Printer Friendly

Mother-of-pearl on ice: new ceramics might serve in bones and machines.

Beneath the shimmer of an oyster's mother-of-pearl, an intricate microstructure bestows both strength and toughness on the natural ceramic. Now, scientists have come up with a way to replicate that structure in human-made substances.

The process exploits one of the most common transformations in nature--the freezing of water--so it's remarkably simple and potentially inexpensive and environmentally friendly, its developers say.

These researchers, at the Lawrence Berkeley (Calif.) National Laboratory, have used their new approach to create an exceptionally rugged substance that may serve as a scaffold for new bone growth. The method also works well with nonbiological materials, report Sylvain Deville and his colleagues in the Jan. 27 Science. Using it, the team has fabricated novel metalceramic composites that benefit from a seashell-like internal architecture.

Mollusks such as abalone and oysters create their iridescent armor, known as nacre, from brittle calcium carbonate microcrystals and pliant proteins arranged like bricks and mortar, respectively (SN." 5/16/92, p. 328). Materials specialists have long envied the composite's resilience, which is superior to that of human-made ceramics.

Past efforts to artificially replicate the shells' architecture have typically stalled after a few microlayers or generated cruder laminations than those in the real stuff, says team member Eduardo Saiz (SN: 6/21/03, p. 397). Using the new method, he, Deville, and Antoni P. Tomsia of the Lawrence Berkeley lab and Ravi K. Nalla, now at Intel Corp. in Chandler, Ariz., fabricated centimeters-thick chunks of ceramic with internal layering almost as thin as that of natural nacre.

"This is an exciting paper," comments Manfred Ruhle of the Max Planck Institute for Metals Research in Stuttgart, Germany. The new approach "represents a breakthrough in processing advanced materials," he adds.

To make a microstructured ceramic, Deville and his colleagues mixed water with finely ground ceramic powder and polymer binders. They then poured the blend into a chamber a few centimeters across. By carefully controlling subfreezing temperatures at the chamber's bottom and top, the researchers produced a temperature gradient that generated an ice structure sometimes observed in frozen seawater.

In that structure, sheets of microscopic hexagonal ice crystals formed vertically in the chamber. As those crystals grew, they forced the powder and binders to congregate between the pure-ice sheets. Freeze-drying removed the ice, and high-temperature sintering then solidified each ceramic-binder layer into a solid plate. Finally, the researchers selected a substance to play the role of nacre's protein and introduced it into the spaces between the ceramic plates.

To create bonelike composites, the researchers employed epoxy as the mortar between plates of hydroxyapatite, which is the predominant ceramic in bone and teeth. For nonbiologieal materials, they bound alumina plates with a mortar containing an alloy of aluminum and silicon and, in some eases, titanium. Such composites may prove useful to many industries, including electronics, machining, and aerospace manufacturing.
COPYRIGHT 2006 Science Service, Inc.
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2006, Gale Group. All rights reserved. Gale Group is a Thomson Corporation Company.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:This Week
Author:Weiss, B.
Publication:Science News
Geographic Code:1USA
Date:Jan 28, 2006
Words:470
Previous Article:Red alert for red apes: DNA shows big losses for Borneo orangutans.
Next Article:Charting the past: surveys map two lost harbors of Phoenicia.
Topics:


Related Articles
Ancient burial emerges in honduran cave.
Getting the goods in Ecuador.
Material mimics mother-of-pearl in form and substance. (Material Science).
Caviar dreams: David Mills offers a culinary delight of the finest quality.
A flair for cooking cuisine de region.
Mother-of-pearl on ice.
Strickland Ellis.

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters