Printer Friendly

Novel Cetacean morbillivirus in Guiana dolphin, Brazil.

To the Editor: Since 1987, mor billivirus (family Paramyxoviridae, genus Morbillivirus) outbreaks among pinnipeds and cetaceans in the Northern Hemisphere have caused high rates of death (1,2). Two morbillivirus species are known to affect aquatic animals: Phocine distemper virus (PDV) and Cetacean morbillivirus (CeMV). PDV has been isolated from pinnipeds, and 3 strains of CeMV (porpoise morbillivirus [PMV], dolphin morbillivirus [DMV], and pilot whale morbillivirus [PWMV]) have been isolated from dolphins and whales (3,4).

Serologic surveys indicate that morbilliviruses infect marine mammals worldwide (5); however, only 1 fatal case in a bottlenose dolphin (Tursiops truncatus) has been confirmed in the Southern Hemisphere (in the southwestern Pacific Ocean) (6). Positive DMV-specific antibody titers in 3 Fraser's dolphins (Lagenodelphis hosei) stranded off Brazil and Argentina in 1999 indicate the exposure of South Atlantic cetaceans to morbillivirus (7). We report a case of lethal morbillivirus infection in a Guiana dolphin (Sotalia guianensis), a coastal marine and estuarine species that occurs off the Atlantic Coast of South and Central America.

A female Guiana dolphin calf (108 cm in total body length) (8) was found stranded dead in Guriri (18[degrees]44'S; 39[degrees]44'W), Sao Mateus, Espirito Santo State, Brazil, on November 30, 2010; the dead calf was severely emaciated. Postmortem examination of the animal showed multifocal ulcers in the oral mucosa and genital slit, diffusely dark red and edematous lungs, and congested and edematous brain. Samples of selected tissues were collected, fixed in buffered formalin, and processed according to routine histopathologic methods. By microscopy, the most noteworthy lesions included marked lymphoplasmacytic and neutrophilic meningoencephalitis, optic nerve perineuritis, and hypophysitis. Lungs showed moderate acute diffuse lymphoplasmacytic and neutrophilic interstitial pneumonia; severe multicentric lymphoid depletion and multifocal necrotizing hepatitis were also observed.

Immunohistochemical analysis was performed by using CDV-NP MAb (VMRD, Inc., Pullman, WA, USA), a monoclonal antibody against the nucleoprotein antigen of canine distemper virus that cross-reacts with cetacean morbilliviruses (9). Known positive and negative control tissues and test sections with omitted first-layer antibody were included. Viral antigen was detected in neurons in the brain, bronchiolar epithelium and macrophages in the lungs, bile duct epithelium in the liver, and macrophages and lymphocytes in lymph nodes.

We extracted RNA from frozen lung samples by using TRIzol Reagent (Life Technologies Corporation, Carlsbad, CA, USA) according to the manufacturer's instructions and amplified a 374-bp conserved fragment of the phosphoprotein (P) gene by reverse transcription PCR. The following Morbillivirus spp.-specific primers were used for PCR: 5'-ATGTTTATGATCACAGCGGT-3' (forward) and 5'-ATTGGGTTGCACCACTTGTC-3' (reverse) (3). MEGA5 ( was used to construct a neighbor-joining phylogenic tree based on the sequenced amplicon from this study (GenBank accession no. KF711855) and 12 other GenBank sequences that represent the 6 morbillivirus species already described in the literature. The analysis placed the Guiana dolphin strain at the CeMV clade, but segregated it from the already described dolphin morbillivirus strains PMV, DMV, and PWMV (Figure). The sample shared 79.8% nt and 58.4% aa identity with PMV, 78.7% nt and 56.6% aa identity with DMV, and 78.7% nt and 57.1% aa identity with PWMV. Within the Morbillivirus spp., PDV shared the lowest sequence identity (51.1% nt and 26.8% aa).

In summary, sequence analysis of the morbillivirus from the dead Guiana dolphin suggests that the virus is a novel strain of the CeMV species; this conclusion is supported by phylogenic analysis and geographic distribution of the virus and by its distinct host. Emaciation, marked lymphoid depletion, interstitial pneumonia, and meningoencephalitis are common findings in morbillivirus-infected animals (1,2). Together with antigenic and genomic evidence, our findings indicate that morbillivirus infection is extant in Guiana dolphins in the waters off Brazil.

Morbillivirus outbreaks have caused a high number of deaths among pinnipeds and cetaceans and are a major risk to previously unexposed nonimmune populations of aquatic mammals (1,2). A high number of morbillivirus-related deaths have not yet been reported among aquatic mammals in the waters off Brazil, but our findings shows that Guiana dolphin calves are susceptible to infection. Subclinical morbillivirus infection with immune suppression has been reported in bottlenose dolphins in Florida (10). It is unknown whether subclinical infection occurs in this host population or whether the virus has undergone species-adaptive changes, as proposed for PWMV (4). The sequence data from our study suggest that the virus from the Guiana dolphin calf is the fourth member of the CeMV group and is closer to the root of the CeMV clade than to that of DMV, PMV, or PWMV. Further studies are required to determine the epidemiology of morbillivirus infection in this and other cetacean species and to assess the risk for epizootic outbreaks among South Atlantic cetaceans.


