Printer Friendly

New Imaging Technique Fast Enough to Watch Molecular Dynamics Involved in Neurodegenerative Diseases, Optica Reports.

M2 PHARMA-July 17, 2017-New Imaging Technique Fast Enough to Watch Molecular Dynamics Involved in Neurodegenerative Diseases, Optica Reports

(C)2017 M2 COMMUNICATIONS

- Researchers have developed a fast and practical molecular-scale imaging technique that could let scientists view never-before-seen dynamics of biological processes involved in neurodegenerative diseases such as Alzheimer's disease and multiple sclerosis, according to a report in the jounal Optica.

The new technique reveals a sample's chemical makeup as well as the orientation of molecules making up that sample, information that can be used to understand how molecules are behaving.

What's more, it acquires this information in mere seconds, significantly faster than the minutes required by other techniques.

The faster speed means it will be possible for the first time to watch disease progression in living animal models at the molecular level. With further development, the technique might also be used to detect early signs of neurodegenerative diseases in people.

In Optica, The Optical Society's journal for high impact research, researchers led by Sophie Brasselet of the Institut Fresnel, CNRS, Aix Marseille Universite, France, report their new technique, called high-speed polarization resolved coherent Raman scattering imaging.

They used artificial lipid membranes to demonstrate the technique's capabilities for enhancing neurological research.

The artificial membranes used in the study are made of packed layers of lipids that are similar to those found in the myelin sheath that covers axons to help electrical impulses move quickly and efficiently. When diseases such as Alzheimer's and multiple sclerosis progress, these lipids start to disorganize and the lipid layers lose their adhesion.

This ultimately causes the myelin sheath to detach from the axon and leads to malfunctioning neural signals.

The new technique developed by Brasselet and her research team makes use of a nonlinear effect called coherent Raman scattering that occurs when light interacts with molecules. The frequency, or wavelength, of the nonlinear signal provides the chemical makeup of a sample based on its molecular vibrations, without the need to add any additional fluorescent labels or chemicals.

The researchers built on an existing approach called stimulated Raman scattering imaging, which enhances the Raman signal by modulating the laser light's intensity, or power.

To obtain molecular orientation information from the coherent Raman signal, the researchers used an electro-optical device called a Pockels cell to quickly modulate the laser's polarization rather than its intensity.

The key, however, is to acquire orientation information fast enough to capture highly dynamic biological processes on a molecular level.

Previous methods were slow because they acquired an image, then the polarization information, and then repeated the process to capture changes over time.

By modulating the laser polarization very fast, the researchers could take measurements pixel by pixel, in real time.

With the new approach, it takes less than a second to acquire lipid orientation information in a large image that contains several cells. This information is then used to construct a sequence of "lipid order" images that shows molecular orientation dynamics at subsecond time scales.

The researchers showed that their technique could reveal deformation and lipid organization in artificial lipid membranes resembling the packed membranes of myelin. The technique was even sensitive enough to measure the organization of lipids around red blood cells, which have only a single lipid membrane.

"Even though we only demonstrated the technique with model membranes and single cells, this technique is translatable to biological tissue," said Brasselet. "It will show us how molecules behave, information that is not available from the micron-scale morphological images taken with traditional microscopy techniques."

Brasselet said that the new technique could be used in the near future to better understand progression in diseases that involve a breakdown of the myelin sheath, such as Alzheimer's and multiple sclerosis. For example, it could be used to image neurons in living mice by combining the Raman scattering technique with existing methods in which tiny windows are implanted in the brains and spinal cords of laboratory animals.

"Ultimately, we would like to develop coherent Raman imaging so that it could be used in the body to detect diseases in their early stages," said Brasselet. "To do this, the technique would have to be adapted to work with endoscopes or other tools in development that allow light-based imaging inside the body."

Optica is an open-access, online-only journal dedicated to the rapid dissemination of high-impact peer-reviewed research across the entire spectrum of optics and photonics.

Published monthly by The Optical Society, Opticaprovides a forum for pioneering research to be swiftly accessed by the international community, whether that research is theoretical or experimental, fundamental or applied.

((Comments on this story may be sent to info@m2.com))
COPYRIGHT 2017 Normans Media Ltd.
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2017 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Publication:M2 Pharma
Date:Jul 17, 2017
Words:768
Previous Article:Publication in Cell Demonstrates Moderna's Zika mRNA Vaccine Prevents In Utero Transmission of Zika Virus in Mice.
Next Article:Johnson & Johnson declares dividend of USD0.84 per share for Q3 2017.
Topics:

Terms of use | Privacy policy | Copyright © 2018 Farlex, Inc. | Feedback | For webmasters