Printer Friendly

Optimality conditions and duality in minmax fractional programming, Part III: second-order parametric duality models.

Received: January 10, 2012. Revised: April 7, 2013.

2010 Mathematics Subject Classification: 49N15, 90C26, 90C30, 90C32, 90C46, 90C47.

REFERENCES

[1] B. Aghezzaf: Second order mixed type duality in multiobjective programming problems, J. Math. Anal. Appl., 285(2003), 97-106.

[2] I. Ahmad and Z. Husain: Nondifferentiable second-order symmetric duality, Asia-Pacific J. Oper. Res., 22(2005), 19-31.

[3] I. Ahmad and Z. Husain: Second order (F, [alpha], [rho], d)-convexity and duality in multiobjective programming, Inform. Sci., 176(2006), 3094-3103.

[4] I. Ahmad, Z. Husain and S. Sharma: Higher-order duality in nondifferentiable multiobjective programming, Numer. Func. Anal. Optim., 28(2007), 989-1002.

[5] I. Ahmad and S. Sharma: Second-order duality for nondifferentiable multiobjective programming problems, Numer. Func. Anal. Optim., 28(2007), 975-988.

[6] A. Batatorescu, V. Preda and M. Beldiman: Higher-order symmetric multiobjective duality involving generalized (F, [rho], [gamma], b)-convexity, Rev. Roumaine Math. Pures Appl., 52(2007), 619-630.

[7] C.R. Bector and B.K. Bector: (Generalized) bonvex functions and second-order duality for a nonlinear programming problem, Congressus Numer., 22(1986), 37-52.

[8] C.R. Bectorand B.K. Bector: On various duality theorems for second-order duality in nonlinear programming, CCERO, 28(1986), 283-292.

[9] C.R. Bector and S. Chandra: Second-order duality for generalized fractional programming, Methods Oper. Res., 56(1986), 11-28.

[10] C. R. Bector and S. Chandra: Second order symmetric and self dual programs, Opsearch, 23(1986), 89-95.

[11] C. R. Bector and S. Chandra: First and second order duality for a class of nondifferentiable fractional programming problems, J. Inform. Optim. Sci., 7(1986), 335-348.

[12] C. R. Bector and S. Chandra: (Generalized) bonvexity and higher order duality for fractional programming, Opsearch, 24(1987), 143-154.

[13] C. R. Bector, S. Chandra, and I. Husain: Second-order duality for a minimax programming problem, Opsearch, 28(1991), 249-263.

[14] M. Bhatia: Higher-order duality in vector optimization over cones, Optim. Lett., 6(2012), No. 1, 17-30.

[15] X. Chen: Sufficient conditions and duality for a class of multiobjective fractional programming problems with higher-order (F, [alpha], [rho], d)-convexity, J. Appl. Math. Comput., 28(2008), 107-121.

[16] R. R. Egudo and M. A. Hanson: Second order duality in multiobjective programming, Opsearch, 30(1993), 223-230.

[17] T. R. Gulati: Second-order duality in multiobjective programming involving (F, [alpha], [rho], d)-V-type I functions, Numer. Func. Anal. Optim., 28(2007), 1263-1277.

[18] T. R. Gulati and D. Agarwal: Second-order duality in multiobjective programming involving (F, [alpha], [rho], d) V-type I functions, Numer. Funct. Anal. Optim., 28(2007), 12631277.

[19] T. R. Gulati and D. Agarwal: On Huard type second-order converse duality in nonlinear programming, Appl. Math. Lett., 20(2007), 1057-1063.

[20] T. R. Gulati and I. Ahmad: Second order symmetric duality for nonlinear minimax mixed integer programming problems, Eur. J. Oper. Res., 101(1997), 122-129.

[21] T. R. Gulati, I. Ahmad and I. Husain: Second order symmetric duality with generalized convexity, Opsearch, 38(2001), 210-222.

[22] T. R. Gulati and Geeta: Mond-Weir type second-order symmetric duality in multiobjective programming over cones, Appl. Math. Lett., 23(2010), 466-471.

[23] T. R. Gulati and S. K. Gupta: Second-order symmetric duality for minimax integer programs over cones, Internat. J. Oper. Res., 4(2007), 181-188.

[24] T. R. Gulati and S. K. Gupta: Higher-order nondifferentiable symmetric duality with generalized F convexity, J. Math. Anal. Appl., 329(2007), 229-237.

[25] T. R. Gulati and S. K. Gupta: A note on Mond-Weir type second-order symmetric duality, Asia-Pac. J. Oper. Res., 24(2007), 737-740.

[26] T. R. Gulati and S. K. Gupta: Higher-order symmetric duality with cone constraints, Appl. Math. Lett., 22(2009), 776-781.

[27] T. R. Gulati, S. K. Gupta and I. Ahmad: Second-order symmetric duality with cone constraints, J. Comput. Appl. Math., 220(2008), 347-354.

[28] T. R. Gulati, Mehndiratta Geeta: Nondifferentiable multiobjective Mond-Weir type second-order symmetric duality over cones, Optim. Lett., 4(2010), 293-309.

[29] T. R. Gulati, H. Saini and S. K. Gupta: Second-order multiobjective symmetric duality with cone constraints, Eur. J. Oper. Res., 205(2010), 247-252.

[30] S. K. Gupta and N. Kailey: A note on multiobjective second-order symmetric duality, Eur. J. Oper. Res., 201(2010), 649-651.

[31] M. Hachimi and B. Aghezzaf: Second order duality in multiobjective programming involving generalized type-I functions, Numer. Funct. Anal. Optim., 25(2004), 725-736.

[32] M. A. Hanson: Second order invexity and duality in mathematical programming, Opsearch, 30(1993), 313-320.

[33] R. A. Horn and C. R. Johnson: Matrix Analysis, Cambridge University Press, New York, 1985.

[34] S. H. Hou and X. M. Yang: On second-order symmetric duality in nondifferentiable programming, J. Math. Anal. Appl., 255(2001), 491-498.

[35] Z. Husain, I. Ahmad and S. Sharma: Second order duality for minmax fractional programming, Optim. Lett., 3(2009), 277-286.

[36] I. Husain, A. Goyel and M. Masoodi: Second order symmetric and maxmin symmetric duality with cone constraints, Internat. J. Oper Res., 4(2007), 199-205.

[37] I. Husain and Z. Jabeen: Second order duality for fractional programming with support functions, Opsearch, 41(2004), 121-34.

[38] A. Jayswal, D. Kumar and R. Kumar: Second-order duality for nondifferentiable multiobjective programming problem involving (F, [alpha], [rho], d)-V-type I functions, Optim. Lett., 4(2010), 211-226.

[39] A. Jayswal and I. Stancu-Minasian: Higher-order duality for nondifferentiable minimax programming problem with generalized convexity, Nonlin. Anal.: Theory, Methods, Appl., 74(2011), 616-625.

[40] V. Jeyakumar: First and second order fractional programming duality, Opsearch, 22(1985), 24-41.

[41] V. Jeyakumar and B. Mond: On general convex mathematical programming, J. Austral. Math. Soc. Ser. B, 34(1992), 43-53.

[42] J. C. Liu: Second order duality for minimax programming, Utilitas Math., 56(1999), 53-63

[43] O. L. Mangasarian: Second- and higher-order duality theorems in nonlinear programming, J.Math. Anal. Appl., 51(1975), 607-620.

[44] S. K. Mishra: Second order generalized invexity and duality in mathematical programming, Optimization, 42(1997), 51-69.

[45] S. K. Mishra: Second order symmetric duality in mathematical programming with F-convexity, European J. Oper. Res., 127(2000), 507-518.

[46] S. K. Mishra and N. G. Rueda: Higher-order generalized invexity and duality in mathematical program ming,J.Math.Anal.Appl.,247(2000), 173-182.

[47] S. K. Mishra and N. G. Rueda: Second-order duality for nondifferentiale minimax programming involving generalized type I functions, J. Optim. Theory Appl., 130(2006), 477-486.

[48] B. Mond: Second order duality for nonlinear programs, Opsearch, 11(1974), 90-99.

[49] B. Mond and T. Weir: Generalized convexity and higher-order duality, J. Math. Sci., 16-18(1981-1983), 74-94.

[50] B. Mond and T. Weir: Generalized concavity and duality, in Generalized Concavity in Optimization and Economics (S. Schaible and W. T. Ziemba, eds.), Academic Press, New York, 1981, pp. 263-279.

[51] B. Mond and J. Zhang: Duality for multiobjective programming involving second-order V-invex functions, in Proceedings of the Optimization Miniconference II (B. M. Glover and V. Jeyakumar, eds.), University of New South Wales, Sydney, Australia, 1995, pp. 89-100.

[52] B. Mond and J. Zhang: Higher order invexity and duality in mathematical programming, in Generalized Convexity, Generalized Monotonicity : Recent Results (J. P. Crouzeix, et al., eds.), Kluwer Academic Publishers, Netherlands, 1998, pp. 357-372.

[53] R. B. Patel: Second order duality in multiobjective fractional programming, Indian J. Math., 38(1997), 39-46.

[54] V. Preda and M. Beldiman: Higher-order duality for a nondifferentiable programming problem, Internat. J. Optim. : Theory, Methods Appl., 1(2009), 160-168.

