Printer Friendly

Melatonin in Edible and Non-Edible Plants/Yenilebilen ve Yenilemeyen Bitkilerde Melatonin.


Melatonin (N-acetyl-5-methoxytryptamine) means melanophore-contracting hormone (Greek: [phrase omitted]=black; [phrase omitted]=tension) firstly was isolated from bovine's pineal gland in 1958. (12) It is a neurohormone secreted by the pineal gland and a derivative of serotonin. (3) Serotonin is a monoamine neurotransmitter and one of the precursors (Figure 1), whereas L-tryptophan, like serotonin is the common precursor of melatonin biosynthesis. (4,5) Both have many influences on health of animal and human being, such as serotonin is used against depression (6) and also affects behaviours and inward. (7) Secretion of melatonin increases in the dark on the contrary of light, seasonal and physiological alteration effect levels of melatonin (8,9) for that reason that has been studied for its hormon like effects and its biological activities for decades.

Although melatonin was described in organisms such as bacteria, fungi, algae, and vertebrates (10) it was notified in plants at the end of 1994. (11,12) Increasing number of studies have proved that there was melatonin in different parts (seed, fruit, leaf, root etc.) of plants and in so much as medicinal herbs. (13) A major role of melatonin in plants have been discovered that protects plants against damages of changing climate. (14)

Biosynthesis of melatonin

Melatonin is synthesised not only in bone marrow cells (15) but also in retina. (16,17) Thus it is both a hormone and tissue factor. (10) The presence of melatonin was detected in egg, biological fluids like plasma, milk, by developed methods, such as liquid chromatography (LC) with fluorimetric detection, and LC-tandem mass spectrometry (LC-MS/MS). (18,19) Biosynthesis of melatonin is explained enzymatically from the essential amino acid precursor tryptophan to melatonin. The synthesis includes four different enzymes. The first one is tryptophan hydroxylase (TPH), which forms 5-hydroxytryptophan from tryptophan; the second is aromatic amino acid decarboxylase which forms serotonin from 5-hydroxytryptophan; the third is arylalkylamine N-acetyl-transferase (AANAT), which forms N-acetylserotonin from serotonin; and the last one is N-acetylserotonin O-methyltransferase (ASMT), which forms the final step to melatonin (Figure 2). AANAT and ASMT is considered that they were speed limiting enzymes. (4,20)

Biological activity of melatonin

A major role of melatonin is the antioxidant function with free radicals (reactive oxygen species) and reactive nitrogen species scavenging activity (21-25) thus has protective effect against ultraviolet (UV) radiations induced damages. (26) Consequently, melatonin can be used for healing of muscle diseases, Parkinson and Alzheimer's due to antioxidant and neuroprotective affects. (27-31) Melatonin is widely used for sleep disorders such as jetlag and insomnia. (32) Its administration can relieve daytime and overnight sleep. (33,34) Clinical and in vivo studies showed that melatonin decreased symptoms of depression (35-37) moreover has immunomodulator function. (38,39) It regulates immuno fuctions by means of production interleukin (IL)-2, IL-6, IL-12 and interferon gamma. (40,41,42) An in vivo study showed that melatonin have potential anticonvulsant activity. (43) Melatonin effects vasculer system. (44) Studies showed that melatonin suppress proliferation of cancer cell line and induces apoptosis tumor cell and also it is promising for the treatment of prostat cancer, and breast cancers. (25,45-53) A study has also emitted that melatonin can be effective on malaria. (54)

Melatonin in plants-phytomelatonin

First evidence of the presence of melatonin in organisms was obtained in Lingulodinium polyedrum (syn. Gonyaulax polyedra) and Pyrocystis acuta, which were unicellular organisms. Scientists detected melatonin metabolite 5-methoxytryptamine and the melatonin analogue N, N-dimethyl-5-methoxytryptamine in those living organisms. (55-57) By following studies melatonin was determined in the members of alga, bacteria, fungi, plant families. Level of melatonin, although differs from plant to plant, that was observed higher than level of melatonin in animal blood. (58-60) Melatonin level varies both from plant to plant and also tissues/organs of same plant, moreover, temperature, pH, effects of present metal ions's, sensitivity of analytics and extraction methods cause these diversities. For example, melatonin of Datura metel L. (devil's trumpet) differed from flowers and leaves. In addition, melatonin of Lycopersicon esculentum Mill. varied by region. (11,61-64) Presence of melatonin in different plants were shown in Table 1.

Biosynthesis of phytomelatonin

Plant melatonin biosynthesis pathway firstly was determined owing to Hypericum perforatum L. (St John's wort). (4,59) Synthesis in plants is complicated on the contrary in animals (Figure 2). Initial enzyme is tryptophan decarboxylase (TDC) instead of TPH. TDC forms tryptamine from essential amino acid tryptophan. The last enzyme is ASMT (Figure 2). (65,66) Plants take melatonin also by their roots apart from biosynthesis. (67,68) Although its biosynthetic pathway and metabolic mechanisms are unclear, the presence of melatonin in plants is a wide concept. (69)

Functions of phytomelatonin

Melatonin has roles in plants similar to animals, that protects plants against extreme conditions such as temperature change, UV exposure, environmental pollution, toxins, drought oxidative and (a) biotic stress. Exogenous melatonin applied to Arabidopsis (thale cress) leaves has demostrated preservative potency against high salinity, cold and dryness, additionally plant has developed tolrerance biotic and abiotic stresses. (70) Corn embriyo proteome was improved due to exogenous melatonin. (71) Moreover, harmful effects of salt diminished by melatonin in faba bean. (72) Conservation aspects of melatonin were studied in a variety of plants such as wheat, oat, barley, canary grass, tobacco, Chinese liquorice, soybean, cucumber, tomato. (14,67,73-79) The studies also has shown that melatonin has regulatory role in growth of thale cress, specially growth of flowers and fruits. (80) Reports, which investigated effect of exogenous melatonin on both tomato's and maize's seeds, have confirmed this case too. (78,81) Melatonin plays an important role to maintain the vitality of the plants. (82)

Phytomelatonin in diets

The most popular drinks, which are tea, coffee, beer and wine contain melatonin. Not only melatonin but also its isomers (tryptophan-ethylester) were determined in wine and bread. (83-85) A study reported that regular coffee consumption remarkably decreases the prevalence of human prostate cancer. (86-88) Scientists introduced that melatonin in wine besides the other secondary metabolites, had protective effect against heart injury. (89) Melatonin was determined high amount in Chinese medicinal herbs. Some of them were Viola philippica Cav., Uncaria rhynchophylla Miq., Morus alba L. and Phellodendron amurense Rupr. (90) In Mediterranean diet, melatonin was found in some foods. It'is thought that melatonin can have positive effects on health via synergic effects with other compounds. (91) Dietary suplement/melatonin supplement preparations have been consumed for different purposses by people mostly in Europe and the United States than the other countries. (92)

Determination of phytomelatonin levels in plants

Melatonin has been detected in fruits, leaves, roots, and seeds of a considerable variety of plant species. Various methods, such as cyclodextrin-modified micellar electrokinetic chromatography, enzyme-linked immuno sorbent assay, radioimmunoassay (RIA), high-performance LC (HPLC), HPLC-electrochemical detection, HPLC-fluorescence detector, HPLC-MS and HPLC-UV spectrophotometry (UV) can be applied in order to determine melatonin levels in plants.

The first step in determining the levels of melatonin in plants is to find the right extraction method, which have been tried by different authors. The first identification method of melatonin in plants was described by Van Tassel et al. (93) in a congress communication in 1993. The authors had detected melatonin in tomato fruits (Solanum lycopersicum L.) by using RIA and gas chromatography attached with MS, but the results were not published extensively until 1995. (94)

Nowadays, most of the researchers have been utilizing liquid nitrogen treated-plant tissue, which were extracted with organic solvents such as methanol, chloroform, or ethyl acetate. Analysis of these extracts by LC and identification by MS are the most used and recommended techniques for the detection and quantification of melatonin in plants. Due to the developed technology of LC coupled to time-of-flight/MS has also been applied for the melatonin detection in recent years. (95)


A biotechnologic study showed that transgenic plant rich on account of melatonin had more antioxidative activity and higer yield than regular plants. (107-109) When activity of ASMT enzyme-catalyzed from N-acetylserotonin to melatonin and isolated firstly from rice in plants- was increased by overexpression, the level of melatonin has also increased. (110,111) A study demonstrated that since 6-hydroxymelatonin was not determined in rice, melatonin 2-hydroxylase has been dominant enzyme in melatonin production. (112)


Melatonin has been studied to treat some symptoms and diseases in human over the years. Melatonin supplements have proven significant results for treating insomnia and other circadian rhythms caused sleep disorders, morever, jet lag and shift work, headache, various cancers, gallbladder stones, tinnitus, rheumatoid arthritis, Alzheimer's disease, and psychiatric disorders have also tried to be eased with melatonin. Besides, it is known that melatonin is a powerful antioxidant and it improves the immune system. According to recent research, melatonin has also a great anti-aging effect.

Melatonin is a hormone that naturally produced by pineal glad in human brain especially at night-time, hovewer, smoking, using alcohol, excessive coffee consumption, some medications and disorders can suppress the production of the melatonin. Therefore melatonin should be taken externally such as synthetic melatonin supplements, or from natural resources which produce or contain melatonin. Furthermore, taking nutrients, which contain tryptophan, can increase the secretion of melatonin in the body. For instance, eating strawberries, apples, cherry/juice, rice, pistachios, almonds, spinach, cabbage, onions, tomatoes, cucumber, linseed and sunflower seeds, thistle, fenugreek and mustard; drinking teas such as fennel and anise tea.

In this study, our aim was to bring attention to melatonin in plants, which has important roles in plants as well as in animals. Many scientists have laboured to identify and quantify the levels of melatonin in plants. Although there are numbers of studies were completed in plants still more studies have been needed to analyse the levels and their absorption and efficiency of melatonin directly from plants, teas and pharmaceutical preparations.

Conflict of Interest: No conflict of interest was declared by the authors.


(1.) Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W. Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc. 1958;80:2587.

(2.) Nordlund JJ, Lerner AB. The effects of oral melatonin on skin color and on the release of pituitary hormones. J Clin Endocrinol Metab. 1977;45:768-774.

(3.) Heiligenstein E, Guenther G. Over-the-counter psychotropics: a review of melatonin, St John's wort, valerian, and kava-kava. J Am Coll Health. 1998;46:271-276.

(4.) Murch SJ, KrishnaRaj S, Saxena PK. Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John's wort (Hypericum perforatum L. cv. Anthos) plants. Plant Cell Rep. 2000;19:698-704.

(5.) Reiter RJ, Tan DX. Melatonin: an antioxidant in edible plants. Ann N Y Acad Sci. 2002;957:341-344.

(6.) Delgado PL, Charney DS, Price LH, Aghajanian GK, Landis H, Heninger GR. Serotonin function and the mechanism of antidepressant action: reversal of antidepressant-induced remission by rapid depletion of plasma tryptophan. Arch Gen Psychiatry. 1990;47:411-418.

(7.) Taylor DL. Close-up on serotonin, Learn how this key neurotransmitter influences moods and behavior. Nursing. 1995;25:64.

(8.) Gern WA, Greenhouse SS. Examination of in vitro melatonin secretion from superfused trout (Salmo gairdneri) pineal organs maintained under diel illumination or continuous darkness. Gen Comp Endocrinol. 1988;71:163-174.

(9.) Wehr TA. The durations of human melatonin secretion and sleep respond to changes in daylength (photoperiod). J Clin Endocrinol Metab. 1991;73:1276-1280.

(10.) Tan DX, Manchester LC, Hardeland R, Lopez-Burillo S, Mayo JC, Sainz RM, Reiter RJ. Melatonin: a hormone, a tissue factor, an autocoid, a paracoid, and an antioxidant vitamin. J Pineal Res. 2003;34:75-78.

(11.) Dubbels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schiwara HW, Schloot W. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J Pineal Res. 1995;18:28-31.

(12.) Hardeland R, Balzer I, Poeggeler B, Fuhrberg B, Uria H, Behrmann G, Wolf R, Meyer TJ, Reiter RJ. On the primary functions of melatonin in evolution: Mediation of photoperiodic signals in a unicell, photooxidation, and scavenging of free radicals. J Pineal Res. 1995;18:104-111.

(13.) Reiter RJ, Tan DX, Manchester LC, Simopoulos AP, Maldonado MD, Flores LJ, Terron MP. Melatonin in edible plants (phytomelatonin): identification, concentrations, bioavailability and proposed functions. World Rev Nutr Diet. 2007;97:211-230.

(14.) Tan DX, Manchester LC, Reiter RJ, Qi WB, Karbownik M, Calvo JR. Significance of melatonin in antioxidative defense system: reactions and products. Biol Signals Recept. 2000;9:137-159.

(15.) Conti A, Conconi S, Hertens E, Skwarlo-Sonta K, Markowska M, Maestroni JM. Evidence for melatonin synthesis in mouse and human bone marrow cells. J Pineal Res. 2000;28:193-202.

(16.) Cardinali DP, Rosner JM. Metabolism of serotonin by the rat retina in vitro. J Neurochem. 1971;18:1769-1770.

(17.) Tosini G, Menaker M. The clock in the mouse retina: melatonin synthesis and photoreceptor degeneration. Brain Res. 1998;789:221-228.

(18.) Yin B, Li T, Li Z, Dang T, He P. Determination of Melatonin and Its Metabolites in Biological Fluids and Eggs Using High-Performance Liquid Chromatography with Fluorescence and Quadrupole-Orbitrap High-Resolution Mass Spectrometry. Food Anal Method. 2015;9:1-8.

(19.) Escriva L, Manyes L, Barbera M, Martinez-Torres D, Meca G. Determination of Melatonin in Acyrthosiphon pisum Aphids by Liquid Chromatography-Tandem Mass Spectrometry. J Insect Physiol. 2016;86:48-53.

(20.) Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ. One molecule, many derivatives: A never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res. 2007;42:28-42.

(21.) Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martin V, Reiter RJ. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res. 2004;36:1-9.

(22.) Pandi-Perumal SR, Srinivasan V, Maestroni GJM, Cardinali DP, Poeggeler B, Hardeland R. Melatonin: Nature's most versatile biological signal? FEBS J. 2006;273:2813-2838.

(23.) Korkmaz A, Reiter RJ, Topal T, Manchester LC, Oter S, Tan DX. Melatonin: an established antioxidant worthy of use in clinical trials. Mol Med. 2009;15:43-50.

(24.) Romero A, Egea J, Garcia AG, Lopez, MG. Synergistic neuroprotective effect of combined low concentrations of galantamine and melatonin against oxidative stress in SH-SY5Y neuroblastoma cells. J Pineal Res. 2010;49:141-148.

(25.) Um HJ, Kwon TK. Protective effect of melatonin on oxaliplatin-induced apoptosis through sustained Mcl-1 expression and anti-oxidant action in renal carcinoma Caki cells. J Pineal Res. 2010;49:283-290.

(26.) Goswami S, Haldar C. Melatonin as a possible antidote to UV radiation induced cutaneous damages and immune-suppression: An overview. J Photochem Photobiol B. 2015;153:281-288.

(27.) Matsubara E, Bryant-Thomas T, Pacheco Quinto J, Henry TL, Poeggeler B, Herbert D, Pappolla MA. Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer's disease. J Neurochem. 2003;85:1101-1108.

(28.) Feng Z, Chang Y, Cheng Y, Zhang BL, Qu ZW, Qin C, Zhang JT. Melatonin alleviates behavioral deficits associated with apoptosis and cholinergic system dysfunction in the APP 695 transgenic mouse model of Alzheimer's disease. J Pineal Res. 2004;37:129-136.

(29.) Hibaoui Y, Roulet E, Ruegg UT. Melatonin prevents oxidative stress-mediated mitochondrial permeability transition and death in skeletal muscle cells. J Pineal Res. 2009;47:238-252.

(30.) Hong Y, Palaksha KJ, Park K, Park S, Kim HD, Reiter RJ, Chang KT. Review Article: Melatonin plus exercise-based neurorehabilitative therapy for spinal cord injury. J Pineal Res. 2010;49:201-209.

(31.) Sanchez-Barcelo EJ, Mediavilla MD, Tan DX, Reiter RJ. Clinical uses of melatonin: evaluation of human trials. Curr Med Chem. 2010;17:2070-2095.

(32.) Wirz-Justice A. Melatonin: a new wonder drug? Praxis (Bern 1994) 1996;85:1332-1336.

(33.) Reiter RJ. The melatonin rhythm: both a clock and a calendar. Experientia. 1993;49:654-664.

(34.) Zhdanova IV. Melatonin as a hypnotic: pro. Sleep Med Rev. 2005;9:51-65.

(35.) Thompson C, Mezey G, Corn T, Franey C, English J, Arendt J, Checkley SA. The effect of desipramine upon melatonin and cortisol secretion in depressed and normal subjects. Br J Psychiatry. 1985;147:389-393.

(36.) Rao AV, Devi SP, Srinivasan V. Urinary melatonin in depression. Indian J Psychiatry. 1983;25:167-172.

(37.) Srinivasan V, Smits M, Spence W, Lowe AD, Kayumov L, Pandi-Perumal SR, Cardinali DP. Melatonin in mood disorders. World J Biol Psychiatry. 2006;7:138-151.

(38.) Carrillo-Vico A, Garcia-Perganeda A, Naji L, Calvo JR, Romero MP, Guerrero JM. Expression of membrane and nuclear melatonin receptor mRNA and protein in the mouse immune system. Cell Mol Life Sci. 2003;60:2272-2278.

(39.) Maestroni GJ. The immunoneuroendocrine role of melatonin. J Pineal Res. 1993;14:1-10.

(40.) Garcia-Maurino S, Gonzalez-Haba MG, Calvo JR, Rafii-El-Idrissi M, Sanchez-Margalet V, Goberna R, Guerrero JM. Melatonin enhances IL-2, IL-6, and IFN-gamma production by human circulating CD4+ cells: a possible nuclear receptor-mediated mechanism involving T helper type 1 lymphocytes and monocytes. J Immunol. 1997;159:574-581.

(41.) Garcia-Maurino S, Pozo D, Carrillo-Vico A, Calvo JR, Guerrero JM. Melatonin activates Th1 lymphocytes by increasing IL-12 production. Life Sci. 1999;65:2143-2150.

(42.) Puig A, Rancan L, Paredes SD, Carrasco A, Escames G, Vara E, Tresguerres JA. Melatonin decreases the expression of inflammation and apoptosis markers in the lung of a senescence-accelerated mice model. Exp Gerontol. 2016;75:1-7.

(43.) Mosinska P, Socala K, Nieoczym D, Laudon M, Storr M, Fichna J, Wlaz P. Anticonvulsant activity of melatonin, but not melatonin receptor agonists Neu-P11 and Neu-P67, in mice. Behav Brain Res. 2016;307:199-207.

(44.) Ting KN, Blaylock NA, Sugden D, Delagrange P, Scalbert E, Wilson VG. Molecular and pharmacological evidence for MT1 melatonin receptor subtype in the tail artery of juvenile Wistar rats. Br J Pharmacol. 1999;127:987-995.

(45.) Sainz RM, Mayo JC, Rodriguez C, Tan DX, Lopez-Burillo S, Reiter RJ. Melatonin and cell death: differential actions on apoptosis in normal and cancer cells. Cell Mol Life Sci. 2003;60:1407-1426.

(46.) Blask DE, Dauchy RT, Sauer LA. Putting cancer to sleep at night: the neuroendocrine/circadian melatonin signal. Endocrine. 2005;27:179-188.

(47.) Reiter RJ, Tan DX, Fuentes-Broto L. Melatonin: a multitasking molecule. Prog Brain Res. 2010;181:127-151.

(48.) Shiu SY. Towards rational and evidence-based use of melatonin in prostate cancer prevention and treatment. J Pineal Res 2007;43:1-9.

(49.) Tamarkin L, Danforth D, Lichter A, DeMoss E, Cohen M, Chabner B, Lippman M. Decreased nocturnal plasma melatonin peak in patients with estrogen receptor positive breast cancer. Science 1982;216:1003-1005.

(50.) Danforth DN, Tamarkin L, Lippman ME. Melatonin increases oestrogen receptor binding activity of human breast cancer cells. Nature. 1983;305:323-325.

(51.) Blask DE, Wilson ST, Zalatan F. Physiological melatonin inhibition of human breast cancer cell growth in vitro: evidence for a glutathione-mediated pathway. Cancer Res. 1997;57:1909-1914.

(52.) Sanchez-Barcelo EJ, Cos S, Fernandez R, Mediavilla MD. Melatonin and mammary cancer: a short review Endocr Relat Cancer. 2003;10:153-159.

(53.) Blask DE, Sauer LA, Dauchy RT. Melatonin as a chronobiotic/anticancer agent: cellular, biochemical, and molecular mechanisms of action and their implications for circadian-based cancer therapy. Curr Top Med Chem. 2002;2:113-132.

(54.) Srinivasan V, Spence DW, Moscovitch A, Pandi-Perumal SR, Trakht I, Brown GM. Cardinali DP. Malaria: therapeutic implications of melatonin. J Pineal Res. 2010;48:1-8.

(55.) Poeggeler B, Balzer I, Fischer J, Behrmann G, Hardeland R. A role of melatonin in dinoflagellates? Acta Endocrinol-Cop 1989;120(3 Supp l):97.

(56.) Balzer I, Hardeland R. Stimulation of bioluminescence by 5-methoxylated indoleamines in the dinoflagellate, Gonyaulax polyedra. Comp Biochem Phys C. 1991;98:395-397.

(57.) Hardeland R. The presence and function of melatonin and structurally related indoleamines in a dinoflagellate, and a hypothesis on the evolutionary significance of these tryptophan metabolites in unicellulars. Experientia. 1993;49:614-622.

(58.) Fuhrberg B, Balzer I, Hardeland R, Werner A, Luning K. The vertebrate pineal hormone melatonin is produced by the brown alga Pterygophora californica and mimics dark effects on growth rate in the light. Planta. 1996;200:125-131.

(59.) Murch SJ, Simmons CB, Saxena PK. Melatonin in feverfew and other medicinal plants. Lancet. 1997;350:1598-1599.

(60.) Hardeland R. Melatonin and 5-methoxytryptamine in non-metazoans. Reprod Nutr Dev. 1999;39:399-408.

(61.) Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, Ohtani-Kaneko R, Reiter RJ. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Biol Int. 1995;35:627-634.

(62.) Van Tassel DL, Roberts N, Lewy A, O'Neill SD. Melatonin in plant organs. J Pineal Res. 2001;31:8-15.

(63.) Cao J, Murch SJ, O'Brien R, Saxena PK. Rapid method for accurate analysis of melatonin, serotonin and auxin in plant samples using liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2006;1134:333-337.

(64.) Tan DX, Manchester LC, Di Mascio P, Martinez GR, Prado FM, Reiter RJ. Novel rhythms of N1-acetyl-N2-formyl-5-methoxykynuramine and its precursor melatonin in water hyacinth: importance for phytoremediation. FASEB J. 2007;21:1724-1729.

(65.) Arnao MB, Hernandez-Ruiz J. The physiological function of melatonin in plants. Plant Signal Behav. 2006;1:89-95.

(66.) Kang K, Kong K, Park S, Natsagdorj U, Kim YS, Back K. Molecular cloning of a plant N-acetylserotonin methyltransferase and its expression characteristics in rice. J Pineal Res. 2011;50:304-309.

(67.) Arnao MB, Hernandez-Ruiz J. Melatonin promotes adventitious-and lateral root regeneration in etiolated hypocotyls of Lupinus albus L. J Pineal Res. 2007;42:147-152.

(68.) Tan DX, Manchester LC, Helton P, Reiter RJ. Phytoremediative capacity of plants enriched with melatonin. Plant Signal Behav. 2007;2:514-516.

(69.) Kolar J, Johnson CH, Machackova I. Presence and possible role of melatonin in a short-day flowering plant, Chenopodium rubrum. Adv Exp Med Biol. 1999;460:391-393.

(70.) Shi H, Qian Y, Tan DX, Reiter RJ, He C. Melatonin induces the transcripts of CBF/DREB1s and their involvement in both abiotic and biotic stresses in Arabidopsis. J Pineal Res. 2015;59:334-342.

(71.) Kolodziejczyk I, Dzitko, K, Szewczyk R, Posmyk MM. Exogenous melatonin improves corn (Zea mays L.) embryo proteome in seeds subjected to chilling stress. J Plant Physiol. 2016;193:47-56.

(72.) Dawood MG, El-Awadi ME. Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin. Acta Biolo Colomb. 2015;20:223-235.

(73.) Badria FA. Melatonin, serotonin, and tryptamine in some Egyptian food and medicinal plants. J Med Food. 2002;5:153-157.

(74.) Kolar J, Machackova I. Melatonin in higher plants: occurrence and possible functions. J Pineal Res. 2005;39:333-341.

(75.) Tan DX, Hardeland R, Manchester LC, Paredes SD, Korkmaz A, Sainz RM, Reiter RJ. The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Biol Rev Camb Philos Soc. 2010;85:607-623.

(76.) Wei W, Li QT, Chu YN, Reiter RJ, Yu XM, Zhu DH, Chen SY. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J Exp Bot. 2015;66:695-707.

(77.) Zhang N, Sun Q, Zhang H, Cao Y, Weeda S, Ren S, Guo YD. Roles of melatonin in abiotic stress resistance in plants. J Exp Bot. 2015;66:647-656.

(78.) Liu J, Wang W, Wang L, Sun Y. Exogenous melatonin improves seedling health index and drought tolerance in tomato. Plant Growth Regul. 2015;77:317-326.

(79.) Li H, He J, Yang X, Li X, Luo D, Wei C, Ma J, Zhang Y, Yang J, Zhang X. Glutathione-dependent induction of local and systemic defense against oxidative stress by exogenous melatonin in cucumber (Cucumis sativus L.). J Pineal Res. 2016;60:206-216.

(80.) Hernandez IG, Gomez FJV, Cerutti S, Arana MV, Silva MF. Melatonin in Arabidopsis thaliana acts as plant growth regulator at low concentrations and preserves seed viability at high concentrations. Plant Physiol Biochem. 2015;94:191-196.

(81.) Zhao H, Su T, Huo L, Wei H, Jiang Y, Xu L, Ma F. Unveiling the mechanism of melatonin impacts on maize seedling growth: sugar metabolism as a case. J Pineal Res. 2015;59:255-266.

(82.) Reiter RJ, Tan DX, Zhou Z, Cruz MHC, Fuentes-Broto L, Galano A. Phytomelatonin: assisting plants to survive and thrive. Molecules. 2015;20:7396-7437.

(83.) Vitalini S, Gardana C, Simonetti P, Fico G, Iriti M. Melatonin, melatonin isomers and stilbenes in Italian traditional grape products and their antiradical capacity. J Pineal Res. 2013;54:322-333.

(84.) Yilmaz C, Kocadagli T, Gokmen V. Formation of melatonin and its isomer during bread dough fermentation and effect of baking. J Agric Food Chem. 2014;62:2900-2905.

(85.) Iriti M, Vigentini I. Tryptophan-ethylester, the false (unveiled) melatonin isomer in red wine. Int J Tryptophan Res. 2015;8:27-29.

(86.) Nilsson LM, Johansson I, Lenner P, Lindahl B, Van Guelpen B. Consumption of filtered and boiled coffee and the risk of incident cancer: a prospective cohort study. Cancer Causes Control. 2010;21:1533-1544.

(87.) Park CH, Myung SK, Kim TY, Seo HG, Jeon YJ, Kim Y. Coffee consumption and risk of prostate cancer: a meta-analysis of epidemiological studies. BJU Int. 2010;106:762-769.

(88.) Yu X, Bao Z, Zou J, Dong J. Coffee consumption and risk of cancers: a meta-analysis of cohort studies. BMC Cancer 2011;11:96.

(89.) Tan DX, Hardeland R, Manchester LC, Korkmaz A, Ma S, Rosales-Corral S, Reiter RJ. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J Exp Bot 2012;63:577-597.

(90.) Chen G, Huo Y, Tan DX, Liang Z, Zhang W, Zhang Y. Melatonin in Chinese medicinal herbs. Life Sci. 2003;73:19-26.

(91.) Iriti M, Varoni EM. Melatonin in Mediterranean diet, a new perspective. J Sci Food Agric. 2015;95:2355-2359.

(92.) Cerezo AB, Leal A, Alvarez-Fernandez MA, Hornedo-Ortega R, Troncoso AM, Garcia-Parrilla MC. Quality control and determination of melatonin in food supplements. J Food Comp Anal. 2016;45:80-86.

(93.) Van Tassel D, Li J, O'Neill S. Melatonin-identification of a potential dark signal in plants. Plant Physiol. 1993;102:117-117.

(94.) Van Tassel D, Roberts N, O'Neill S. Melatonin from higher plants: isolation and identification of N-acetyl-5-methoxytryptamine. Plant Physiol. 1995;108:101-101.

(95.) Arnao MB. Phytomelatonin: Discovery, content, and role in plants. Advances in Botany. 2014;11:2014.

(96.) Zohar R, Izhaki I, Koplovich A, Ben-Shlomo R. Phytomelatonin in the leaves and fruits of wild perennial plants. Phytochem Lett. 2011;4:222-226.

(97.) Manchester LC, Tan DX, Reiter RJ, Park W, Monis K, Qi W. High levels of melatonin in the seeds of edible plants: possible function in germ tissue protection. Life Sci. 2000;67:3023-3029.

(98.) Gomez FJ, Hernandez IG, Cerutti S, Silva MF. Solid phase extraction/cyclodextrin-modified micellar electrokinetic chromatography for the analysis of melatonin and related indole compounds in plants. Microchem J. 2015;123:22-27.

(99.) Hernandez-Ruiz J, Arnao MB. Melatonin stimulates the expansion of etiolated lupin cotyledons. Plant Growth Regul. 2008;55:29-34.

(100.) Hernandez-Ruiz J, Cano A, Arnao MB. Melatonin: a growth-stimulating compound present in lupin tissues. Planta. 2004;220:140-144.

(101.) Reiter RJ, Manchester LC, Tan DX. Melatonin in walnuts: influence on levels of melatonin and total antioxidant capacity of blood. Nutrition. 2005;21:920-924.

(102.) Hernandez-Ruiz J, Cano A, Arnao MB. Melatonin acts as a growth-stimulating compound in some monocot species. J Pineal Res. 2005;39:137-142.

(103.) Jinying W, Chuan J, Shuke L, Jingui Z. Study on analysis method of melatonin and melatonin content in corn and rice seeds. Chinese Agricultural Science Bulletin. 2009;17:6.

(104.) Gonzalez-Gomez D, Lozano M, Fernandez-Leon MF, Ayuso MC, Bernalte MJ, Rodriguez AB. Detection and quantification of melatonin and serotonin in eight sweet cherry cultivars (Prunus avium L.). Eur Food Res Technol. 2009;229:223-229.

(105.) Burkhardt S, Tan DX, Manchester LC, Hardeland R, Reiter RJ. Detection and quantification of the antioxidant melatonin in Montmorency and Balaton tart cherries (Prunus cerasus). J Agric Food Chem. 2001;49:4898-4902.

(106.) Kirakosyan A, Seymour EM, Llanes DEU, Kaufman PB, Bolling SF. Chemical profile and antioxidant capacities of tart cherry products. Food Chem. 2009;115:20-25.

(107.) Hardeland R, Poeggeler B. Non-vertebrate melatonin, J Pineal Res. 2003;34:233-241.

(108.) Xu XD, Sun Y, Guo XQ, Sun B, Zhang J. Effects of exogenous melatonin on ascorbate metabolism system in cucumber seedlings under high temperature stress. Ying Yong Sheng Tai Xue Bao. 2010;21:2580-2586.

(109.) Okazaki M, Higuchi K, Aouini A, Ezura H. Lowering intercellular melatonin levels by transgenic analysis of indoleamine 2, 3-dioxygenase from rice in tomato plants. J Pineal Res. 2010;49:239-247.

(110.) Byeon Y, Park S, Lee HY, Kim YS, Back K. Elevated production of melatonin in transgenic rice seeds expressing rice tryptophan decarboxylase. J Pineal Res. 2014;56:275-282.

(111.) Byeon Y, Lee HJ, Lee HY, Back K. Cloning and functional characterization of the Arabidopsis N-acetylserotonin O-methyltransferase responsible for melatonin synthesis. J Pineal Res. 2016;60:65-73.

(112.) Byeon Y, Tan DX, Reiter RJ, Back K. Predominance of 2-hydroxymelatonin over melatonin in plants. J Pineal Res. 2016;60:65-73.

Ufuk KOCA CALISKAN (*), Ceylan AKA, Emrah BOR

Gazi University, Faculty of Pharmacy, Department of Pharmacognosy, Ankara, Turkey

(*) Correspondence: E-mail:, Phone: +90 312 202 31 87

Received: 17.03.2016, Accepted: 09.06.2016

DOI: 10.4274/tjps.33043
Table 1. Levels of melatonin in plants with the detection methods

Family            Latin name

Actinidiaceae     Actinidia chinensis Planch.
Amaranthaceae     Basella alba L.
Amaryllidaceae    Allium cepa L.
Amaryllidaceae    Allium fistulosum L.
Anacardiaceae     Pistacia lentiscus L.
Anacardiaceae     Pistacia lentiscus L.
Anacardiaceae     Pistacia palaestina Boiss.
Apiaceae          Angelica keiskei Koidz.
Apiaceae          Apium graveolens L.
Apiaceae          Coriandrum sativum L.
Apiaceae          Daucus carota L.
Apiaceae          Foeniculum vulgare Mill.
Apiaceae          Pimpinella anisum L.
Arecaceae         Phoenix dactylifera L.
Asparagaceae      Asparagus officinalis L.
Asparagaceae      Ophiopogon japonicus (L.f.) Ker Gawl.
Asteraceae        Glebionis coronari (L.) Cass. ex Spach
Asteraceae        Dendranthema morifolium (Ramat.) Tzvelev
Asteraceae        Helianthus annuus L.
Asteraceae        Petasites japonicus F. Schmidt
Asteraceae        Silybum marianum (L.) Gaertn.
Araceae           Colocasia esculenta (L.) Schott
Araceae           Peltandra virginica (L.) Raf. ex Schott
Brassicaceae      Arabidopsis spp.
Brassicaceae      Brassica campestris L.
Brassicaceae      Brassica hirta Moench
Brassicaceae      Brassica nigra (L.) W. D. J. Koch
Brassicaceae      Brassica oleracea L.
Brassicaceae      Raphanus sativus L.
Brassicaceae      Raphanus sativus L.
Bromeliaceae      Ananas comosus (L.) Merr.
Caprifoliaceae    Lonicera etrusca hort. ex Tausch
Caprifoliaceae    Lonicera etrusca hort. ex Tausch
Caprifoliaceae    Lonicera japonica Thunb.
Caprifoliaceae    Viburnum tinus L.
Cucurbitaceae     Cucumis sativus L.
Ephedraceae       Ephedra campylopoda C. A. Mey.
Ephedraceae       Ephedra campylopoda C.A.Mey.
Fabaceae          Glycyrrhiza uralensis Fisch. ex DC.
Fabaceae          Lupinus albus L.
Fabaceae          Medicago sativa L.
Fabaceae          Trigonella foenum-graceum L.
Juglandaceae      Juglans nigra L.
Lamiaceae         Salvia miltiorrhiza Bunge
Lauraceae         Laurus nobilis L.
Lauraceae         Laurus nobilis L.
Lauraceae         Laurus nobilis L.
Lauraceae         Laurus nobilis L.
Liliaceae         Asparagus aphyllus L.
Liliaceae         Ruscus aculeatus L.
Liliaceae         Smilax aspera L.
Linaceae          Linum usitatissimum L.
Meliaceae         Melia azedarach L.
Meliaceae         Melia azedarach L.
Moraceae          Morus alba L.
Moraceae          Morus spp.
Moraceae          Ficus carica L.
Moraceae          Ficus carica L.
Myrtaceae         Feijoa sellowiana (O. Berg) O. Berg
Myrtaceae         Myrtus communis L.
Myrtaceae         Myrtus spp.
Oleaceae          Olea europaea L.
Oleaceae          Olea europaea L.
Oleaceae          Phillyrea latifolia L.
Oleaceae          Phillyrea latifolia L.
Oleaceae          Phillyrea latifolia L.
Papaveraceae      Papaver somniferum L.
Poaceae           Avena sativa L.
Poaceae           Avena sativa L.
Poaceae           Hordeum vulgare L.
Poaceae           Hordeum vulgare L.
Poaceae           Hordeum vulgare L.
Poaceae           Hordeum vulgare L.
Poaceae           Oryza sativa L. subsp. japonica Shig. Kato
Poaceae           Phalaris canariensis L.
Poaceae           Triticum spp.
Poaceae           Triticum spp.
Poaceae           Triticum spp.
Poaceae           Zea mays L.
Poaceae           Zea mays L.
Resedaceae        Ochradenus baccatus Delile
Resedaceae        Ochradenus baccatus Delile
Rhamnaceae        Rhamnus alaternus L.
Rhamnaceae        Rhamnus palaestina Boiss.
Rhamnaceae        Rhamnus palaestina Boiss.
Rhamnaceae        Rhamnus palaestina Boiss.
Rhamnaceae        Ziziphus jujuba Lam.
Rhamnaceae        Ziziphus jujuba Mill. var. spinosa
                  (Bunge) Hu ex H. F. Chou
Rhamnaceae        Ziziphus spina-christi (L.) Willd.
Rosaceae          Crataegus aronia (Willd.) Bosc
Rosaceae          Crataegus azarolus L.
Rosaceae          Fragaria magna Thuill.
Rosaceae          Malus domestica Borkh.
Rosaceae          Prunus amygdalus Stokes
Rosaceae          Prunus avium L.
Rosaceae          Prunus avium L.
Rosaceae          Prunus avium L.
Rosaceae          Prunus avium L.
Rosaceae          Prunus avium L.
Rosaceae          Prunus avium L.
Rosaceae          Prunus cerasus L.
Rosaceae          Prunus cerasus L.
Rosaceae          Prunus cerasus L.
Rosaceae          Prunus cerasus L.
Rosaceae          Prunus cerasus L.
Rosaceae          Prunus cerasus L.
Rosaceae          Rubus idaeus L.
Rosaceae          Rubus sanctus Schreb.
Rubiaceae         Rubia tenuifolia d'Urv.
Rubiaceae         Rubia tenuifolia d'Urv.
Rubiaceae         Rubia tenuifolia d'Urv.
Santalaceae       Osyris alba L.
Schisandraceae    Schisandra chinensis (Turcz.) K. Koch
Scrophulariaceae  Scrophularia nodosa L.
Solanaceae        Lycium barbarum L.
Solanaceae        Lycium barbarum L.
Solanaceae        Lycopersicon esculentum Mill.
Solanaceae        Solanum elaeagnifolium Cav.
Solanaceae        Solanum elaeagnifolium Cav.
Solanaceae        Solanum elaeagnifolium Cav.
Solanaceae        Solanum nigrum L.
Styracaceae       Styrax officinalis L.
Theaceae          Camellia sinensis (L.) Kuntze
Tiliaceae         Tilia cordata L.
Verbenaceae       Lantana camara L.
Xanthorrhoeaceae  Aloe vera (L.) Burm. f.
Zingiberaceae     Elettaria cardamomum Maton
Zingiberaceae     Zingiber officinale Roscoe

