Printer Friendly

Multiorgan dysfunction caused by travel-associated African trypanosomiasis.

We describe a British safari tourist with multi-organ dysfunction and shock secondary to African trypanosomiasis. This case illustrates the complications associated with treatment of Trypanosoma brucei rhodesiense infection and highlights a recent increase in cases reported to ProMED ( of trypanosomiasis in travelers to Zambia.

The Case-Patient

A 49-year-old woman with a 5-day history of fever, malaise, headache, dizziness, abdominal discomfort, diarrhea, and vomiting sought treatment 1 day after returning to the United Kingdom from a 2-week safari in Zambia. During the safari, she spent 3 days in the South Luangwa National Park, 3 days in the Lower Zambezi National Park, and 6 days in Kafue National Park. Initial blood films examined at Furness General Hospital were negative for malaria parasites but positive for trypanosomes. Urgent transfer of the patient to the Tropical and Infectious Disease Unit in Liverpool, UK, was arranged.

Upon arrival, the patient was dehydrated and had jaundice and tachycardia, but she initially was normotensive. Examination revealed reduced breath sounds at the lung bases and a distended, nontender abdomen. There was a mild erythematous rash on the patient's abdomen, but no chancres. Results of a neurologic examination were unremarkable.

Repeat blood films confirmed numerous trypanosomes (Figure), which, given the patient's travel history, were considered likely to be T. b. rhodesiense. PCR results confirmed the trypanosomes positive for the T. b. rhodesiense-specific serum resistance-associated gene (1). Blood test results were as follows: urea 9.2 mmol/L, creatinine 146 [micro]mol/L, leukocytes 3.7 x [10.sup.9] cells/L, platelets 13 x [10.sup.9]/L, C-reactive protein 234 mg/L, alanine aminotransferase 179 U/L, bilirubin 38 [micro]mol/L, and prothrombin time 13.5 s.

Despite fluid resuscitation, the patient became increasingly hypotensive over the next 12 hours, prompting transfer to the intensive care unit. A 100-mg test dose of suramin was well tolerated by the patient; however, the first full treatment dose was complicated by circulatory collapse and bronchoconstriction, which required administration of hydrocortisone and chlorphenamine and immediate discontinuation of the suramin infusion. Subsequent investigation showed that the suramin dose had been infused more rapidly than prescribed. Further doses administered as slow infusions were uncomplicated.

Hypotension persisted for 4 days but did not necessitate vasopressors. Results of a short synacthen test, electrocardiogram, and echocardiogram were normal.

After the patient received 2 treatment doses of suramin and analysis of repeat blood films confirmed that parasitemia had cleared, a lumbar puncture was performed. The cerebrospinal fluid (CSF) had 4 leukocytes/[micro]L and normal levels of protein and glucose, and no trypanosomes were detected after double centrifugation.

The patient received a full course of suramin for early-stage disease, (regimen in Table 1), which resulted in full recovery. As follow-up care, the patient will receive repeat lumbar punctures every 3 months for 2 years to exclude occult invasion of the central nervous system (CNS). Thus far, 3 repeat lumbar punctures have shown no evidence of CNS invasion.

African trypanosomiasis is caused by the protozoan parasite T. brucei, which is transmitted by tsetse flies. Two subspecies are pathogenic in humans: T. b. gambiense in central and western Africa, and T. b. rhodesiense in eastern and southern Africa.

Disease progresses in 2 stages. In the first stage, parasites spread in the blood to the lymph nodes, liver, spleen, heart, endocrine system, and eyes (4). Untreated, they invade the CNS, which leads to second-stage or meningoencephalitic disease with characteristic sleep disturbances. Progression to the second stage may take months in T. b. gambiense infection but only weeks in T. b. rhodesiense infection.

Although trypanosomiasis is uncommon in travelers, it should be considered in the differential diagnosis of patients with fever who have returned from trypanosomiasis-endemic areas of Africa (5). Recent reports suggest an increase in cases emerging from Zambia, particularly from the South Luangwa Valley (Table 2) (6). Whether these cases reflect an increased risk for infection in that region or increasing tourism in a trypanosomiasis-endemic area is unclear. Infection in travelers is usually characterized by an acute febrile illness, sometimes associated with a macular evanescent rash or chancre (2,4). Laboratory tests often indicate anemia, thrombocytopenia, leukopenia, impaired renal function, electrolyte disturbances, coagulation abnormalities, and elevation in hepatic transaminase and C-reactive protein levels (2,7).

Conditions that should be considered in patients with persistent hypotension are adrenal insufficiency and cardiac dysfunction. The prevalence of adrenal insufficiency was 27% in a study of Ugandan patients with trypanosomiasis (8). Myocarditis, pericarditis, and congestive cardiac failure have been described and should be excluded by electrocardiogram and echocardiography (4).

The treatment for first-stage T. b. rhodesiense infection is intravenous suramin, given as 5 injections of 20 mg/kg each over 3-4 weeks (2,4). Early hypersensitivity reactions to suramin (i.e., nausea, circulatory collapse, and urticaria) are described in 0.1%-0.3% of patients; thus, an initial test dose is advocated (9).

Second-stage T. b. rhodesiense infection is treated with melarsoprol, a highly toxic arsenical which causes a severe reactive encephalopathy in -10% of patients, half of whom die as a result (10). This toxicity among patients emphasizes the importance of accurate staging, which is determined by CSF examination. According to World Health Organization guidelines, the presence of >5 leukocytes/uL and/or the presence of trypanosomes in the CSF indicates second-stage disease (11). Lumbar puncture should be deferred until clearance of blood parasitemia has been confirmed.

In view of our patient's rapid onset of a high level of parasitemia, we investigated the possibility of a genetic susceptibility to trypanosomal infection. Human plasma contains a trypanosome lytic factor called apolipoprotein L-1 (APOL1) (12). This protein causes lysis of T. brucei subspecies other than rhodesiense and gambiense, both of which have acquired resistance to it (13). In 2006, Vanhollebeke et al. (14) described a patient infected with T. evansi, which is usually sensitive to APOL1. The patient's serum lacked APOL1 due to mutations in the APOL1 gene, rendering him susceptible to a species regarded as nonpathogenic in humans. We sequenced the APOL1 gene of our patient, but no substantial variations suggesting enhanced susceptibility were detected.


In summary, trypanosomiasis remains rare in travelers, but possible infection should be considered in patients with fever who have returned from trypanosomiasis-endemic areas of Africa. Early reporting of trypanosomiasis cases to ProMED-mail allows timely recognition of emerging safari destinations that present an increased risk for infection to travelers. In patients with T. b. rhodesiense infection, multi-organ dysfunction may develop in early-stage disease. Treatment of such cases should be managed with critical care support, and it should be remembered that rapid infusion of suramin may precipitate circulatory collapse.


We acknowledge Anthony Macheta from Furness General Hospital.

Dr Cottle is a specialist registrar in infectious diseases at the Tropical and Infectious Disease Unit in Liverpool, UK.


(1.) Welburn SC, Picozzi K, Fevre EM, Coleman PG, Odiit M, Carrington M, et al. Identification of human-infective trypanosomes in animal reservoir of sleeping sickness in Uganda by means of serum-resistance-associated (SRA) gene. Lancet. 2001;358:2017-9. http://

(2.) Brun R, Blum J, Chappuis F, Burri C. Human African trypanosomiasis. Lancet. 2010;375:148-59.

(3.) Abramowicz M. Drugs for parasitic infections. In: Abramowicz M, editor. The medical letter on drugs and therapeutics. New Rochelle (NY): The Medical Letter, Inc; 2000. p. 1-12.

(4.) Kennedy PG. The continuing problem of human African trypanosomiasis (sleeping sickness). Ann Neurol. 2008;64:116-26. http://

(5.) Gautret P, Clerinx J, Caumes E, Simon F, Jensenius M, Loutan L, et al. Imported human African trypanosomiasis in Europe, 2005-2009. Euro Surveill. 2009;14:pii:19327.

(6.) ProMED-mail. Archive nos. 20100915.3338, 20101022.3833, and 20101111.4093 [cited 2011 Sep 22].

(7.) Sinha A, Grace C, Alston WK, Westenfeld F, Maguire JH. African trypanosomiasis in two travelers from the United States. Clin Infect Dis. 1999;29:840-1.

(8.) Reincke M, Arlt W, Heppner C, Petzke F, Chrousos GP, Allolio B. Neuroendocrine dysfunction in African trypanosomiasis. Ann N Y Acad Sci. 1998;840:809-21. tb09619.x

(9.) Burri C. Chemotherapy against human African trypanosomiasis: is there a road to success? Parasitology. 2010;137:1987-94. http://

(10.) Rodgers J. Human African trypanosomiasis, chemotherapy and CNS disease. J Neuroimmunol. 2009;211:16-22. http://dx.doi. org/10.1016/j.jneuroim.2009.02.007

(11.) World Health Organization. Control and surveillance of African trypanosomiasis. Report of a WHO expert committee. WHO Technical Report Series. 1998;881:I-VI, 1-114.

(12.) Vanhamme L, Paturiaux-Hanocq F, Poelvoorde P, Nolan DP, Lins L, Van Den Abbeele J, et al. Apolipoprotein L-I is the trypanosome lytic factor of human serum. Nature. 2003;422:83-7. http://dx.doi. org/10.1038/nature01461

(13.) Pays E, Vanhollebeke B. Human innate immunity against African trypanosomes. Curr Opin Immunol. 2009;21:493-8. http://dx.doi. org/10.1016/j.coi.2009.05.024

(14.) Vanhollebeke B, Truc P, Poelvoorde P, Pays A, Joshi PP, Katti R, et al. Human Trypanosoma evansi infection linked to a lack of apolipoprotein L-I. N Engl J Med. 2006;355:2752-6. http://dx.doi. org/10.1056/NEJMoa063265

Lucy E. Cottle, Joanna R. Peters, [1] Alison Hall, J. Wendi Bailey, Harry A. Noyes, Jane E. Rimington, Nicholas J. Beeching, S. Bertel Squire, and Mike B.J. Beadsworth

Author affiliations: Royal Liverpool University Hospital, Liverpool, UK (L.E. Cottle, J.R. Peters, A. Hall, N.J. Beeching, S.B. Squire, M.B.J. Beadsworth); Liverpool School of Tropical Medicine, Liverpool (J.W. Bailey, N.J. Beeching, S.B. Squire, M.B.J. Beadsworth); University of Liverpool, Liverpool (H.A. Noyes); and Hawkshead Medical Practice, Ambleside, UK (J.E. Rimington)


[1] Current affiliation: Worthing Hospital, Worthing, UK.

Address for correspondence: Lucy E. Cottle, Specialist Registrar in Infectious Diseases, Tropical and Infectious Disease Unit, Royal Liverpool University Hospital, Prescot St, Liverpool L7 8XP, UK; email:

Table 1. Treatment regimen for Trypanosoma brucei rhodesiense
infection in adults *

Disease    Drug, route of
stage      administration                   Regimen

First         Suramin,        Test dose of 100 mg in 100 mL 0.9%
            intravenous       saline over 30 min on day 0; and 5
                            doses of 20 mg/kg (maximum 1 g/dose) in
                            250 mL 0.9% saline over 3 h on days 1,
                                         3, 7, 14, 21

Second      Melarsoprol,    2.0/3.6 mg/kg/d (maximum 180 mg/d) for
            intravenous      3 d; after 7 d, 3.6 mg/kg/d for 3 d;
                              after 7 more d, 3.6 mg/kg/d for 3 d

stage                  Adverse effects

First       Hypersensitivity reactions (early and
           late); nephrotoxicity, hepatotoxicity,
                hemolytic anemia, peripheral
                neuropathy, agranulocytosis,
               thrombocytopenia, and cutaneous

Second      Encephalopathy, cutaneous reactions,
               peripheral neuropathy, cardiac
            arrhythmias, thrombophlebitis, fever,
                      and gastric upset

* Source of drug regimen: Brun et al. (2) and Abramowicz (3).

([dagger]) In frail patients, begin with 18 mg melarsoprol and
progressively increase dose (3). Pretreatment with suramin for
2-4 d is recommended for debilitated patients.

Table 2. Reports to ProMED-mail of Trypanosoma brucei rhodesiense
infections associated with travel to or bordering Zambia, 2010 *

Month of         ProMED-mail          Nationality
report           archive no.           of patient

September       20100915.3338           Zambian

                20100915.3338           American

October         20101022.3833           British

                20101022.3833           British

November        20101111.4093        South African
                                      national of

Month of       Travel activity             Area visited

September       Visiting game      South Luangwa Valley, Zambia

                Hunting safari     South Luangwa Valley, Zambia

October         Camping safari     South Luangwa National Park,
([dagger])                         Lower Zambezi National Park,
                                    Kafue National Park, Zambia

              Visiting national      Mana Pools National Park,
                     park           Zimbabwe (bordering Zambia)

November            Hiking          Luangwa River area, Zambia

* Reports in (6). Since the start of 2005, 11 other cases of T. b.
rhodesiense infection in travelers have been reported in ProMED-
mail; those cases were acquired in Uganda (1), Tanzania (3), and
Malawi (7).

([dagger]) Case presented in this report.
COPYRIGHT 2012 U.S. National Center for Infectious Diseases
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2012 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:DISPATCHES
Author:Cottle, Lucy E.; Peters, Joanna R.; Hall, Alison; Bailey, J. Wendi; Noyes, Harry A.; Rimington, Jane
Publication:Emerging Infectious Diseases
Geographic Code:6ZAMB
Date:Feb 1, 2012
Previous Article:High seroprevalence of enterovirus infections in apes and old world monkeys.
Next Article:Phylogeography of Francisella tularensis subsp. holarctica, Europe.

Terms of use | Privacy policy | Copyright © 2021 Farlex, Inc. | Feedback | For webmasters