[55] M. K. Srivastava and M. Bhatia: Symmetric duality for multiobjective programming using second order (F, [rho])-convexity, Opsearch, 43(2006), 274-295.

[56] K. K. Srivastava and M. G. Govil: Second order duality for multiobjective programming involving (F, [rho], [alpha])-type I functions, Opsearch, 37(2000), 316-326.

[57] S. K. Suneja, C. S. Lalitha and S. Khurana: Second order symmetric duality in multiobjective programming, European J. Oper. Res., 144(2003), 492-500.

[58] S. K. Suneja, M. K. Srivastava and M. Bhatia: Higher order duality in multiobjective fractional programming with support functions, J. Math. Anal. Appl., 347(2008), 8-17.

[59] M. N. Vartak and I. Gupta: Duality theory for fractional programming problems under r-convexity, Opseach, 24(1987), 163-174.

[60] X. M. Yang: Second order symmetric duality for nonlinear programs, Opsearch, 32(1995), 205-209.

[61] X. M. Yang: On second order symmetric duality in nondifferentiable multiobjective programming, J. Ind. Manag. Optim., 5(2009), 697-703.

[62] X. M. Yang and S. H. Hou: Second-order symmetric duality in multiobjective programming, Appl. Math. Lett., 14(2001), 587-592.

[63] X. M. Yang and K. L. Teo: A converse duality theorem on higher-order dual models in nondifferentiable mathematical programming, Optim. Lett., 6(2012), No. 1, 11-15.

[64] X. M. Yang, K. L. Teo and X. Q. Yang: Higher-order generalized convexity and duality in nondifferentiable multiobjective mathematical programming, J. Math. Anal. Appl., 297(2004), 48-55.

[65] X. M. Yang, X. Q. Yang, and K. L. Teo: Nondifferentiable second order symmetric duality in mathematical programming with F-convexity, European J. Oper. Res., 144 (2003), 554-559.

[66] X. M. Yang, X. Q. Yang and K. L. Teo: Huard type second-order converse duality for nonlinear programming, Appl. Math. Lett., 18(2005), 205-208.

[67] X. Yang, X. Q. Yang and K. L. Teo: Higher-order symmetric duality in multiobjective programming with invexity, J. Ind. Manag. Optim., 4(2008), 385-391.

[68] X. M. Yang, X. Q. Yang, K. L. Teo and S. H. Hou: Second order duality for nonlinear programming, Indian J. Pure Appl. Math., 35(2004), 699-708.

[69] X. M. Yang, X. Q. Yang, K. L. Teo and S. H. Hou: Multiobjective second-order symmetric duality with F-convexity, European J. Oper. Res., 165(2005), 585-591.

[70] X. M. Yang and P. Zhang: On second-order converse duality for a nondifferentiable programming problem, Bull. Austral. Math. Soc., 72(2005), 265-270.

[71] X. Q. Yang: Second-order global optimality conditions for convex composite optimization, Math. Prog., 81(1998), 327-347.

[72] G. J. Zalmai: Optimality conditions and duality models for a class of nonsmooth constrained fractional variational problems, Optimization 30(1994), 15-51.

[73] G. J. Zalmai and Qinghong Zhang: Optimality conditions and duality in minmax fractional programming, part I: necessary and sufficient optimality conditions, J. Adv. Math. Stud., 5(2012), No. 2, 107-137.

[74] G. J. Zalmai and Qinghong Zhang: Optimality conditions and duality in minmax fractional programming, part II: first-order parametric duality models, J. Adv. Math. Stud., 6(2013), No. 1, 82-106.

[75] J. Zhang and B. Mond: Second order b-invexity and duality in mathematical programming, Utilitas Math., 50(1996), 19-31.

[76] J. Zhang and B. Mond: Second order duality for multiobjective nonlinear programming involving generalized convexity, in Proceedings of the Optimization Miniconference III (B. M. Glover, B. D. Craven, and D. Ralph, eds.), University of Ballarat, 1997, pp. 79-95.

Northern Michigan University

G. J. Zalmai

Department of Mathematics and Computer Science

Marquette, MI 49855,USA

E-mail address: gzalmai@nmu.edu

Northern Michigan University

Qinghong Zhang

Department of Mathematics and Computer Science

Marquette, MI 49855,USA

E-mail address: qzhang@nmu.edu
COPYRIGHT 2013 Fair Partners Team for the Promotion of Science
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2013 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Zalmai, G.J.; Zhang, Qinghong
Publication:Journal of Advanced Mathematical Studies
Article Type:Author abstract
Geographic Code:1USA
Date:Jul 1, 2013
Words:1779
Previous Article:Mixed quasi bifunction variational inequalities.
Next Article:Some fixed point results in [theta]-complete partial cone metric spaces.
Topics:

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters