Printer Friendly

Non-invasive ultrasound technique could provide endoscopy alternative.

Researchers have developed an ultrasound technique that enables optical images to be taken through biological tissue to image organs in the body, which they say could one day remove the need for invasive visual examinations using endoscopic cameras.

In Light: Science and Applications, Maysam Chamanzar and Matteo Giuseppe Scopelliti from Carnegie Mellon University in Pennsylvania, USA, showed they can use ultrasonic wave patterns to create a virtual 'lens' in the body, which can be used to 'focus' light within tissue without needing to implant a physical lens.

They say this enables them to capture images previously inaccessible through non-invasive means.

Biological tissue blocks most light, especially light in the visible range of the optical spectrum. Therefore, current optical imaging methods cannot use light to access deep tissue in the body from the surface. The researchers' method, however, can be used to induce more transparency and enable more penetration of light through such tissue. This is because ultrasound waves can be used to compress and rarefy, or thin, whatever medium they are flowing through, which alters the speed that light travels through the medium--light travels more slowly in the compressed regions compared to the rarefied regions.

The team has shown that this compression and rarefication effect can be used to sculpt a virtual lens in biological tissue for optical imaging. By simply reconfiguring the ultrasound waves from outside, the virtual lens can be moved around without disturbing the medium. This enables the imaging of different target regions, all non-invasively.

'Being able to relay images from organs, such as the brain, without the need to insert physical optical components will provide an important alternative to implanting invasive endoscopes in the body,' said Chamanzar. 'This method can revolutionise the field of biomedical imaging.'

While the researcher's paper is focused on the method's efficacy for closer-to-the-surface applications, the team has yet to find the limit to how deep in the body's tissue their ultrasonically-assisted optical imaging method can reach.

Putting it into practice

The published method could be applied in a number of different applications, according to researchers. In the future, for example, it could be implemented in the form of a handheld device or wearable surface patch, depending on the organ being imaged. By placing the device or patch on the skin, the clinician would be able to easily receive optical information from the tissue to create images of what's inside, without the many discomforts and side effects that come with endoscopy.

The closest current applications for the new technique could be endoscopic imaging of brain tissue or imaging under the skin, but the researchers say the technique can also be used in other parts of the body for imaging. Potential clinical applications include diagnosing skin disease, monitoring brain activity, and diagnosis and photodynamic therapy for identifying and targeting malignant tumours.

Beyond biomedical applications, the researchers say the new technique could also be used for optical imaging in machine vision, metrology and other industrial applications to enable non-destructive and steerable imaging of objects and structures at the micron scale.

Caption: Schematic of how an electrode-based ultrasound skin patch would function
COPYRIGHT 2019 Europa Science, Ltd.
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2019 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Publication:Electro Optics
Date:Aug 1, 2019
Previous Article:Photonics boosts space programmes.
Next Article:10.5m [euro] for research into atomic-scale components.

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters