU3-PL-08-TiD3        -1.65           0.066           11.9
FU3-PL-11-TiG3        -1.87           0.085           10.0
FU3-PL-14-TiD1        -2.05           0.069           10.1
FU3-PL-14-TiD2        -1.87           0.110           8.7
FU3-PL-14-TiD3        -2.05           0.165           9.2
FU3-PL-18-TiD1        -2.35           0.067           9.2
FU3-PL-17-TiG2        -2.59           0.070           21.5
FU3-PL-21-TiD2        -2.11           0.111           12.6
FU3-PL-20-TiDl        -1.89           0.156           22.2
FU3-PL-21-TiD3        -2.11           0.053           11.7

                   [C.sub.2]    [C.sub.2]    [C.sub.3]    [C.sub.3]
                   [H.sub.6]    [H.sub.4]    [H.sub.8]    [H.sub.6]
Sample name         [micro]M     [micro]M     [micro]M     [micro]M

Seawater               nm           nm           nm           nm
FU-PL-05-TiG1         <LOD          nm          <LOD          nm
FU-PL-06-TiD4         0.02        0.005        0.006        0.004
FU-PL-06-TiG3         0.11        0.042        0.028        0.030
FU-PL-06-TiD1         0.1         0.017        0.017        0.020
FU-PL-06-TiGl         0.02        0.009        0.005        0.007
FU3-PL-04-TiG3        <LOD         <LOD         <LOD         <LOD
FU3-PL-08-TiD1        <LOD         <LOD         <LOD         <LOD
FU3-PL-08-TiG1        <LOD         <LOD         <LOD         <LOD
FU3-PL-09-TiD2        <LOD         <LOD         <LOD         <LOD
FU3-PL-06-TiD1        <LOD         <LOD         <LOD         <LOD
FU3-PL-08-TiD3        <LOD         <LOD         <LOD         <LOD
FU3-PL-11-TiG3        <LOD         <LOD         <LOD         <LOD
FU3-PL-14-TiD1        <LOD         <LOD         <LOD         <LOD
FU3-PL-14-TiD2        <LOD         <LOD         <LOD         <LOD
FU3-PL-14-TiD3        <LOD         <LOD         <LOD         <LOD
FU3-PL-18-TiD1        <LOD         <LOD         <LOD         <LOD
FU3-PL-17-TiG2        <LOD         <LOD         <LOD         <LOD
FU3-PL-21-TiD2        <LOD         <LOD         <LOD         <LOD
FU3-PL-20-TiD1        <LOD         <LOD         <LOD         <LOD
FU3-PL-21-TiD3        <LOD         <LOD         <LOD         <LOD

                  n-[C.sub.4]   n-[C.sub.5]       [delta]D
                  [H.sub.10]    [H.sub.12]       ([H.sub.2])
Sample name         [micro]M      [micro]M     [per thousand]

Seawater               nm            nm              nm
FU-PL-05-TiG1         <LOD          <LOD             nm
FU-PL-06-TiD4        0.005         0.005            -323
FU-PL-06-TiG3        0.024         0.006            -306
FU-PL-06-TiD1        0.012         0.004            -300
FU-PL-06-TiG1        0.005         0.001            -316
FU3-PL-04-TiG3        <LOD          1.7              nm
FU3-PL-08-TiD1        <LOD          3.2             -676
FU3-PL-08-TiG1        <LOD          2.9              nm
FU3-PL-09-TiD2        <LOD          0.7             -436
FU3-PL-06-TiD1        <LOD          0.5              nm
FU3-PL-08-TiD3        <LOD          1.5             -410
FU3-PL-11-TiG3        <LOD          1.1              nm
FU3-PL-14-TiD1        <LOD          1.1             -417
FU3-PL-14-TiD2        <LOD          1.0             -407
FU3-PL-14-TiD3        <LOD          1.0              nm
FU3-PL-18-TiD1        <LOD          1.0             -412
FU3-PL-17-TiG2        <LOD          2.3               -
FU3-PL-21-TiD2        <LOD          1.5             -410
FU3-PL-20-TiD1        <LOD          2.4             -396
FU3-PL-21-TiD3        <LOD          1.4             -415

                      [delta]D        [delta][sup.13]C
                    (C[H.sub.4])        (C[O.sub.2])
Sample name        [per thousand]      [per thousand]

Seawater                 nm                  nm
FU-PL-05-TiG1            nm                  nm
FU-PL-06-TiD4           n.m.                -3.2
FU-PL-06-TiG3           n.m.                -4.1
FU-PL-06-TiD1           n.m.                -1.9
FU-PL-06-TiG1           n.m.                -0.2
FU3-PL-04-TiG3           nm                  nm
FU3-PL-08-TiD1          -108                 -5
FU3-PL-08-TiG1           nm                  nm
FU3-PL-09-TiD2          -111                -5.3
FU3-PL-06-TiD1           nm                  nm
FU3-PL-08-TiD3          -109                -4.7
FU3-PL-11-TiG3           nm                  nm
FU3-PL-14-TiD1          -110                -4.9
FU3-PL-14-TiD2          -113                 -5
FU3-PL-14-TiD3           nm                  nm
FU3-PL-18-TiD1          -111                -4.9
FU3-PL-17-TiG2           -93                -2.3
FU3-PL-21-TiD2          -109                -4.4
FU3-PL-20-TiD1          -111                -4.5
FU3-PL-21-TiD3          -109                -4.7

                    [delta][sup.13]C        ([C.sub.2]
                      (C[H.sub.4])           [H.sub.6])
Sample name          [per thousand]        [per thousand]

Seawater                   nm                    nm
FU-PL-05-TiG1              nm                    nm
FU-PL-06-TiD4              -29                   -27
FU-PL-06-TiG3              -23                   -26
FU-PL-06-TiD1              -28                   -24
FU-PL-06-TiG1             -27.2                  -22
FU3-PL-04-TiG3             nm                    nm
FU3-PL-08-TiD1            -21.7                  nm
FU3-PL-08-TiG1             nm                    nm
FU3-PL-09-TiD2            -22.2                  nm
FU3-PL-06-TiD1             nm                    nm
FU3-PL-08-TiD3            -21.5                  nm
FU3-PL-11-TiG3             nm                    nm
FU3-PL-14-TiD1            -23.8                  nm
FU3-PL-14-TiD2             -24                   nm
FU3-PL-14-TiD3             nm                    nm
FU3-PL-18-TiD1            -23.6                  nm
FU3-PL-17-TiG2            -6.1                   nm
FU3-PL-21-TiD2            -23.3                  nm
FU3-PL-20-TiD1            -23.6                  nm
FU3-PL-21-TiD3            -24.2                  nm

                       ([C.sub.3]            ([C.sub.4]
                       [H.sub.8])            [H.sub.10])
Sample name          [per thousand]        [per thousand]

Seawater                   nm                    nm
FU-PL-05-TiG1              nm                    nm
FU-PL-06-TiD4              -26                   nm
FU-PL-06-TiG3              -26                   -24
FU-PL-06-TiD1              -26                   -24
FU-PL-06-TiG1              -26                   -24
FU3-PL-04-TiG3             nm                    nm
FU3-PL-08-TiD1             nm                    nm
FU3-PL-08-TiG1             nm                    nm
FU3-PL-09-TiD2             nm                    nm
FU3-PL-06-TiD1             nm                    nm
FU3-PL-08-TiD3             nm                    nm
FU3-PL-11-TiG3             nm                    nm
FU3-PL-14-TiD1             nm                    nm
FU3-PL-14-TiD2             nm                    nm
FU3-PL-14-TiD3             nm                    nm
FU3-PL-18-TiD1             nm                    nm
FU3-PL-17-TiG2             nm                    nm
FU3-PL-21-TiD2             nm                    nm
FU3-PL-20-TiD1             nm                    nm
FU3-PL-21-TiD3             nm                    nm

Table 5: Endmember compositions in fluids from the Kulo Lasi and
Fatu Kapa vent fields. Kulo Lasi endmembers cannot be extrapolated
at Mg = 0. Values presented here for both brine and condensed
vapour phases correspond to concentrations in the fluid with the
lowest Mg. Elemental compositions in endmember fluids from the
various sites of the Fatu Kapa vent field were calculated using
the mixing lines (Figure SI) and assuming Mg = 0. Values of the
purest fluid were used when linear regression was not
possible (*). Note that only one sample was available for
the [Aster.sup.X] site (1).

                                                T
Zone                 Site          Depth    [degrees]C     pH

Kulo Fasi         NaCl poor         1475        345       2.24
Kulo Fasi         NaCl rich         1475        345       2.36

Fatu Kapa         Stephanie         1555        280        3.4
Fatu Kapa           Carla           1664        280        2.8
Fatu Kapa        [Idef.sup.X]       1572        270        3.7
Fatu Kapa        [Obel.sup.X]       1669        270        4.6
Fatu Kapa      [Aster.sup.X](1)     1540        265        4.4
Fatu Kapa          Fati Ufu         1523        300        3.8
Fatu Kapa          Fati Ufu         1503        280        3.3
Fatu Kapa           Tutafi          1580        315        4.1

IAPSO            Standard sw         --         --         --
Kulo Fasi        Reference sw       1150        --         --
Fatu Kapa        Reference sw       1488        --         --
Fatu Kapa        Reference sw       1572         2         --

                                                          Br
Zone          NaCl (wt%)    Cl mM    Si mM    SO4 mM    [micro]M

Kulo Fasi         2.9        497      8.2      8.8        738
Kulo Fasi         4.3        735      14.6     6.2        1135

Fatu Kapa         4.5        767     4.7 *     0.0        1569
Fatu Kapa         3.5        594      4.3      0.0        1132
Fatu Kapa         3.9        665     4.2 *     0.0        1282
Fatu Kapa         4.5        771      4.6      0.0        1458
Fatu Kapa         4.1        693      3.7      1.0        1344
Fatu Kapa         4.6        790      4.9      0.0        1589
Fatu Kapa         4.1        700      4.9      0.0        1380
Fatu Kapa         4.2        713      5.1      0.0        1405

IAPSO             3.2        546      0.0      28.2       839
Kulo Fasi         3.2        551      0.1      29.0       833
Fatu Kapa         3.3        565      0.0      28.8       841
Fatu Kapa         3.3        557      0.0      28.7       841

                                                     Li
Zone          Na mM     K mM    Mg mM    Ca mM     [micro]M


Kulo Fasi      388      18.5     24.6     11.6       149
Kulo Fasi      612      29.5     26.5     10.9       238

Fatu Kapa      532      54.5     0.0      98.9       708
Fatu Kapa      477      59.9     0.0      31.4       691
Fatu Kapa      518      66.4     0.0      44.3       751
Fatu Kapa      580      71.0     0.0      85.9       777
Fatu Kapa      533      64.9     1.2      51.1       755
Fatu Kapa      580      48.2     0.0      85.4       722
Fatu Kapa      538      40.0     0.0      65.0       583
Fatu Kapa      535      52.9     0.0      65.1       635

IAPSO          468      10.2     53.2     10.3        27
Kulo Fasi      457      9.8      53.2     10.6        25
Fatu Kapa      483      10.4     54.5     10.7        22
Fatu Kapa      477      10.4     54.2     10.8        23