We thank Ariosvaldo Pinto dos Santos and volunteers for the valuable help during the fieldwork; Projeto TAMAR and Parque Estadual de Itaunas for reporting stranded marine mammals and providing logistical support in many stranding events; Jane Megid, Adriana Cortez, Susan D. Allendorf, Cintia Maria Favero, and laboratory staffs from participating institutions for assistance during analysis; and the journal editor and 2 anonymous reviewers for their constructive comments.

Fundacao de Amparo a Pesquisa do Estado de Sao Paulo provided grants (processes 2010/50094-3, 2011/08357-0 and 2012/00021-5), which are greatly appreciated. Veracel Celulose provided financial support to the Rescue Program. Projeto Baleia Jubarte is sponsored by Petroleo Brasileiro (Petrobras). J.L.C.-D. is a recipient of a professorship by the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico-CNPq (301517/2006-1).

This study was conducted by K.R.G. as partial fulfillment of the requirements for a doctoral degree at the Departamento de Patologia, Faculdade de Medicina Veterinaria e Zootecnia, Universidade de Sao Paulo.



(1.) Di Guardo G, Marruchella G, Agrimi U, Kennedy S. Morbillivirus infections in aquatic mammals: a brief overview. J Vet Med A Physiol Pathol Clin Med. 2005;52:88-93.

(2.) Kennedy S. Morbillivirus infections in aquatic mammals. J Comp Pathol. 1998;119:201-25.

(3.) Barrett T, Visser IK, Mamaev L, Goatley L, Van Bressem MF, Osterhaus AD. Dolphin and porpoise morbilliviruses are genetically distinct from phocine distemper virus. Virology. 1993;193:1010-2.

(4.) Taubenberger JK, Tsai MM, Atkin TJ, Fanning TG, Krafft AE, Moeller RB, et al. Molecular genetic evidence of a novel morbillivirus in a long-finned pilot whale (Globicephalus melas). Emerg Infect Dis. 2000;6:42-5.

(5.) Van Bressem M-F, Raga JA, Guardo GD, Jepson PD, Duignan PJ, Siebert U, et al. Emerging infectious diseases in cetaceans worldwide and the possible role of environmental stressors. Dis Aquat Organ. 2009;86:143-57.

(6.) Stone BM, Blyde DJ, Saliki JT, Blas-Machado U, Bingham J, Hyatt A, et al. Fatal cetacean morbillivirus infection in an Australian offshore bottlenose dolphin (Tursiops truncatus). Aust Vet J. 2011;89:452-7.

(7.) Van Bressen MF, Van Waerebeek K, Jepson PD, Raga JA, Duignan PJ, Nielsen O, et al. An insight into the epidemiology of dolphin morbillivirus worldwide. Vet Mi crobiol. 2001;81:287-304.

(8.) Di Beneditto APM, Ramos RMA. Biology of the marine tucuxi dolphin (Sotalia fluviatilis) in south-eastern Brazil. Journal of the Marine Biological Association of the United Kingdom. 2004;84:1245-50.

(9.) Saliki JT, Cooper EJ, Gustavson JP. Emerging morbillivirus infections of marine mammals: development of two diagnostic approaches. Ann N Y Acad Sci. 2002;969:51-9.

(10.) Bossart GD, Romano TA, PedenAdams MM, Schaefer A, McCulloch S, Goldstein JD, et al. Clinicoimmunopathologic findings in Atlantic bottlenose dolphins Tursiops truncatus with positive cetacean morbillivirus antibody titers. Dis Aquat Organ. 2011;97:103-12.

Katia R. Groch, Adriana C. Colosio, Milton C. C. Marcondes, Daniele Zucca, Josue Diaz-Delgado, Claudia Niemeyer, Juliana Marigo, Paulo E. Brandao, Antonio Fernandez, and Jose Luiz Catao-Dias

Author affiliations: University of Sao Paulo, Sao Paulo, Brazil (K.R. Groch, C. Niemeyer, J. Marigo, P.E. Brandao, J.L. CataoDias); Instituto Baleia Jubarte, Caravelas, Brazil (K.R. Groch, A.C. Colosio, M.C.C. Marcondes); and University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain (D. Zucca, J. Diaz-Delgado, A. Fernandez)

Address for correspondence: Katia R. Groch, Laboratorio de Patologia Comparada de Animais Selvagens, FMVZ, Universidade de Sao Paulo, Av. Orlando Marques de Paiva 87, Sao Paulo, SP, 05508-270, Brazil; email:
COPYRIGHT 2014 U.S. National Center for Infectious Diseases
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2014 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:LETTERS
Author:Groch, Katia R.; Colosio, Adriana C.; Marcondes, Milton C.C.; Zucca, Daniele; Diaz-Delgado, Josue; N
Publication:Emerging Infectious Diseases
Article Type:Letter to the editor
Geographic Code:3BRAZ
Date:Mar 1, 2014
Previous Article:Cyclospora spp. in drills, Bioko Island, Equatorial guinea.
Next Article:In memoriam: James Harlan Steele (1913-2013).

Terms of use | Privacy policy | Copyright © 2021 Farlex, Inc. | Feedback | For webmasters |