Printer Friendly

Monetary policy surprises and interest rates: choosing between the inflation-revelation and excess sensitivity hypotheses.

Romer and Romer (2000) reported that federal funds rate increases may raise expected inflation by revealing the Federal Reserve's private information about inflation. Gurkaynak, Sack, and Swanson (2005a) presented evidence that funds rate increases lowered long-term expected inflation. To choose between these hypotheses, we examine how monetary policy surprises affect daily traded commodity prices, term interest rates, and forward interest rates. We find that funds rate increases in the 1970s raised gold and silver prices and that increases after 1989 lowered gold and silver prices. We also find that funds rate hikes over both sample periods primarily affected short-term interest rates and near-term forward rates/For the 1970s, these results suggest that Romer and Romer's explanation is correct. For recent years, they indicate that funds rate increases affect real rates and may also be consistent with the findings of Gurkaynak, Sack, and Swanson.

JEL Classification: E43, E52

1. Introduction

Why do increases in the Federal Reserve's (Fed's) target for the federal funds rate raise interest rates on long-term Treasury securities? One might expect that contractionary monetary policy would raise short-term rates because of a liquidity effect and reduce long-term rates by lowering expected inflation. Yet Cook and Hahn (1989) reported that increases in the Fed's target for the federal funds rate from September 1974 to September 1979 raised interest rates at all horizons. Similarly, Kuttner (2001) found that unanticipated increases in the federal funds rate target over the June 1989 to February 2000 period increased interest rates at all maturities.

One interpretation of the results of Cook and Hahn (1989) and Kuttner (2001) is that contractionary monetary policy raises longer-term real interest rates. The nominal interest rate equals the real interest rate plus the expected inflation rate. If contractionary monetary policy lowers expected inflation or leaves it unchanged, then evidence that it increases the nominal interest rate implies that it must also be increasing the real interest rate.

Romer and Romer (2000) provided an alternative explanation for these findings. They showed that the Fed has substantially more information about future inflation than is available from commercial forecasts. Their results imply that the optimal strategy for individuals with access to both the Fed's forecasts and commercial forecasts would be to rely exclusively on the Fed's forecasts. They also demonstrated that Federal Reserve policy actions reveal some of the Fed's private information about inflation. An increase in the federal funds rate target could thus increase interest rates by raising expectations of future inflation.

Gurkaynak, Sack, and Swanson (2005a) presented evidence indicating that increases in the federal funds rate target have the opposite effect, lowering expected inflation from 1990-2002. They found that unexpected increases in the funds rate target lower the one-year forward rate 10 years ahead. They also found that real long-term forward rates derived from inflation-indexed Treasury securities do not respond to monetary policy surprises, while the compensation for inflation responds with a significant negative coefficient to positive innovations in the federal funds rate target. They interpreted these findings to mean that surprise increases in the federal funds rate target lower future expected inflation. Their conclusion is thus exactly the opposite of Romer and Romer's (2000) information-revelation explanation.

Ellingsen and Soderstrom (2001) presented a model that encompasses the models of Romer and Romer (2000) and Gurkaynak, Sack, and Swanson (2005a). In their model unanticipated changes in the central bank rate can occur because the central bank has private information about the economy or because the central bank changes its preferences for inflation stabilization relative to output stabilization. Romer and Romer focused on the first effect, and Gurkaynak, Sack, and Swanson focused on the second.

Campbell (1995) noted that the effect of funds rate increases on inflation expectations should depend on the Fed's credibility in fighting inflation. If the Fed's anti-inflationary policies are credible, then they should forestall increases in longer-run expected inflation. If they are not credible, then they may increase both shorter-term real rates and longer-term expected inflation.

Bernanke and Mishkin (1997) have argued that central bank credibility in financial markets depends on delivering low inflation. Inflation in the United States in the 1970s was high and volatile, while inflation since 1990 has been quiescent. Thus, as Yellen (2006) discussed, the Fed's credibility was much weaker in the 1970s than it is now. (1)

The response of financial markets to news of funds rate changes might thus have been different in the 1970s than in more recent years. In the 1970s a funds rate increase, in addition to raising short-term real rates, might have increased expected inflation through the channel discussed by Romer and Romer (2000). In the 1990s and the first decade of the 21st century a funds rate increase, rather than leading investors to anticipate higher inflation, might have led them to believe that the Fed would be tougher on inflation. It could thus have lowered expected inflation.

One way to test whether monetary policy surprises affected inflation expectations differently in recent years than in the 1970s is to look at how they impacted daily traded commodity prices. (2) Commodities such as gold and silver are widely regarded as hedges against inflation. The evidence of Gurkaynak, Sack, and Swanson (2005a) implies that unexpected increases in the federal funds rate after 1990 lowered longer-term expected inflation and raised short-term real interest rates. Frankel and Hardouvelis (1985), Hardouvelis and Barnhart (1989), Frankel (2008), and others have shown that if monetary policy actions are expected to increase real interest rates they will lower commodity prices, and if they are expected to lower inflation they will also lower commodity prices. Thus, if positive federal funds rate innovations are having the effects posited by Gurkaynak, Sack, and Swanson (2005a), they should unambiguously lower commodity prices. On the other hand, the evidence of Romer and Romer (2000) indicates that funds rate increases raise short-term real interest rates and raise longer-term expected inflation. Higher short-term real interest rates would lower commodity prices and higher expected inflation would raise them. Thus, if funds rate hikes are having the effects posited by Romer and Romer (2000), they may either raise or lower commodity prices. (3)

In addition to commodity prices we also investigate how monetary surprises affect term interest rates and forward interest rates. Looking only at term interest rates, as Cook and Hahn (1989) did, does not indicate whether long-term yields increase because far-ahead forward rates increase or because short-term rates increase significantly with constant or even lower forward rates. (4) Looking at forward rates can help resolve this issue. Using nominal forward and term rates together with commodity prices then allows us to determine whether funds rate target changes affect real rates or the compensation for inflation. (5)

We find that positive funds rate innovations raised gold and silver prices during the 1970s and lowered them after 1989. In addition, funds rate hikes over both sample periods primarily affected short-term interest rates and near-term forward rates. These results indicate that Romer and Romer's (2000) information-revelation explanation applied in the 1970s, when the Fed lacked credibility. They also imply that funds rate increases in recent years affected short-term real rates. The findings for commodity prices in recent years are consistent with the conclusions of Gurkaynak, Sack, and Swanson (2005a). The statistically insignificant response of far-ahead forward rates is inconsistent with Gurkaynak, Sack, and Swanson's findings, however, and may occur because we lack data to test for a response over a narrow (30-minute) window. (6)

The next section discusses the data and methodology that we employ, section 3 presents the results, and section 4 concludes.

2. Data and Methodology

Cook and Hahn (1989) collected a sample of 76 changes in the Fed's target for the federal funds rate from September 1974 to September 1979. They argued that the Fed controlled the funds rate so closely over this period that investors could perceive changes in the target on the day that they were implemented. The next day, these changes were reported in the Wall Street Journal. They found that in 71 of the 76 cases, changes recorded in the Wall Street Journal corresponded to changes recorded in the Federal Reserve's Record of Open Market Operations.

Cook and Hahn (1989) regressed interest rate changes for Treasury securities of all maturities on the size of the federal funds rate target change:

[DELTA][R.sub.t] = [b.sub.1] + [b.sub.2] [DELTA][FF.sub.t] + [u.sub.t] (1)

where [DELTA][FF.sub.t] is the change in the funds rate target and [DELTA][R.sub.t] is the change in the bill or bond rate over the 24-hour period bracketing the news of the funds rate target change. (7)

They argued that changes in the target were decided by the Federal Open Market Committee (FOMC) or the Account Manager of the Federal Reserve Bank of New York more than a day before they were implemented. They are thus predetermined variables and causality will be unidirectional from changes in the federal funds rate target to changes in bill and bond rates.

One problem with the Cook and Hahn (1989) approach is that their right-hand-side variable is the total (unanticipated plus anticipated) change in the funds rate target, while only the unanticipated change should affect interest rates. To measure the anticipated change in monetary policy we use an unrestricted ordinary least squares prediction equation. We regress changes in the funds rate target on a constant and monthly changes in the unemployment rate, the inflation rate, the three-month Treasury bill rate, the log of the trade weighted nominal exchange rate, and the log of the price of gold for each of the two months before the target change. We use real-time data on unemployment and inflation, available from the Federal Reserve Bank of St. Louis ALFRED database; data on interest and exchange rates, available from the Federal Reserve Bank of St. Louis FRED database; and data on gold prices, available from the Commodity Research Bureau. The adjusted [R.sup.2] from the regression is about 0.40. We then calculate the unanticipated change in the funds rate target as the actual change minus the expected change calculated using our prediction equation. (8) The equation we estimate thus has the form (9)

[DELTA][R.sub.t] = [b.sub.1] + [b.sub.2] ([DELTA][FF.sub.t] + [DELTA][FF.sup.E.sub.t]) + [u.sub.t] (2)

For dependent variables we use term interest rates, forward interest rates, and commodity price data. The term interest rates are the three-month, one-year, three-year, and five-year Treasury rates, obtained from Cook and Hahn (1989). The forward rates are one-year forward rates one, four, and nine years ahead, obtained from Gurkaynak, Sack, and Wright (2007). The commodity price data are the changes in the log of the closing spot prices of gold and silver, obtained from the Commodity Research Bureau. (10)

We use gold and silver because Hardouvelis and Barnhart (1989) noted that the Frankel and Hardouvelis (1985) framework applies better to metals than to other commodities. They stated that metals, such as silver and gold, should be more sensitive to macroeconomic and monetary policy news than other commodities, such as sugar and soybeans.

We report results for gold and silver separately and for gold and silver stacked into a single regression. Frankel and Hardouvelis (1985) argued that stacking the commodities provides more efficient estimates. For the regressions with gold and silver included separately there are 75 observations, and for the regression with gold and silver together there are 150 observations.

Kuttner (2001) constructed a series of daily monetary policy surprises for the period from 1989 to 2000. Using data from the federal funds futures market, he decomposed changes in the funds rate target into anticipated ([DELTA][FF.sup.E.sub.t]) and unanticipated ([DELTA][FF.sup.U.sub.t]) components. He found that unanticipated changes in the fund rate target are positively correlated with changes in nominal interest rates at all horizons.

We use Kuttner's (2001) series of monetary policy surprises as our right-hand-side variable over the more recent sample period. (11) We do not include anticipated funds rate changes in our regressions, since Kuttner reported that these did not affect interest rates. We also extend his series for [DELTA][FF.sup.U.sub.t] from February 2000 until June 2006, giving us 65 observations over the 1989 to 2006 period. (12)

3. Results

Table 1 presents the results using the Cook and Hahn (1989) data, and Table 2 presents the results using the Kuttner (2001) data. In both cases unexpected federal funds rate changes have the largest effect on shorter-term interest rates. Over the Cook-Hahn period a 100-basis-point unexpected increase in the funds rate target raises the three-month Treasury rate by 48 basis points, the one-year rate by 43 basis points, the three-year rate by 27 basis points, and the five-year rate by 19 basis points. Over the more recent period a 100-basis-point positive innovation in the funds rate target raises the three-month Treasury rate by 56 basis points, the one-year rate by 51 basis points, the three-year rate by 37 basis points, and the five-year rate by 33 basis points.

In both Tables 1 and 2 monetary policy surprises only affect near-term forward rates. (13) An unexpected 100-basis-point increase in the target raises the one-year forward rate one year ahead by 23 basis points over the Cook-Hahn period and by 32 basis points over 1989-2006. Consistent with Gurkaynak, Sack, and Swanson (2005a), we do find a negative coefficient when using one-year forward rates nine years ahead. The coefficient is not statistically significant however.

Gurkaynak, Sack, and Swanson (2005b) also found that monetary policy surprises do not have a highly statistically significant effect on far-ahead forward rates. Using a 30-minute window and the five-year forward rate five years ahead, they reported a negative coefficient that was significant at the 10% level. However, using a one-hour or daily window, they reported statistically insignificant negative coefficients. In our case, monetary policy surprises may have a statistically significant effect on the one-year forward rate nine years ahead over a 30-minute period. Unfortunately we do not have intra-day data to test for this.

Unexpected federal funds rate changes have a statistically significant effect on commodity prices in Tables 1 and 2. It is noteworthy, though, that the signs of the coefficients change between the two periods. In Table 1 the coefficients range from 2.55 to 3.19, implying that a 100-basis-point unexpected increase in the funds rate raised commodity prices by about 3%. The coefficients are statistically significant for gold and silver individually and gold and silver together. In Table 2 the coefficients range from -1.31 to -1.91, implying that a 100-basis-point positive innovation in the funds rate lowered commodity prices by about 1.5%. The coefficients are statistically significant for gold individually and for gold and silver together but not for silver individually.

Frankel and Hardouvelis (1985) also reported that coefficients on individual commodities are sometimes not statistically significant or only marginally so, but the coefficients on the commodities combined together are highly statistically significant. This pattern could reflect the fact that individual commodities are influenced not only by macroeconomic news but also by commodity-specific noise.

The results in Table 1 for the 1970s indicate that federal funds rate target increases primarily raised short-run expected inflation. Contractionary monetary policy raised shorter-term interest rates, near-term forward rates, and commodity prices but did not affect more distant forward rates. These findings indicate that the effect of monetary policy on short-term expected inflation outweighed the effect on short-term real interest rates in the 1970s. Evidently Federal Reserve policy actions caused investors to revise their forecasts of inflation over the next couple of years.

The results in Table 2 for the period since 1989 indicate that federal funds rate target increases primarily raised short-term real interest rates. Contractionary monetary policy raised shorter-term interest rates and near-term forward rates, lowered commodity prices, and did not affect more distant forward rates. These findings indicate that the effect of monetary policy on short-term real interest rates outweighed any effect on short-run expected inflation through the channel discussed by Romer and Romer (2000). Apparently funds rate target changes in recent years caused real interest rates to move in the same direction and, for this reason, affected commodity prices. This effect has been emphasized by Frankel (2008).

Funds rate target changes may also have been affecting longer-term expected inflation in the manner posited by Gurkaynak, Sack, and Swanson (2005a). We cannot establish this from our data set because we do not have evidence that far-ahead forward rates responded to monetary policy. The absence of a statistically significant response may occur because we do not have higher frequency (e.g., 30-minute) data on changes in distant forward rates. It may also occur because the Fed signaled its intentions about policy choices before FOMC meetings so well over the 2002-2006 period that the monetary policy surprises were often zero. With the independent variable measured at zero and the dependent variable having nontrivial variance, regressions including this period would tend to have higher standard errors and lower levels of statistical significance. (14)

The important implication of the results presented here is that changes in the funds rate target had asymmetric effects on commodity prices in the 1970s as compared to the period from 1989-2006. In the 1970s investors responded to target increases by increasing their demand for commodities, evidently as a hedge against inflation. Over the period from 1989-2006, they responded to target increases by decreasing their demand for commodities, indicating that they expected real interest rates to increase. These results indicate that the Fed lacked credibility in the 1970s but has since gained credibility.

4. Conclusion

Romer and Romer (2000) and Gurkaynak, Sack, and Swanson (2005a) have investigated the response of financial markets to monetary policy surprises. Romer and Romer presented evidence suggesting that increases in the federal funds rate target may increase interest rates partly by raising expected inflation. Gurkaynak, Sack, and Swanson presented evidence that funds rate target increases lowered long-term expected inflation. Campbell (1995) argued that if the Fed's anti-inflationary policies are credible, they should forestall increases in longer-run expected inflation. If they are not credible, however, they may increase expected inflation. Since the Fed has gained credibility in recent years but lacked credibility in the 1970s, the effect of funds rate increases on expected inflation may have varied over time.

To test for this, we examine the response of gold and silver prices to changes in the funds rate target in the 1970s and from 1989-2006. Frankel and Hardouvelis (1985), Frankel (2008), and others have shown that if monetary policy is expected to increase real interest rates it will lower commodity prices, and if it is expected to lower inflation it will lower commodity prices. Thus, if positive federal funds rate innovations have the effects posited by Gurkaynak, Sack, and Swanson (2005a), they should unambiguously lower commodity prices. On the other hand, if funds rate increases have the effects posited by Romer and Romer (2000), they should either raise commodity prices or have a mixed effect on them.

We find that funds rate hikes over both sample periods primarily affected short-term interest rates and near-term forward rates. In addition, positive funds rate innovations raised gold and silver prices during the 1970s and lowered commodity prices after 1989. These results imply that in the 1970s investors responded to target rate hikes by increasing their demand for commodities, evidently as a hedge against inflation. Over 1989-2006, they responded to target rate increases by bidding down commodity prices, evidently because they expected short-term real interest rates to increase. These results support Romer and Romer's (2000) hypothesis for the 1970s. The findings for commodity prices in recent years are also consistent with the conclusions of Gurkaynak, Sack, and Swanson (2005a); although, the results for distant forward rates are not.

The findings reported here underscore the importance of credibility for monetary policy. Federal funds rate changes can affect economic activity if they move longer-term real interest rates and the value of the dollar in the same direction. However, if funds rate increases raise expected inflation then the link between funds rate changes, real interest rates, and the dollar will be attenuated. To maintain the effectiveness of monetary policy, the Fed thus needs to preserve its inflation-fighting credibility.

References

Bernanke, Ben S., and Frederic S. Mishkin. 1997. Inflation targeting: A new framework for monetary policy. Journal of Economic Perspectives 11:97-116.

Campbell, John Y. 1995. Some lessons from the yield curve. Journal of Economic Perspectives 9:129-52.

Cook, Timothy, and Thomas Hahn. 1989. Federal reserve information and the behavior of interest rates. Journal of Monetary Economics 24:331-51.

Ellingsen, Tore, and UIf Soderstrom. 2001. Monetary policy and market interest rates. American Economic Review 91:1594-1607.

Engel, Charles, and Jeffrey Frankel. 1984. Why interest rates react to money announcements: An explanation from the foreign exchange market. Journal of Monetary Economics 13:31-9.

Frankel, Jeffrey. 2008. The effect of monetary policy on real commodity prices. Forthcoming in Asset Prices and Monetary Policy, edited by John Y. Campbell. Chicago: University of Chicago Press, pp. 291-333.

Frankel, Jeffrey, and Gikas Hardouvelis. 1985. Commodity prices, money surprises, and fed credibility. Journal of Money, Credit, and Banking 17:425-38.

Gurkaynak, Refet, Brian Sack, and Eric Swanson. 2005a. The excess sensitivity of long-term interest rates: Evidence and implications for macroeconomic models. American Economic Review 90:425-36.

Gurkaynak, Refet, Brian Sack, and Eric Swanson. 2005b. Do actions speak louder than words? The response of asset prices to monetary policy actions and statements. International Journal of Central Banking 1:55-93.

Gurkaynak, Refer, Brian Sack, and Jonathan Wright. 2007. The U.S. treasury yield curve: 1961 to the present. Journal of Monetary Economies 24:2291-2304.

Hardouvelis, Gikas. 1984. Market perceptions of federal reserve policy and the weekly monetary announcements. Journal of Monetary Economics 14:225-40.

Hardouvelis, Gikas, and Scott Barnhart. 1989. The evolution of federal reserve credibility, 1978-1984. Review of Economies and Statistics 71:385-94.

Jones, David. 1994. Monetary policy as viewed by a money market participant. In The Art of Monetary Policy, edited by David C. Colander and Dewey Daane. Armonk, NY: M.E. Sharpe, pp. 85-100.

Kuttner, Kenneth N. 2001. Monetary policy surprises and interest rates: Evidence from the federal funds futures market. Journal of Monetary Economics 47:527-44.

Pagan, Adrian. 1984. Econometric issues in the analysis of regressions with generated variables. International Economic Review 25:221-47.

Romer, Christina, and David Romer. 2000. Federal reserve information and the behavior of interest rates. American Economic Review 90:429-57.

Volcker, Paul. 2006. An interview with Paul Volcker. In Inside the Economist's Mind, edited by Paul A. Samuelson and William A. Barnett. Boston: Blackwell Publishing, pp. 175-185.

Yellen, Janet. 2006. Enhancing fed credibility. Luncheon keynote speech to the Annual Washington Policy Conference sponsored by the National Association for Business Economics, 13 March 2006, Washington, D.C.

(1) Paul Volcker (2006) discussed how financial markets were roiled by Federal Reserve interest rate hikes in 1979 because the Fed lacked credibility.

(2) It is also possible to test for this by examining the response of exchange rates to monetary policy surprises (see Engel and Frankel 1984). However, in the 1970s funds rate increases were sometimes accompanied by interventions in the foreign exchange market designed to strengthen the dollar. These interventions would bias our estimates of the effects of federal funds target changes on exchange rates. In addition, daily Fed exchange rate data report noon values rather than closing values. These are less useful because some of the funds rate changes were made before noon and some were made after noon. We thus focus on the effects of funds rate changes on commodity prices.

(3) Frankel and Hardouvelis (1985) and Hardouvelis and Barnhart (1989) examined the response of gold and silver and other commodities to weekly money supply announcements before and after the Fed changed its monetary policy operating procedures in October 1979 in order to fight inflation. After the middle of 1980 they found that news of unexpected increases in the money supply lowered metals prices but before this time they found that news of positive money supply innovations raised metals prices. They interpreted these results to mean that the Fed gained credibility as an inflation fighter only starting in 1980.

(4) We are indebted to an anonymous referee for this point.

(5) In principle, there should be a close relationship between short-term nominal interest rates and commodity prices because of the arbitrage condition linking commodity price changes, short-term interest rates, and storage costs (see Frankel 2008). Increases in longer-term expected inflation can also raise commodity prices by increasing the demand for commodities as a hedge against inflation.

(6) Alternatively, the statistically insignificant coefficients may reflect the fact that monetary policy surprises during 20022006 were often zero. In these cases changes in the independent variable do not explain changes in the dependent variable, increasing the standard errors of the regression coefficients.

(7) Cook and Hahn (1989) excluded one observation, giving them a sample of 75 funds rate changes.

(8) The results reported below do not change much when we follow Cook and Hahn (1989) by using total changes in the federal funds rate target rather than unanticipated changes in the target. These results are available on request.

(9) Pagan (1984) showed that standard errors will remain consistent when employing estimated residuals as a right-hand side variable, provided that the corresponding predicted values are not also included in the regression. We thus do not include the expected change in the federal funds rate target as a separate explanatory variable.

(10) The file names from the Commodity Research Board database are gc--y for gold and si--y for silver.

(11) We do not include the 1980-1989 period because, as Jones (1994) discussed, the Fed abandoned funds rate targeting in 1979. From 1979 1982 it targeted nonborrowed reserves. After this it followed a borrowing guideline. Jones argued that it was only after the appointment of Alan Greenspan as Federal Reserve Chairman in the late 1980s that the funds rate again became the best indicator of Fed policy.

(12) We thank Andrew Swiston of the International Monetary Fund for providing us updated data on unexpected changes in the fed funds target calculated from the led funds futures market.

(13) Hardouvelis (1984) also found that monetary policy news affected near-term forward rates.

(14) We are indebted to an anonymous referee for this point.

Willem Thorbecke, George Mason University, and Senior Fellow, Research Institute of Economy, Trade and Industry, 1-3-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8901, Japan. Tel.: 81-3-35018286; E-mail wthorbec@gmu.edu; corresponding author.

Hanjiang Zhang, Department of Finance, McCombs School of Business, University of Texas at Austin, 1 University Station B6000, Austin, TX 78712 USA; E-mail Hanjiang.Zhang@mccombs.utexas.edu.

We thank the co-editor (Kent Kimbrough), two anonymous referees, and seminar participants at the Research Institute of Economy, Trade and Industry for many helpful comments. We also thank Andrew Swiston for generously providing us data on unexpected changes in the federal funds rate target.

Received February 2008; accepted August 2008.
Table 1. The Effect of Changes in the Federal Funds Rate Target
on Interest Rates and Commodity Prices over the 1974-1979 Sample
Period (a)

                                          Change in Federal
Dependent Variable       Constant         Funds Rate Target

Term Interest Rates
  3-month Treasury       0.03 (1.17)       0.48 *** (3.06)
  1-year Treasury        0.03 * (1.67)     0.43 *** (3.66)
  3-year Treasury        0.02 ** (2.01)    0.27 *** (3.31)
  5-year Treasury        0.01 (1.42)       0.19 *** (3.14)

One-Year Forward Rates
  1 year ahead           0.02 * (1.67)     0.23 *** (2.76)
  4 years ahead          0.01 (1.35)       0.04 (1.64)
  9 years ahead          0.01 ** (2.11)   -0.01 (-0.33)

Commodity Prices
  Gold and Silver        0.15 (1.43)       2.87 *** (4.41)
  Gold                   0.12 (0.75)       2.55 *** (2.77)
  Silver                 0.17 (1.41)       3.19 *** (3.99)

Dependent Variable       Adjusted [R.sup.2]

Term Interest Rates
  3-month Treasury             0.19
  1-year Treasury              0.21
  3-year Treasury              0.21
  5-year Treasury              0.15

One-Year Forward Rates
  1 year ahead                 0.15
  4 years ahead                0.01
  9 years ahead               -0.01

Commodity Prices
  Gold and Silver              0.07
  Gold                         0.08
  Silver                       0.06

Sample: 9/13/74-9/19/79. The sample includes 75 unexpected changes
in the federal funds rate target over this period. For gold and
silver stacked together, there are 150 observations. The
t-statistics are in parentheses. Heteroskedasticity consistent
standard errors are used to calculate the t-statistics.

* p = 0.10.

** p = 0.05.

*** p = 0.01.

Table 2. The Effect of Changes in the Federal Funds Rate
Target on Interest Rates and Commodity Prices over the 1989-2006
Sample Period (a)

                                            Change in Federal Funds
Dependent Variable          Constant              Rate Target

Term Interest Rates
  3-month Treasury       -0.02 * (-1.84)        0.56 *** (3.41)
  1-year Treasury        -0.02 ** (-2.29)       0.51 *** (3.47)
  3-year Treasury        -0.01 (-0.66)          0.37 *** (2.93)
  5-year Treasury        -0.01 * (-1.24)        0.33 *** (2.76)
One-Year Forward Rates
  1 year ahead           -0.01 (-0.69)          0.32 ** (2.15)
  4 years ahead          -0.02 (-1.33)          0.13 (1.09)
  9 years ahead          -0.02 * (-1.70)       -0.05 (-0.51)
Commodity Prices
  Gold and Silver         0.07 (0.70)          -1.61 ** (-2.45)
  Gold                   -0.06 (-0.12)         -1.91 *** (-2.86)
  Silver                  0.20 (0.17)          -1.31 (-1.03)

Dependent Variable       Adjusted [R.sup.2]

Term Interest Rates
  3-month Treasury              0.36
  1-year Treasury               0.38
  3-year Treasury               0.21
  5-year Treasury               0.14
One-Year Forward Rates
  1 year ahead                  0.14
  4 years ahead                 0.03
  9 years ahead                 0.00
Commodity Prices
  Gold and Silver               0.02
  Gold                          0.06
  Silver                        0.00

(a) Sample: 6/6/89-6/29/06. The sample includes 65 changes in the
federal funds rate target over this period. For gold and silver
stacked together, there are 130 observations. The t-statistics are in
parentheses.

* p = 0.10.

** p = 0.05.

*** p = 0.01.
COPYRIGHT 2009 Southern Economic Association
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2009 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Comment:Monetary policy surprises and interest rates: choosing between the inflation-revelation and excess sensitivity hypotheses.
Author:Thorbecke, Willem; Zhang, Hanjiang
Publication:Southern Economic Journal
Geographic Code:1USA
Date:Apr 1, 2009
Words:5010
Previous Article:Public school reform, expectations, and capitalization: what signals quality to homebuyers?
Next Article:Regional external economies and economic growth under asymmetry.
Topics:

Terms of use | Privacy policy | Copyright © 2021 Farlex, Inc. | Feedback | For webmasters