Printer Friendly

Microspore morphology of Isoetes species (Lycophyta) from southern South America.

Abstract
Resumen
Introduction
Material and Methods
 Material Studied
Results
Discussion and Conclusions
Acknowledgments
Literature Cited


Abstract

Microspores of the 24 species of Isoetes that grow in southern South America were analyzed under a light microscope and scanning electron microscope. The microspores are monolete, elliptic in polar view, 30-40 [micro]m long, and 20-25 [micro]m wide. A background with various characteristics is seen on each surface. A supra-laesural expansion is present. The perispore is ornamented and has a perforated background. In section, it has a lacunose structure. The exospore is smooth, and it has a compact structure in section. The studied species could be divided into three groups by their perispore ornamentation: equinate, rugulate, and tuberculate. Microspore size was positively correlated with increasing ploidy level, and larger microspores were associated with terrestrial habitats. A convergence in ornamentation was found between spores produced by the studied species and those that grow in regions outside of the area under study.

Resumen

Se analizaron con microscopio optico y electronico de barrido las microsporas de veinticuatro especies de Isoetes que crecen en Sud America Austral. Las microsporas son monoletes, elipticas en vista polar, de 30-40 [micro]m de longitud y 20-25 [micro]m de ancho. En superficie se observa una base con diversas caracteristicas. Una expansion sobre la lesura esta presente. El perisporio esta ornamentado y tiene una base perforada. En seccion, tiene una estructura lacunosa. El exosporio es liso y en seccion tiene estructura compacta. Las especies estudiadas se pueden reunir en tres grupos de acuerdo a la ornamentacion del perisporio, estos son: equinado, rugulado y tuberculado. Se ha observado que existe una correlacion positiva entre el tamano de las microsporas y el incremento en el nivel de ploidia y el habitat. Se observo una convergencia en la omamentacion entre las esporas producidas por las especies estudiadas y las producidas por otras especies que crecen en regiones fuera del area de estudio. Palabras clave: Sud America, Isoetes, microsporas, morfologia, escultura.

Introduction

The Isoetaceae have a worldwide distribution. They live in temperate to warm regions of all continents, from sea level to 4200 m, most frequently above 2000 m (Tryon & Tryon, 1982). Isoetes L. is a cosmopolitan genus of heterosporate Lycophyta that includes about 150 species (Tryon & Tryon, 1982), 24 of which grow in southern South America, distributed in the following countries: Argentina, Bolivia, Brazil, Chile, Paraguay, and Uruguay. The species growing in this region are I. alcalophila Halloy, I. andicola (Amstutz) Gomez, 1. boliviensis Weber, I. bradei Herter, I. brasiliensis Fuchs, I. chubutiana Hickey, Macluf & Taylor, I. ekmanii Weber, I. escondidensis Halloy, 1. eshbaughii Hickey, I. favulata Hickey, I. fusco-marginata Fuchs, I. gardneriana A. Braun, I. herzogii Weber, I. hieronymii Weber, I. itaboensis Fuchs, I. lechleri Mett., I. panamensis Maxon & Morton, I. pedersenii Fuchs, I. ramboi Herter, I. savatieri Franchet, I. sehnemii Fuchs, I. smithii Fuchs, I. spannagelii Fuchs, and I. weberi Herter.

Systematic (Pastore, 1936; Capurro, 1969) and floristic (de la Sota et al., 1998) aspects of Isoetes in southern South America have received some attention, but little information can be found in those contributions regarding palynological characteristics. The microspores of some species from the study area have been analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) by Macluf et al. (2004) and Musselman (2003). The spores of I. savatieri, analyzed with light microscopy (LM) and SEM, have been considered in papers by Morbelli (1980), Hickey (1985, 1986), Hickey et al. (2003), and Macluf et al. (2003).

Spores of other species of Isoetes growing in other regions have been examined with TEM and SEM by Lugardon (1973, 1986), Robert et al. (1973), Prada Moral and Saenz de Rivas (1978), Tryon and Lugardon (1991), Taylor (1992, 1993), and Uehara et al. (1991).

Cox and Hickey (1984), Kott and Britton (1983), Hickey (1984), Luebke and Budke (2003), and Troia (2001) analyzed the relationship between micro- and mega-sized spores with ploidy and habitat.

The aim of this work was to study with LM and SEM the general characteristics of microspores of the Isoetes species that grow in southern South America to determine whether those characteristics are reliable enough to be used for systematic purposes. In addition, the microspore assemblage produced by species of the region under study was compared with those of other regions.

Materials and Methods

Spores were obtained from fresh and herbarium specimens. The consulted herbaria are indicated by the initials used by Holmgren et al. (1990) as follows: Museo Argentino de Ciencias Naturales Bernardino Rivadavia (BA), Instituto de Botanica del Nordeste (CTES), Instituto-Fundacion "Miguel Lillo" (LIL), Museo de La Plata (LP), Conservatoire et Jardin Botaniques de la Ville de Geneve (G), Harvard University (GH), Milwaukee Public Museum (MIL), Swedish Museum of Natural History (S), Instituto de Botanica Darwinion (SI), Museo Nacional de Historia Natural (SGO), Instituto de Botanica (SP), and Smithsonian Institution (US).

The analysis was performed by LM and SEM. For LM, the material was mounted in glycerine jelly without any chemical treatment. Dimensions were estimated for 25 spores per specimen. The minimum and maximum values in micrometers are given in the text and in Table I.

For studies with SEM, the spores were handled with moist brushes without any chemical treatment and placed on double-stick tape on bronze stubs. The samples were coated with gold-palladium and examined under a Jeol JSM-35 CF microscope at the SEM laboratory of the Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina.

MATERIAL STUDIED

Isoetes alcalophila. ARGENTINA. Tucuman, Tafi, Laguna Nostra, Huaca Huasi, Cumbres Calchaquies, Halloy 171 (LIL).

I. andicola. PERU. Lima, Huarochiri, Saunders 1154 (GH).

I. boliviensis. PERU. Huamachuco, Hutchison, Wright & Straw 6143 (US).

I. bradei. BRAZIL. Brade 8119 (S).

I. brasiliensis. BRAZIL. Sao Leopold, Rio Grande do Sul, Reitz 128 (LIL).

I. chubutiana. ARGENTINA. Rio Negro, Parque Nacional Nahuel Huapi, Lago Mascardi, Taylor 6172 (MIL); Idem, Lago Guillelmo, Taylor 6169 (MIL).

I. ekmanii. ARGENTINA. Delta, Zanja de Correa, Burkart 4003 (BA 8231).

I. escondidensis. ARGENTINA. Tucuman, Laguna Escondida Media, Cumbres Calchaquies, Halloy A 311 (LIL).

I. eshbaughii. BOLIVIA. Cochabamba, Hickey & Eshbaugh 824 (GH).

I. favulata. Chile, Nahuelbuta National Park, Nishida et al. 75003 (SGO).

I. fusco-marginata. BRAZIL. Brasilia, Rambo 44875 (LIL).

I. gardneriana. BRAZIL, Goyaz, Gardner 3563 (G).

I. herzogii. BOLIVIA, Cochabamba, Hickey & Eshbaugh 822 (GH).

I. hieronymii. ARGENTINA. Cordoba, Sierra Achala, Laguna de la Cumbre, Potrerillos, Hieronymus s/n (BA 473).

I. itaboensis. PARAGUAY. Alto Paraguay, Rio Itabo, Shade s/n (CTES).

I. lechleri. BOLIVIA. Cochabamba, Hickey & Eshbaugh 821 (GH).

I. panamensis. PARAGUAY. Guarupe, Balansa 3294 (G).

I. pedersenii. ARGENTINA. Corrientes, Departamento de Mburucuya, Estancia Santa Maria, Pedersen 8105 (LP).

I. ramboi. BRASIL. Estado de Santa Catarina, Spannagel 475 (SP).

I. savatieri. ARGENTINA. Neuquen, Lago Huechulafquen, Fontana s/n (LP). Tierra del Fuego, Laguna Maravilla, Borge 110 (S).

I. smithii. BRAZIL. Rio Grande do Sul, Pachinal Preto, Bom Jesus, Reitz 3305 (LIL).

I. weberi. BRAZIL. Porto Alegre, Rambo s/n (LIL 173624).

In cases such as I. spannagelii and I. sehnemii, for which herbarium specimens were not available, the descriptions by Fuchs-Eckert (1986) were used.

The ploidy levels of the studied species were taken from Cox and Hickey (1984), Troia (2001), and Hickey et al. (2003).

Results

The microspores produced by the studied species are 30-40 [micro]m long and 20-30 [micro]m wide, monolete, elliptic in polar view, and biconvex in equatorial view (Table I). A supra-laesural expansion is always present proximally. A swelling (cf. Musselman, 2003) perpendicular to the laesura was seen in some species (Figs. 21, 34). In section, the wall, from outside to inside, is composed of perispore, para-exospore, exospore, and endospore. The perispore of Isoetes savatieri (Macluf et al., 2003) is 0.5-2.8 [micro]m thick in equatorial and distal areas and thins proximally; it has a lacunose structure. The para-exospore is formed of tangentially arranged bars and varies in thickness from 0.3 to 1 [micro]m, depending on the area of the spore measured. The exospore is 0.2-0.5 [micro]m thick. In section, it has a smooth margin and a compact structure.

[FIGURES 21 & 34 OMITTED]

With respect to the characteristics of the microspore surface, the equatorial area always shows particular features. Thus, some species show a projection, which is evident as an edge (= crest) or a blunt (= rounded) surface, and others show an ornamentation transition. Another typical characteristic of the microspores of this genus is the presence of a supra-laesural expansion, forming a kind of vestibule of variable height. In the studied spores, the supra-laesural expansion ranges from less than 1 [micro]m to more than 5 [micro]m in height. Thus, in spores of I. favulata, there is a poorly developed proximal expansion; in I. brasiliensis (Fig. 9), it is 2.5 [micro]m high; in I. eshbaughii and I. herzogii, it is 3 [micro]m high; in I. itaboensis (Fig. 31), it is 3 to 4 [micro]m high; in I. ekmanii (Fig. 12), I. gardneriana, and I. lechleri, it is 4 [micro]m high. In I. pedersenii, it is 4.5 [micro]m high, in I. andicola and I. panamensis (Fig. 37), it is 5 [micro]m high, and in I. hieronymii, it is 5.5 [micro]m high (Fig. 29).

[FIGURES 9, 12, 29, 31 & 37 OMITTED]

An equatorial projection is present in I. alcalophila (Fig. 1), I. andicola (Fig. 2), I. chubutiana (Fig. 10), I. ekmanii (Fig. 12), I. eshbaughii (Fig. 15, 17), I. favulata (Fig. 19), I. fusco-marginata (Figs. 20, 21), I. gardneriana (Fig. 23), I. hieronymii (Fig. 29), I. itaboensis (Fig. 31), I. lechleri (Fig. 34), I. savatieri (Fig. 44), I. smithii (Figs. 46, 47), and I. weberi (Fig. 48). In microspores of I. favulata, there is an equatorial projection 2.6 [micro]m thick and 2 [micro]m wide.

[FIGURES 1-2, 10, 15, 17, 19, 20, 23, 44, & 46-48 OMITTED]

A transition in ornamentation in the equatorial area is present in I. escondidensis (Fig. 13) and I. herzogii (Fig. 26).

[FIGURES 13 & 26 OMITTED]

When the spore surface is analyzed at high magnification, the background can be distinguished. It is generally composed of perforations and low sculptural elements. The shape of the latter may be the same as or different from the larger ones, as in I. chubutiana (Fig. 10), I. escondidensis (Figs. 13, 14), I. boliviensis (Fig. 3), I. lechleri (Fig. 35), and I. weberi (Fig. 48). In spores with a levigate surface, the background is composed only of perforations as in I. fusco-marginata (Fig. 22), I. hieronymii (Fig. 30), and I. eshbaugii (Fig. 16).