                 Rb            Sr          Fe           Mn
Zone           [micro]M     [micro]M     [micro]M     [micro]M

Kulo Fasi         26          7.3          4796         862
Kulo Fasi         46          3.4          9884         1416

Fatu Kapa        114         282 *        655 *         268
Fatu Kapa        105         114 *        287 *          53
Fatu Kapa        113         160 *         28 *          60
Fatu Kapa         nm           nm           nm           nm
Fatu Kapa         nm           nm           nm           nm
Fatu Kapa         nm           nm           nm           nm
Fatu Kapa         nm           nm           nm           nm
Fatu Kapa         nm           nm           nm           nm

IAPSO            1.3           90          <LOD         <LOD
Kulo Fasi        4.4           93          <LOD         <LOD
Fatu Kapa        5.8          <LOD         <LOD         <LOD
Fatu Kapa         nm           nm           nm           nm

                 Cu           Zn                    Br/Cl
Zone           [micro]M     [micro]M    Na/Cl    x [10.sup.3]

Kulo Fasi         14           45        0.78        1.48
Kulo Fasi        2.5          175        0.83        1.54

Fatu Kapa       6.6 *         <LOD       0.69        2.05
Fatu Kapa         nm         4.4 *       0.80        1.90
Fatu Kapa         nm         3.4 *       0.78        1.93
Fatu Kapa         nm           nm        0.75        1.89
Fatu Kapa         nm           nm        0.77        1.94
Fatu Kapa         nm           nm        0.73        2.01
Fatu Kapa         nm           nm        0.77        1.97
Fatu Kapa         nm           nm        0.75        1.97

IAPSO            <LOD         <LOD       0.9          1.5
Kulo Fasi        <LOD         <LOD       0.83         1.5
Fatu Kapa        <LOD         <LOD       0.85         1.5
Fatu Kapa         nm           nm        0.86         1.5

Zone           Na/K     CH4/Mn

Kulo Fasi       21      0.007 *
Kulo Fasi       21      0.001 *

Fatu Kapa       10      0.76 *
Fatu Kapa       8       1.37 *
Fatu Kapa       8       1.08 *
Fatu Kapa       8         --
Fatu Kapa       8         --
Fatu Kapa       12        --
Fatu Kapa       13        --
Fatu Kapa       10        --

IAPSO           46        --
Kulo Fasi       47        --
Fatu Kapa       46        --
Fatu Kapa       46        --

* Maximum value when linear regression was not possible;
(1) only one sample.

Table 6: Measured concentration of Total Organic Carbon (TOC), formate,
acetate, and a selection of individual semi-volatile organic compounds
extracted from hydrothermal fluids of the Kulo Lasi and Fatu Kapa
vent fields.

Compound                  Rt min    Units    Blank Dry     Blank MQ

pH                          --                   --           --
Mg                          --        mM         --           --

TOC                         --       ppm         na         <0.005
Formate                     --       Ppb         na           nd
Acetate                     --       Ppb         na           nd

Nonane                     4.68      Ppb         nd           nd
Decane                     5.911     Ppb         nd         <0.03
Undecane                   7.183     Ppb         nd          <0.2
Do decane                  8.394     Ppb         nd           nd
Tridecane                  9.549     Ppb         nd           nd
Tetradecane               10.641     Ppb         nd           nd
Pentadecane               11.675     Ppb         nd           nd
Hexadecane                 12.65     Ppb         nd           nd
Heptadecane               13.576     Ppb         nd           nd
Octadecane                14.452     Ppb         nd           nd
Nonadecane                15.295     Ppb         nd           nd
Eicosane                  16.104     Ppb         nd           nd

Nonanoic acid              6.914     Ppb         nd           nd
Decanoic acid              7.542     Ppb         nd           nd
Undecanoic acid            8.178     Ppb         nd           nd
Dodecanoic acid            8.773     Ppb         nd           nd
Tridecanoic acid           9.31      Ppb         nd           nd
Tetradecanoic acid         9.859     Ppb         nd         <0.06
Pentadecanoic acid        10.355     Ppb         nd           nd
Hexadecanoic acid         10.902     Ppb         nd           nd
Hept a decanoic acid      11.317     Ppb         nd           nd
Octadecanoic acid          11.78     Ppb         nd           nd

Ethyl, Benzene             4.344     Ppb         nd          <0.1
p~>m-Xylene                4.443     Ppb         nd           nd
o-Xylene                   4.708     Ppb         nd         <0.02

Styrene                    4.831     Ppb         nd           nd
isopropyl, Benzene         5.006     Ppb         nd           nd
n-Propyl, Benzene          5.468     Ppb         nd           nd
1,2,4-triMethyl-           5.572     Ppb         nd           nd
Benzene 1,3,5-
triMethyl-Benzene          5.95      Ppb         nd           nd
sec-Butyl-Benzene          6.106     Ppb         nd           nd
2,isopropyl, Toluene       6.305     Ppb         nd           nd
n-Butyl, Benzene           6.66      Ppb         nd         <0.08

Naphthalene                8.351     Ppb         nd         <0.01
Acenaphthene              11.796     Ppb         nd           nd
Fluorene                  12.778     Ppb         nd           nd
Phenanthrene              14.582     Ppb         nd           nd
Anthracene                14.788     Ppb         nd           nd
Fluoranthene              17.117     Ppb         nd           nd
Pyrene                     17.52     Ppb         nd           nd

                                 FU3-PL-                FU3-PL-
                                14-TiG2                 08-TiD2
Compound                      deepsea water            Stephanie

pH                                 --                     3.83
Mg                                54.2                    0.6

TOC                                na                    0.165
Formate                            na                     65.8
Acetate                            na                    1155.1

Nonane                     0.85 [+ or -] 0.51      1.59 [+ or -] 0.52
Decane                     2.21 [+ or -] 0.44      2.03 [+ or -] 0.44
Undecane                   11.35 [+ or -] 0.97     6.79 [+ or -] 0.76
Do decane                  3.36 [+ or -] 0.65      1.33 [+ or -] 0.57
Tridecane                  1.39 [+ or -] 0.54      0.35 [+ or -] 0.53
Tetradecane                0.53 [+ or -] 0.47      0.56 [+ or -] 0.47
Pentadecane                0.44 [+ or -] 0.28      0.40 [+ or -] 0.28
Hexadecane                 0.25 [+ or -] 0.73      0.40 [+ or -] 0.74
Heptadecane                0.57 [+ or -] 0.32      1.08 [+ or -] 0.32
Octadecane                 0.17 [+ or -] 0.17      0.30 [+ or -] 0.18
Nonadecane                 1.08 [+ or -] 1.34      1.36 [+ or -] 1.35
Eicosane                   1.09 [+ or -] 1.23      1.75 [+ or -] 1.27

Nonanoic acid              3.72 [+ or -] 2.53      8.07 [+ or -] 2.96
Decanoic acid              1.17 [+ or -] 1.65      0.86 [+ or -] 1.59
Undecanoic acid            0.18 [+ or -] 0.19      0.29 [+ or -] 0.20
Dodecanoic acid            0.42 [+ or -] 0.48      2.10 [+ or -] 0.51
Tridecanoic acid           0.28 [+ or -] 0.20      0.35 [+ or -] 0.19
Tetradecanoic acid         0.94 [+ or -] 0.32      1.86 [+ or -] 0.31
Pentadecanoic acid         0.54 [+ or -] 0.30      1.44 [+ or -] 0.30
Hexadecanoic acid          1.46 [+ or -] 1.20      6.66 [+ or -] 1.37
Hept a decanoic acid       0.54 [+ or -] 0.61      3.23 [+ or -] 0.58
Octadecanoic acid          0.94 [+ or -] 2.16      8.70 [+ or -] 2.82

Ethyl, Benzene                     nd                     <0.1
p~>m-Xylene                0.03 [+ or -] 0.05      0.10 [+ or -] 0.05
o-Xylene                   0.02 [+ or -] 0.05      0.07 [+ or -] 0.06

Styrene                    0.59 [+ or -] 0.14      0.22 [+ or -] 0.16
isopropyl, Benzene         0.04 [+ or -] 0.05      0.06 [+ or -] 0.05
n-Propyl, Benzene          0.03 [+ or -] 0.04      0.02 [+ or -] 0.04
1,2,4-triMethyl-           0.03 [+ or -] 0.04      0.05 [+ or -] 0.04
Benzene 1,3,5-
triMethyl-Benzene          0.02 [+ or -] 0.06      0.11 [+ or -] 0.07
sec-Butyl-Benzene          0.27 [+ or -] 0.05      0.04 [+ or -] 0.04
2,isopropyl, Toluene       0.07 [+ or -] 0.03      0.03 [+ or -] 0.03
n-Butyl, Benzene           0.06 [+ or -] 0.03      0.01 [+ or -] 0.03

Naphthalene                1.39 [+ or -] 0.07      0.49 [+ or -] 0.05
Acenaphthene                     <0.009                  <0.009
Fluorene                           nd              0.05 [+ or -] 0.03
Phenanthrene               0.02 [+ or -] 0.04      0.10 [+ or -] 0.04
Anthracene                         nd                      nd
Fluoranthene                      <0.04                  <0.04
Pyrene                            <0.03            0.03 [+ or -] 0.11

                                FU3-PL-                 FU3-PL-
                                04-TiD3                09-TiG2
Compound                       Stephanie               Stephanie

pH                                4.65                   5.42
Mg                                18.7                   44.3

TOC                                na                     na
Formate                           <LOQ                    na
Acetate                          543.2                    na

Nonane                     1.17 [+ or -] 0.51     1.08 [+ or -] 0.51
Decane                     2.02 [+ or -] 0.44     2.10 [+ or -] 0.44
Undecane                   9.52 [+ or -] 0.87     11.48 [+ or -] 0.98
Do decane                  2.30 [+ or -] 0.60     2.98 [+ or -] 0.63
Tridecane                  0.73 [+ or -] 0.53     0.86 [+ or -] 0.53
Tetradecane                0.57 [+ or -] 0.47     0.59 [+ or -] 0.47
Pentadecane                0.48 [+ or -] 0.27     0.44 [+ or -] 0.28
Hexadecane                 0.42 [+ or -] 0.73     0.49 [+ or -] 0.73
Heptadecane                0.61 [+ or -] 0.32     0.87 [+ or -] 0.32
Octadecane                 0.28 [+ or -] 0.18     0.30 [+ or -] 0.18
Nonadecane                 1.24 [+ or -] 1.35     1.38 [+ or -] 1.34
Eicosane                   1.05 [+ or -]1.25      0.94 [+ or -] 1.23

Nonanoic acid                    <0.37            5.71 [+ or -] 2.67
Decanoic acid                      nd             0.53 [+ or -] 1.60
Undecanoic acid                    nd             0.23 [+ or -] 0.19
Dodecanoic acid            0.55 [+ or -] 0.48     0.55 [+ or -] 0.48
Tridecanoic acid           0.23 [+ or -] 0.21     0.24 [+ or -] 0.21
Tetradecanoic acid         1.44 [+ or -] 0.31     0.87 [+ or -] 0.33
Pentadecanoic acid         0.82 [+ or -] 0.28     0.46 [+ or -] 0.30
Hexadecanoic acid          4.47 [+ or -] 1.27     1.78 [+ or -] 1.20
Hept a decanoic acid               nd             0.89 [+ or -] 0.53
Octadecanoic acid          6.32 [+ or -]2.55      1.67 [+ or -] 2.32

Ethyl, Benzene                    <0.1                    nd
p~>m-Xylene                0.11 [+ or -] 0.05     0.08 [+ or -] 0.05
o-Xylene                   0.06 [+ or -] 0.05     0.02 [+ or -] 0.06

Styrene                            nd                     nd
isopropyl, Benzene         0.07 [+ or -] 0.05     0.07 [+ or -] 0.05
n-Propyl, Benzene          0.03 [+ or -] 0.04     0.02 [+ or -] 0.04
1,2,4-triMethyl-           0.06 [+ or -] 0.04     0.04 [+ or -] 0.04
Benzene 1,3,5-
triMethyl-Benzene          0.08 [+ or -] 0.07     0.06 [+ or -] 0.06
sec-Butyl-Benzene                  nd             0.04 [+ or -] 0.05
2,isopropyl, Toluene       0.03 [+ or -] 0.03     0.03 [+ or -] 0.03
n-Butyl, Benzene           0.01 [+ or -] 0.02     0.01 [+ or -] 0.03

Naphthalene                0.32 [+ or -] 0.05     0.13 [+ or -] 0.04
Acenaphthene                     <0.009                 <0.009
Fluorene                         <0.01                   <0.01
Phenanthrene               0.06 [+ or -] 0.04     0.06 [+ or -] 0.04
Anthracene                         nd                     nd
Fluoranthene                     <0.04                   <0.04
Pyrene                     0.03 [+ or -] 0.10            <0.03

                                 FU3-PL-                FU3-PL-
Compound                      08-TiG3 Carla          06-TiGl Carla

pH                                4.17                    4.91
Mg                                 2.7                    23.6

TOC                                na                      na
Formate                            na                      na
Acetate                            na                      na

Nonane                     0.72 [+ or -] 0.51      0.58 [+ or -] 0.51
Decane                     3.05 [+ or -] 0.45      1.63 [+ or -] 0.44
Undecane                   13.81 [+ or -] 1.14     9.61 [+ or -] 0.87
Do decane                  3.35 [+ or -] 0.65      2.64 [+ or -] 0.61
Tridecane                   1.37 [+ or -]0.54      1.39 [+ or -] 0.54
Tetradecane                0.67 [+ or -] 0.46      0.66 [+ or -] 0.46
Pentadecane                0.52 [+ or -] 0.27      0.59 [+ or -] 0.27
Hexadecane                 0.64 [+ or -] 0.73      0.59 [+ or -] 0.74
Heptadecane                1.13 [+ or -] 0.33      0.85 [+ or -] 0.32
Octadecane                 0.35 [+ or -] 0.18      0.33 [+ or -] 0.18
Nonadecane                 1.64 [+ or -] 1.36      1.40 [+ or -] 1.36
Eicosane                   1.13 [+ or -] 1.24      1.69 [+ or -] 1.27

Nonanoic acid              4.49 [+ or -] 2.56      3.49 [+ or -] 2.50
Decanoic acid              0.41 [+ or -] 1.65              nd
Undecanoic acid            0.25 [+ or -] 0.20      0.28 [+ or -] 0.19
Dodecanoic acid            0.78 [+ or -] 0.48      0.49 [+ or -] 0.47
Tridecanoic acid           0.24 [+ or -] 0.20      0.33 [+ or -] 0.20
Tetradecanoic acid         0.92 [+ or -] 0.32      4.28 [+ or -] 0.35
Pentadecanoic acid         0.76 [+ or -] 0.29      0.57 [+ or -] 0.29
Hexadecanoic acid          3.90 [+ or -] 1.25      2.91 [+ or -] 1.23
Hept a decanoic acid       2.04 [+ or -] 0.54      1.82 [+ or -] 0.54
Octadecanoic acid          6.36 [+ or -] 2.48      3.49 [+ or -] 2.30

Ethyl, Benzene                     nd                     <0.1
p-,m-Xylene                0.10 [+ or -] 0.05      0.11 [+ or -] 0.05
o-Xylene                   0.03 [+ or -] 0.08      0.06 [+ or -] 0.05

Styrene                    0.46 [+ or -] 0.14              nd
isopropyl, Benzene         0.06 [+ or -] 0.05      0.08 [+ or -] 0.05
n-Propyl, Benzene          0.03 [+ or -] 0.04      0.03 [+ or -] 0.04
1,2,4-triMethyl-           0.06 [+ or -] 0.05      0.06 [+ or -] 0.04
Benzene 1,3,5-
triMethyl-Benzene          0.09 [+ or -] 0.06      0.09 [+ or -] 0.06
sec-Butyl-Benzene          0.05 [+ or -] 0.06      0.05 [+ or -] 0.05
2,isopropyl, Toluene       0.05 [+ or -] 0.03      0.03 [+ or -] 0.03
n-Butyl, Benzene           0.02 [+ or -] 0.03      0.01 [+ or -] 0.02

Naphthalene                1.24 [+ or -] 0.07      0.69 [+ or -] 0.05
Acenaphthene                     <0.009                  <0.009
Fluorene                   0.14 [+ or -] 0.03      0.10 [+ or -] 0.03
Phenanthrene               0.29 [+ or -] 0.05      0.13 [+ or -] 0.04
Anthracene                         nd                      nd
Fluoranthene               0.06 [+ or -] 0.16            <0.04
Pyrene                     0.14 [+ or -] 0.11      0.07 [+ or -] 0.10

                                 FU3-PL-
Compound                     14-TiGl Idefix

pH                                3.97
Mg                                 0.8

TOC                               0.498
Formate                           <LOQ
Acetate                          1033.6

Nonane                     0.84 [+ or -] 0.51
Decane                     6.92 [+ or -] 0.51
Undecane                   23.13 [+ or -] 1.88
Do decane                  5.12 [+ or -] 0.76
Tridecane                  1.63 [+ or -] 0.55
Tetradecane                0.59 [+ or -] 0.47
Pentadecane                0.43 [+ or -] 0.28
Hexadecane                 0.26 [+ or -] 0.73
Heptadecane                1.20 [+ or -] 0.33
Octadecane                 0.39 [+ or -] 0.18
Nonadecane                 1.33 [+ or -] 1.35
Eicosane                   1.03 [+ or -] 1.24

Nonanoic acid              4.91 [+ or -] 2.60
Decanoic acid              0.61 [+ or -] 1.62
Undecanoic acid            0.22 [+ or -] 0.20
Dodecanoic acid            2.01 [+ or -] 0.51
Tridecanoic acid           0.27 [+ or -] 0.20
Tetradecanoic acid         1.41 [+ or -] 0.31
Pentadecanoic acid         1.06 [+ or -] 0.29
Hexadecanoic acid          7.30 [+ or -] 1.41
Hept a decanoic acid       1.04 [+ or -] 0.62
Octadecanoic acid          11.83 [+ or -] 3.29

Ethyl, Benzene                    <0.1
p-,m-Xylene                0.18 [+ or -] 0.05
o-Xylene                   0.14 [+ or -] 0.06

Styrene                    0.29 [+ or -] 0.15
isopropyl, Benzene         0.09 [+ or -] 0.05
n-Propyl, Benzene          0.03 [+ or -] 0.04
1,2,4-triMethyl-           0.04 [+ or -] 0.05
Benzene 1,3,5-
triMethyl-Benzene          0.11 [+ or -] 0.06
sec-Butyl-Benzene          0.06 [+ or -] 0.05
2,isopropyl, Toluene       0.04 [+ or -] 0.03
n-Butyl, Benzene           0.02 [+ or -] 0.02

Naphthalene                1.08 [+ or -] 0.06
Acenaphthene                     <0.009
Fluorene                   0.16 [+ or -] 0.03
Phenanthrene               0.20 [+ or -] 0.05
Anthracene                         nd
Fluoranthene                      <0.04
Pyrene                     0.10 [+ or -] 0.11

                               FU3-PL-11-
Compound                       TiD3 Idefix

pH                                 4.9
Mg                                15.5

TOC                                na
Formate                           <LOQ
Acetate                           995.1

Nonane                     0.52 [+ or -] 0.50
Decane                     2.20 [+ or -] 0.44
Undecane                   10.89 [+ or -] 0.94
Do decane                  3.35 [+ or -] 0.65
Tridecane                  2.21 [+ or -] 0.57
Tetradecane                0.72 [+ or -] 0.46
Pentadecane                0.60 [+ or -] 0.27
Hexadecane                 0.84 [+ or -] 0.74
Heptadecane                1.48 [+ or -] 0.33
Octadecane                 0.42 [+ or -] 0.18
Nonadecane                 1.83 [+ or -] 1.38
Eicosane                   1.46 [+ or -] 1.26

Nonanoic acid              7.12 [+ or -] 2.87
Decanoic acid                      nd
Undecanoic acid                    nd
Dodecanoic acid            0.69 [+ or -] 0.48
Tridecanoic acid           0.25 [+ or -] 0.21
Tetradecanoic acid         2.74 [+ or -] 0.31
Pentadecanoic acid         0.58 [+ or -] 0.30
Hexadecanoic acid          3.61 [+ or -] 1.24
Hept a decanoic acid       1.62 [+ or -] 0.55
Octadecanoic acid          5.15 [+ or -] 2.35

Ethyl, Benzene                     na
p-,m-Xylene                        na
o-Xylene                           na

Styrene                            na
isopropyl, Benzene                 na
n-Propyl, Benzene                  na
1,2,4-triMethyl-                   na
Benzene 1,3,5-
triMethyl-Benzene                  na
sec-Butyl-Benzene                  na
2,isopropyl, Toluene               na
n-Butyl, Benzene                   na

Naphthalene                        na
Acenaphthene                       na
Fluorene                           na
Phenanthrene                       na
Anthracene                         na
Fluoranthene                       na
Pyrene                             na

                             FU3-PL-21-TiG2
Compound                        Fati Ufu

pH                                4.22
Mg                                13.3

TOC                                na
Formate                           111.7
Acetate                          1740.9

Nonane                     0.64 [+ or -] 0.50
Decane                     6.47 [+ or -] 0.50
Undecane                   19.13 [+ or -] 1.55
Do decane                  4.76 [+ or -] 0.73
Tridecane                  1.75 [+ or -] 0.55
Tetradecane                0.69 [+ or -] 0.46
Pentadecane                0.57 [+ or -] 0.27
Hexadecane                 0.53 [+ or -] 0.73
Heptadecane                0.85 [+ or -] 0.32
Octadecane                 0.49 [+ or -] 0.19
Nonadecane                 1.26 [+ or -] 1.33
Eicosane                   1.00 [+ or -] 1.23

Nonanoic acid              8.94 [+ or -] 3.09
Decanoic acid              0.84 [+ or -] 1.67
Undecanoic acid            0.26 [+ or -] 0.19
Dodecanoic acid            1.29 [+ or -] 0.49
Tridecanoic acid           0.26 [+ or -] 0.21
Tetradecanoic acid         0.90 [+ or -] 0.32
Pentadecanoic acid         0.52 [+ or -] 0.30
Hexadecanoic acid          3.24 [+ or -] 1.23
Hept a decanoic acid              <0.03
Octadecanoic acid          2.64 [+ or -] 2.09

Ethyl, Benzene             0.10 [+ or -] 0.35
p-,m-Xylene                0.33 [+ or -] 0.05
o-Xylene                   0.33 [+ or -] 0.07

Styrene                    0.21 [+ or -] 0.15
isopropyl, Benzene         0.09 [+ or -] 0.05
n-Propyl, Benzene          0.04 [+ or -] 0.04
1,2,4-triMethyl-           0.08 [+ or -] 0.04
Benzene 1,3,5-
triMethyl-Benzene          0.30 [+ or -] 0.07
sec-Butyl-Benzene                  nd
2,isopropyl, Toluene       0.04 [+ or -] 0.03
n-Butyl, Benzene           0.02 [+ or -] 0.03

Naphthalene                0.90 [+ or -] 0.06
Acenaphthene                     <0.009
Fluorene                   0.14 [+ or -] 0.03
Phenanthrene               0.16 [+ or -] 0.05
Anthracene                         nd
Fluoranthene               0.04 [+ or -] 0.16
Pyrene                     0.06 [+ or -] 0.10

                             FU3-PL-17-TiD2
Compound                        Fati Ufu

pH                                4.26
Mg                                17.6

TOC                               6.514
Formate                           721.6
Acetate                          2308.8

Nonane                     0.50 [+ or -] 0.51
Decane                     5.58 [+ or -] 0.48
Undecane                   26.06 [+ or -] 2.14
Do decane                  6.52 [+ or -] 0.86
Tridecane                  3.89 [+ or -] 0.65
Tetradecane                0.64 [+ or -] 0.46
Pentadecane                0.47 [+ or -] 0.28
Hexadecane                 0.39 [+ or -] 0.73
Heptadecane                0.67 [+ or -] 0.32
Octadecane                 0.29 [+ or -] 0.18
Nonadecane                 0.86 [+ or -] 1.33
Eicosane                   0.71 [+ or -] 1.24

Nonanoic acid              9.23 [+ or -] 3.10
Decanoic acid              0.56 [+ or -] 1.68
Undecanoic acid            0.34 [+ or -] 0.19
Dodecanoic acid            1.08 [+ or -] 0.49
Tridecanoic acid           0.32 [+ or -] 0.20
Tetradecanoic acid         1.15 [+ or -] 0.32
Pentadecanoic acid         0.78 [+ or -] 0.29
Hexadecanoic acid          4.92 [+ or -] 1.29
Hept a decanoic acid       2.89 [+ or -] 0.59
Octadecanoic acid          5.26 [+ or -] 2.40

Ethyl, Benzene                    <0.1
p-,m-Xylene                0.21 [+ or -] 0.05
o-Xylene                   0.19 [+ or -] 0.06

Styrene                    0.20 [+ or -] 0.15
isopropyl, Benzene         0.04 [+ or -] 0.06
n-Propyl, Benzene          0.03 [+ or -] 0.04
1,2,4-triMethyl-           0.07 [+ or -] 0.05
Benzene 1,3,5-
triMethyl-Benzene          0.25 [+ or -] 0.06
sec-Butyl-Benzene          0.05 [+ or -] 0.05
2,isopropyl, Toluene       0.04 [+ or -] 0.03
n-Butyl, Benzene           0.02 [+ or -] 0.02

Naphthalene                0.64 [+ or -] 0.05
Acenaphthene                     <0.009
Fluorene                   0.09 [+ or -] 0.03
Phenanthrene               0.10 [+ or -] 0.04
Anthracene                         nd
Fluoranthene                      <0.04
Pyrene                     0.05 [+ or -] 0.11

                             FU3-PL-21-TiGl
Compound                        Fati Ufu

pH                                4.69
Mg                                19.3

TOC                                na
Formate                            na
Acetate                            na

Nonane                     0.28 [+ or -] 0.51
Decane                     2.88 [+ or -] 0.45
Undecane                   12.26 [+ or -] 1.03
Do decane                  3.30 [+ or -] 0.65
Tridecane                  2.27 [+ or -] 0.57
Tetradecane                0.72 [+ or -] 0.46
Pentadecane                0.49 [+ or -] 0.27
Hexadecane                 0.37 [+ or -] 0.73
Heptadecane                0.78 [+ or -] 0.32
Octadecane                 0.25 [+ or -] 0.18
Nonadecane                 1.02 [+ or -] 1.34
Eicosane                   1.19 [+ or -] 1.24

Nonanoic acid                      na
Decanoic acid                      na
Undecanoic acid                    na
Dodecanoic acid                    na
Tridecanoic acid                   na
Tetradecanoic acid                 na
Pentadecanoic acid                 na
Hexadecanoic acid                  na
Hept a decanoic acid               na
Octadecanoic acid                  na

Ethyl, Benzene                    <0.1
p-,m-Xylene                0.15 [+ or -] 0.05
o-Xylene                   0.13 [+ or -] 0.06

Styrene                    0.24 [+ or -] 0.14
isopropyl, Benzene         0.05 [+ or -] 0.05
n-Propyl, Benzene          0.03 [+ or -] 0.05
1,2,4-triMethyl-           0.07 [+ or -] 0.04
Benzene 1,3,5-
triMethyl-Benzene          0.20 [+ or -] 0.07
sec-Butyl-Benzene                  nd
2,isopropyl, Toluene       0.03 [+ or -] 0.03
n-Butyl, Benzene                   nd

Naphthalene                1.99 [+ or -] 0.09
Acenaphthene                     <0.009
Fluorene                   0.06 [+ or -] 0.03
Phenanthrene               0.06 [+ or -] 0.04
Anthracene                         nd
Fluoranthene                      <0.04
Pyrene                     0.03 [+ or -] 0.10

                               FU3-PL-21-
Compound                       TiG3 Tutafi

pH                                3.65
Mg                                 0.8

TOC                               0.304
Formate                           <LOQ
Acetate                          1067.3

Nonane                     1.52 [+ or -] 0.52
Decane                     9.18 [+ or -] 0.56
Undecane                   20.48 [+ or -] 1.66
Do decane                  4.00 [+ or -] 0.69
Tridecane                  1.06 [+ or -] 0.54
Tetradecane                0.72 [+ or -] 0.46
Pentadecane                0.62 [+ or -] 0.27
Hexadecane                 0.65 [+ or -] 0.74
Heptadecane                1.10 [+ or -] 0.33
Octadecane                 0.47 [+ or -] 0.18
Nonadecane                 1.10 [+ or -] 1.33
Eicosane                   1.25 [+ or -] 1.24

Nonanoic acid              2.86 [+ or -] 2.45
Decanoic acid              1.09 [+ or -] 1.64
Undecanoic acid            0.35 [+ or -] 0.20
Dodecanoic acid            1.45 [+ or -] 0.49
Tridecanoic acid           0.31 [+ or -] 0.19
Tetradecanoic acid         1.42 [+ or -] 0.31
Pentadecanoic acid         1.02 [+ or -] 0.29
Hexadecanoic acid          6.09 [+ or -] 1.34
Hept a decanoic acid       2.87 [+ or -] 0.59
Octadecanoic acid          9.19 [+ or -] 2.86

Ethyl, Benzene                     nd
p-,m-Xylene                0.11 [+ or -] 0.05
o-Xylene                   0.06 [+ or -] 0.05

Styrene                    0.37 [+ or -] 0.14
isopropyl, Benzene         0.09 [+ or -] 0.05
n-Propyl, Benzene          0.03 [+ or -] 0.04
1,2,4-triMethyl-           0.08 [+ or -] 0.04
Benzene 1,3,5-
triMethyl-Benzene          0.13 [+ or -] 0.06
sec-Butyl-Benzene                  nd
2,isopropyl, Toluene       0.05 [+ or -] 0.03
n-Butyl, Benzene           0.03 [+ or -] 0.03

Naphthalene                1.19 [+ or -] 0.06
Acenaphthene                     <0.009
Fluorene                   0.09 [+ or -] 0.03
Phenanthrene               0.23 [+ or -] 0.05
Anthracene                         nd
Fluoranthene               0.05 [+ or -] 0.16
Pyrene                     0.09 [+ or -] 0.10

                                 FU3-PL-
Compound                     20-TiGl Tutafi

pH                                4.14
Mg                                 0.7

TOC                                na
Formate                            na
Acetate                            na

Nonane                     2.29 [+ or -] 0.54
Decane                     22.16 [+ or -] 0.95
Undecane                   26.93 [+ or -] 2.21
Do decane                  5.14 [+ or -] 0.76
Tridecane                  1.42 [+ or -] 0.54
Tetradecane                0.70 [+ or -] 0.46
Pentadecane                0.58 [+ or -] 0.27
Hexadecane                 0.48 [+ or -] 0.73
Heptadecane                0.98 [+ or -] 0.32
Octadecane                 0.50 [+ or -] 0.19
Nonadecane                 1.36 [+ or -] 1.35
Eicosane                   1.50 [+ or -] 1.26

Nonanoic acid              9.90 [+ or -] 3.21
Decanoic acid              0.83 [+ or -] 1.66
Undecanoic acid            0.33 [+ or -] 0.19
Dodecanoic acid            0.61 [+ or -] 0.48
Tridecanoic acid           0.27 [+ or -] 0.20
Tetradecanoic acid         1.07 [+ or -] 0.32
Pentadecanoic acid         0.77 [+ or -] 0.29
Hexadecanoic acid          5.59 [+ or -] 1.32
Hept a decanoic acid       2.79 [+ or -] 0.57
Octadecanoic acid          9.66 [+ or -] 2.96

Ethyl, Benzene             0.44 [+ or -] 0.23
p-,m-Xylene                0.71 [+ or -] 0.08
o-Xylene                   0.68 [+ or -] 0.09

Styrene                    0.20 [+ or -] 0.14
isopropyl, Benzene         0.09 [+ or -] 0.05
n-Propyl, Benzene          0.04 [+ or -] 0.04
1,2,4-triMethyl-           0.07 [+ or -] 0.04
Benzene 1,3,5-
triMethyl-Benzene          0.19 [+ or -] 0.06
sec-Butyl-Benzene          0.07 [+ or -] 0.05
2,isopropyl, Toluene       0.07 [+ or -] 0.03
n-Butyl, Benzene           0.03 [+ or -] 0.03

Naphthalene                1.19 [+ or -] 0.06
Acenaphthene                     <0.009
Fluorene                   0.07 [+ or -] 0.03
Phenanthrene               0.17 [+ or -] 0.05
Anthracene                         nd
Fluoranthene                      <0.04
Pyrene                     0.06 [+ or -] 0.10
COPYRIGHT 2018 Hindawi Limited
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2018 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Research Article
Author:Konn, C.; Donval, J.P.; Guyader, V.; Roussel, E.; Fourre, E.; Jean-Baptiste, P.; Pelleter, E.; Charl
Publication:Geofluids
Geographic Code:4EUFR
Date:Jan 1, 2018
Words:22407
Previous Article:Variable Pore Structure and Gas Permeability of Coal Cores after Microwave Irradiation.
Next Article:Predicting Erosion-Induced Water Inrush of Karst Collapse Pillars Using Inverse Velocity Theory.
Topics:

Terms of use | Privacy policy | Copyright © 2020 Farlex, Inc. | Feedback | For webmasters