[FIGURES 3, 14, 16, 22, 30, & 35 OMITTED]

The perispore sculptural elements are varied: cones, echinae, echinulae, tubercles, rugulae, and granules. These elements vary in type, size, and distribution. In I. bradei (Figs. 5, 6), I. eshbaughii (Figs. 15, 16, 17), I. hieronymii (Figs. 29, 30), I. pedersenii (Figs. 40, 41), and I. weberi (Fig. 48), the echinae are sparsely distributed over the whole surface. There is variability in the size and density of the echinae on the different spore faces. They are generally higher and more densely distributed distally.

[FIGURES 5-6, & 40-41 OMITTED]

In I. bradei, there are echinae on the equatorial and distal faces and verrucae on the proximal face; some of these are branched at the apex (Fig. 6).

In I. eshbaughii, the echinae are 1 to 3 [micro]m high. In I. hieronymii, the proximal echinae are 1 to 3 [micro]m high. In I. pedersenii, the echinae are 1 to 3 [micro]m high and 0.3 to 0.5 [micro]m in diameter at the base.

The perispore has high echinae in spores produced by I. escondidensis, which are uniformly and densely distributed over the whole surface. Some of these processes have a blunt apex (Fig. 14), and others are fused at their bases and form high processes on the distal face (Fig. 13). The surface of the supra-laesural expansion has echinulae.

The spores of I. chubutiana show a perispore with echinae of different sizes, densely distributed over the whole surface (Figs. 10, 11), while verrucae are also present in equatorial and distal areas. The spores of I. andicola (Fig. 2) and I. savatieri (Figs. 44, 45) show a perispore with echinulae and small cones over the whole surface.

[FIGURES 11, & 45 OMITTED]

In the spores of I. alcalophila (Fig. 1), I. boliviensis (Fig. 3), I. herzogii (Fig. 28), and I. lechleri (Figs. 33, 34), the proximal and equatorial areas are rugulate, whereas tubercles are seen distally (Figs. 4, 26, 33). In I. boliviensis, the tubercles are 1 to 3 [micro]m high proximally and 2 to 3 [micro]m high distally, with a sharp or truncate apex. In I. lechleri, there are echinulae and rugulae proximally. These elements are also present on the supra-laesural expansion. The distal tubercles are 3 to 4 [micro]m high.

[FIGURES 4, 28, & 33 OMITTED]

The perispore shows rugulae and granules distributed over the whole surface in spores produced by I. brasiliensis (Fig. 7), I. ekmanii (Fig. 12), I. favulata (Figs. 18, 19), I. fusco-marginata (Fig. 22), I. gardneriana (Figs. 24, 25), I. itaboensis (Figs. 31, 32), I. panamensis (Figs. 37, 39), I. ramboi (Figs. 42, 43), and I. smithii (Figs. 46, 47). In I. panamensis, there are verrucae sparsely distributed on the distal surface (Fig. 37). The background is composed of perforations and granules (Fig. 39).

[FIGURES 7, 18, 24-25, 32, 39, 42-43, & 39 OMITTED]

According to the observations of Fuchs-Eckert (1986), the microspores of I. sehnemii and I. spannagelii show rugulae on the surfaces of both polar faces.

Discussion and Conclusions

In a previous study (Macluf et al., 2003) and in this study, it was found that characteristics such as ornamentation type, morphology and location of the sculpture elements, and the characteristics of the equatorial area that can be useful for systematic purposes at the infrageneric level.

Among the characteristics analyzed, ornamentation seems to be the one that allows the species to be gathered into groups, while the rest of the characteristics studied should be considered secondarily in order to further differentiate among them. These second-level characteristics are size, the height of the supra-laesural chamber, the presence or absence of a transversal swelling, and the nature of the equatorial differentiation.

The 24 species studied could be grouped according to the dominant element of their perispore sculpture into three main patterns: echinate, rugulate, and tuberculate. The echinate pattern is characteristic of the spores produced by the following species: I. bradei, I. eshbaughii, I. hieronymii, I. pedersenii, I. weberi, I. escondidensis, I. chubutiana, I. savatieri, and I. andicola. The rugulate pattern is characteristic of the spores produced by the species I. brasiliensis, I. ekmanii, I. favulata, I. fusco-marginata, I. gardneriana, I. itaboensis, I. panamensis, I. ramboi, I. sehnemii, I. smithii, and I. spannagelii. The tuberculate pattern is characteristic of the spores produced by I. alcalophila, I. boliviensis, I. herzogii, and I. lechleri. The tuberculate is the least frequent pattern among the analyzed species.

In most species, there is variation in the ornamentation between the two polar faces. Thus, the ornamentation elements are generally lower and more spaced proximally, and they may be similar to or different from those of the distal face.

Variation in the size of the sculpture elements was also recognized within the established groups. Those variations occur with respect to height, base width, and apex shape of the elements. Thus, for instance, within the echinate pattern, I. savatieri and I. andicola have spores with echinulae and small cones over the whole surface, and I. chubutiana has echinae of different sizes densely distributed over the whole surface.

It was noticed that the microspores of the studied species have a similar ornamentation to that of the microspores of some other species that grow in other regions, outside of the area of study. Thus, I. savatieri and I. hieronymii have echinate ornamentation similar to that described by Musselman (2003) as aculeate in I. boomii, I. saccharata (USA), I. maritima (Canada), and I. abyssinica (Kenya). The microspores of I. ekmanii are rugulate and similar to those of I. engelmanii and I. hopei, which grow in the United States and New Guinea, respectively. They were described by Musselman (2003) as psilate.

Isoetes chubutiana produces echinate microspores similar to those of I. andina Hook, which grows in Equador, and I. jamaicensis Hickey (Tryon & Lugardon, 1991), which grows in Jamaica. This similarity in ornamentation between the microspores studied and those produced by nonrelated species suggests a probable convergence in the ornamentation patterns. Thus, it is necessary to collect data on, for example, the chromosome number and the DNA in order to corroborate whether the species compared represent different evolutionary lineages.

From the available chromosome data, it was possible to positively correlate an increase in the ploidy level with an increase in the microspore size (Table I), as is shown by a comparison of the ploidy levels with the sizes of microspores produced by I. chubutiana and I. alcalophila. Luebke and Budke (2003) came to the same conclusion, comparing I. tennesseensis and I. lacustris. Kott and Britton (1983) also found that the mean size of microspores and megaspores of Isoetes generally are in agreement with the ploidy level.

In this study, it was found that within a given ploidy level, terrestrial species produce larger microspores than aquatic species.

In a second contribution, the ultrastructure of the sporoderm is analyzed for the different ornamentation patterns recognized in this study (Macluf et al., 2006).

Acknowledgments

The authors thank Rafael Urrejola of the Servicio de Microscopia Electronica de Barrido del Museo de Ciencias Naturales de La Plata and the institutions that sent the herbarium material. This work was supported by grants from the National Council of Scientific and Technological Research (CONICET), Buenos Aires (PIP 5044), the National Agency of Scientific and Technological Promotion (ANPCyT) (PICT 12758), and UNLP (project 363). Part of the results of this study were presented at the 1lth International Palynological Congress, held in Granada, Spain, which was made possible by a grant (to C.C. Macluf) from the congress organizing committee.

Literature Cited

Capurro, R.H. 1969. Division Pteridophyta. Pp. 123-146 in A.L. Cabrera, (ed.), Flora de la provincia de Buenos Aires. Coleccion Cientifica Instituto Nacional de Tecnologia Agropecuaria 4 (1), Buenos Aires, Argentina.

Cox, P.A. & R.J. Hickey. 1984. Convergent megaspore evolution and Isoetes. Amer. Naturalist 124: 437-441.

de la Sota, E.R., M. Ponce, M.A. Morbelli & L. Cassa. 1998. Pteridophyta. Pp. 282-369 in Flora Patagonica. Coleccion Cientifica Instituto Nacional de Tecnologia Agropecuaria 8, Buenos Aires, Argentina.

Fuchs-Eckert, H.P. 1986. Isoetaceas. Pp. 1-42 in R. Reitx (Ed.), Flora Ilustrada Catarinense, Santa Catarina, Brazil.

Hickey, R. J. 1984. Chromosome numbers of neotropical Isoetes. Amer. Fern J. 74:8-13.

--. 1985. Revisionary studies of neotropical Isoetes. Ph.D. diss., Univ. of Connecticut, Storrs, CT.

--. 1986. Isoetes megaspore surface morphology: nomenclature variation and systematic importance. Amer. Fern J. 76: 1-16.

--, C. Macluf & W.C. Taylor. 2003. A re-evaluation of Isoetes savatieri Franchet in Argentina and Chile. Amer. Fern J. 93 (3): 126-136.

Holmgren P.K., N.H. Holmgren & L.C. Barnett. 1990. Index Herbariorum. Part I: The Herbaria of the World. New York Botanical Garden, New York.

Kott, L. & D.M. Britton. 1983. Spore morphology and taxonomy of Isoetes in northeastern North America. Canad. J. Bot. 61: 3140-3163.

Luebke, N.T. & J.M. Budke. 2003. Isoetes tennesseensis (Isoetaceae), an octoploid Quillwort from Tennessee. Amer. Fern J. 93 (4): 184-190.

Lugardon, B. 1973. Palynologie. Nomenclature et structure fine des patois aceto-resistantes des microspores d'Isoetes. Compt. Rend. Acad. Sci. Paris, Ser. D 276: 3017-3020.

--. 1986. Donnees ultrastructurales sur la fonction de l'exospore chez les Pteridophytes (ultrastructural data of the exospore function in pteridophyte spores). Pp. 251-264 in S. Blackmore & I.K. Ferguson (Eds.), Pollen and spores: form and function. Linnean Society Symposium Series No. 12, Academic Press, London.

Macluf, C.C., M.A. Morbelli & G.E. Giudice. 2003. Morphology and ultrastructure of megaspores and microspores of Isoetes savatieri Franchet (Lycophyta). Rev. Palaeobot. Palynol. 126: 197-209.

--, -- & --. 2004. Morphology and ultrastructure of microspores of Isoetes species (Lycophyta) from southern South America. International Congress of Palynology Abstracts, Polen 14: 323.

--, -- & --. 2006. Microspore morphology of Isoetes species (Lycophyta) from southern South America. Part II. TEM analysis of some selected types. Bot. Rev. 72(2): 135-152.

Morbelli, M.A. 1980. Morfologia de las esporas de Pteridophyta presentes en la region fuego-patagonica de la Republica Argentina. Opera Lilloana 28:1-138.

Musselman, L.J. 2003. Ornamentation of Isoetes (Isoetaceae, Lycophyta) microspores. Bot. Rev. 68: 474-487.

Pastore, A.L. 1936. Las Isoetaceas argentinas. Revista Mus. La Plata, Secc. Bot. 1: 3-30.

Prada Moral, C. & C. Saenz de Rivas. 1978. Estructura de la esporodermis en las especies espanolas de los generos Isoetes L. (Isoetales) y Cheilanthes Schwarz (Filicales). Anales Inst. Bot. Cavanilles 35: 245-259.

Robert, M.D., F. Roland-Heydacker, J. Denizot, J. Laroche, P. Fougeroux & L. Davignon. 1973. La paroi megasporale de L'Isoetes setaceae Bosc, Ex Delile. Etude en microscopies photonique et electroniques. Localisation et nature de la silice entrant dans sa constitution. Adansonia 2: 313-332.

Taylor, W.A. 1992. Megaspore wall ultrastructure development in Isoetes melanopoda: morphogenetic post-initiation changes accompanying spore enlargement. Rev. Palaeobot. Palynol. 72: 61-72.

--. 1993. Megaspore wall ultrastructure in Isoetes. Amer. J. Bot. 80: 165-171.

Troia, A. 2001. The genus Isoetes L. (Lycophyta, Isoetaceae): synthesis of karyological data. Webbia 56: 201-218.

Tryon, A.F. & B. Lugardon. 1991. Spores of the Pteridophyta. Surface, wall structure and diversity based on electron microscope studies. Springer, New York.

Tryon, R.M. & A. F. Tryon. 1982. Ferns and allied plants. Springer, New York.

Uehara, K., S. Kurita, N. Sahashi & T. Ohmoto. 1991. Ultrastructural study on microspore wall morphogenesis in Isoetes japonica (Isoetaceae). Amer. J. Bot. 78:1182-1190.

C. CECILIA MACLUF

Palinologia and Morfologia Vegetal Facultad de Ciencias Naturales y Museo, Universidad National de La Plata, Paseo del Bosque s/n (1900), La Plata, Argentina

MARTA A. MORBELLI

Palinologia, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n (1900) La Plata, Argentina

AND

GABRIELA E. GIUDICE

Morfologia Vegetal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n (1900) La Plata, Argentina
Table I

Microspore characteristics, ploidy, and habitat of Isoetes species from
southern South America

Species Microspore Microspore
 length ([micro]m) width ([micro]m)

I alcalophila 30-34 17-20
I andicola 34 (35) 36 17 (30) 30
I boliviensis 26 (35) 40 20 (25) 30
I bradei 42-43.6 28.4-29
I brasiliensis 26.4 16
I chubutiana 33 (41) 41.3 26.2 (29) 33.8
I ekmanii 28-32 19-20
I escondidensis 36 24
I eshbaughii 35-40 24-25
I favulata 38.9-41 27-28.4
I fusco-marginata 32 22
I gardneriana 30-32 20-25
I herzogii 34 (37) 38 22 (23) 25
I hieronymii 32-34 19-24
I itaboensis 26-29 19-20
I lechleri 29 (35) 36 24 (25) 26
I panamensis 27 (30) 40 20 (26) 33
I pedersenii 30-35 20-24
I ramboi 30-33 21.2-25.2
I savatieri 35 (40) 40 24 (28) 29
I sehnemii 25 18.4
I smithii 27.3-30 18
I spannagelli 30 18.4
I weberi 20-27 11-16

Species Ornamentation Ploidy

I alcalophila Tuberculate 2n = 22
I andicola Echinulate 2n = 44
I boliviensis Tuberculate 2n = 22
I bradei Echinate
I brasiliensis Rugulate
I chubutiana Echinate 2n = 66
I ekmanii Rugulate
I escondidensis Echinate
I eshbaughii Echinate 2n = 44
I favulata Rugulate
I fusco-marginata Rugulate
I gardneriana Rugulate
I herzogii Tuberculate 2n = 44
I hieronymii Echinate
I itaboensis Rugulate
I lechleri Tuberculate 2n = 44
I panamensis Rugulate 2n = 44
I pedersenii Echinate
I ramboi Rugulate
I savatieri Echinulate 2n = 66
I sehnemii Rugulate
I smithii Rugulate
I spannagelli Rugulate
I weberi Echinate

Species Habitat

I alcalophila Aquatic
I andicola Terrestrial
I boliviensis Aquatic
I bradei Aquatic
I brasiliensis Aquatic
I chubutiana Aquatic
I ekmanii Aquatic
I escondidensis Aquatic
I eshbaughii Aquatic
I favulata Aquatic
I fusco-marginata Palustral
I gardneriana Amphibious
I herzogii Aquatic
I hieronymii Aquatic
I itaboensis Aquatic/terrestrial
I lechleri Aquatic
I panamensis Aquatic
I pedersenii Terrestrial
I ramboi Aquatic
I savatieri Aquatic
I sehnemii Aquatic
I smithii Aquatic
I spannagelli Aquatic
I weberi Amphibious
COPYRIGHT 2006 New York Botanical Garden
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2006 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Macluf, C. Cecilia; Morbelli, Marta A.; Giudice, Gabriela E.
Publication:The Botanical Review
Geographic Code:30SOU
Date:Apr 1, 2006
Words:4011
Previous Article:Spatial distribution, population structure, and fecundity of Ceratozamia matudai Lundell (Zamiaceae) in El Triunfo Biosphere Reserve, Chiapas, Mexico.
Next Article:Microspore morphology of Isoetes species (Lycophyta) from southern South America. Part II. tem analysis of some selected types.
Topics:

Terms of use | Privacy policy | Copyright © 2018 Farlex, Inc. | Feedback | For webmasters