Family            Part                         Quantity

Actinidiaceae     Fruit
Amaranthaceae     Leaf
Amaryllidaceae    Bulb
Amaryllidaceae    Bulb
Anacardiaceae     Leaf
Anacardiaceae     Whole fruit
Anacardiaceae     Leaf
Apiaceae          Leaf and stem of leaf
Apiaceae          Seed                            7
Apiaceae          Seed                            7
Apiaceae          Root
Apiaceae          Seed                           28
Apiaceae          Seed                            7
Arecaceae         Whole fruit
Asparagaceae      Shoot
Asparagaceae      Whole plant                   198
Asteraceae        Leaf
Asteraceae        Whole plant                   160
Asteraceae        Seed                           29
Asteraceae        Shoot
Asteraceae        Seed                            2
Araceae           Tuber
Araceae           Whole plant                   585
Brassicaceae      Leaf                          548[+ or -]26
Brassicaceae      Leaf
Brassicaceae      Seed                          189
Brassicaceae      Seed                          129
Brassicaceae      Leaf
Brassicaceae      Whole plant                   485
Brassicaceae      Root
Bromeliaceae      Fruit
Caprifoliaceae    Leaf
Caprifoliaceae    Seed
Caprifoliaceae    Whole plant                   140
Caprifoliaceae    Leaf
Cucurbitaceae     Fruit
Ephedraceae       Leaf
Ephedraceae       Seed
Fabaceae          Whole plant                   112
Fabaceae          Seed (Cotyledone)               1.28[+ or -]0.06
Fabaceae          Seed                           16
Fabaceae          Seed                           43
Juglandaceae      Fruit                           3.5[+ or -]1.0
Lamiaceae         Whole plant                   187
Lauraceae         Leaf
Lauraceae         Whole fruit
Lauraceae         Seed
Lauraceae         Pulp
Liliaceae         Leaf
Liliaceae         Leaf
Liliaceae         Leaf
Linaceae          Seed                           12
Meliaceae         Leaf
Meliaceae         Whole fruit
Moraceae          Leaf                         1510
Moraceae          Leaf
Moraceae          Leaf
Moraceae          Whole fruit
Myrtaceae         Leaf
Myrtaceae         Leaf
Myrtaceae         Leaf
Oleaceae          Leaf
Oleaceae          Pulp
Oleaceae          Leaf
Oleaceae          Seed
Oleaceae          Pulp
Papaveraceae      Seed                            6
Poaceae           Seed
Poaceae           Seed                           90.6[+ or -]7.7
Poaceae           Seed
Poaceae           Seed                           82.3[+ or -]6.0
Poaceae           Seed                            0.09[+ or -]0.01
Poaceae           Seed                            0.58[+ or -]0.05
Poaceae           Seed                         1006
Poaceae           Seed                           26.7[+ or -]2.2
Poaceae           Seed                          124.7[+ or -]14.9
Poaceae           Seed                            2
Poaceae           Seed                            4
Poaceae           Seed
Poaceae           Seed                            0.011*10-9-2.034*10-9
Resedaceae        Leaf
Resedaceae        Whole fruit
Rhamnaceae        Leaf
Rhamnaceae        Whole fruit
Rhamnaceae        Seed
Rhamnaceae        Pulp
Rhamnaceae        Whole plant                   146
Rhamnaceae        Whole plant                   256
Rhamnaceae        Leaf
Rosaceae          Leaf
Rosaceae          Leaf
Rosaceae          Fruit
Rosaceae          Fruit
Rosaceae          Seed                           39
Rosaceae          Fruit (harvested arround        0.224[+ or -]0.012
                  middle May-'Burlat')
Rosaceae          Fruit (harvested 6 days         0.027[+ or -]0.024
                  after 'Burlat')
Rosaceae          Fruit (harvested 31 days        0.006[+ or -]0.007
                  after 'Burlat')
Rosaceae          Fruit (harvested 33 days        0.06[+ or -]0.02
                  after 'Burlat')
Rosaceae          Fruit (harvested 37 days        0.115[+ or -]0.033
                  after 'Burlat')
Rosaceae          Fruit (harvested 44 days        0.048[+ or -]0.022
                  after 'Burlat')
Rosaceae          Fruit                           1.07[+ or -]0.35-
                                                  2.18[+ or -]0.26
Rosaceae          Fruit                           5.57[+ or -]0.38-
                                                 19.59[+ or -]2.76
Rosaceae          Fruit (Montmorency             12.3[+ or -]2
Rosaceae          Fruit (Balaton frozen)          2.9[+ or -]0.6
Rosaceae          Fruit (Balaton individually     1.7[+ or -]0.5
                  quick frozen powder)
Rosaceae          Fruit (Montmorency              7.5[+ or -]0.9
                  individually quick frozen
Rosaceae          Whole plant                   387
Rosaceae          Leaf
Rubiaceae         Leaf
Rubiaceae         Whole fruit
Rubiaceae         Seed
Santalaceae       Leaf
Schisandraceae    Whole plant                    86
Scrophulariaceae  Whole plant                   342
Solanaceae        Seed                          103
Solanaceae        Whole plant                   530
Solanaceae        Fruit
Solanaceae        Whole fruit
Solanaceae        Seed
Solanaceae        Pulp
Solanaceae        Whole fruit
Styracaceae       Leaf
Theaceae          Leaf                          386[+ or -]21
Tiliaceae         Leaf                          410[+ or -]16
Verbenaceae       Leaf
Xanthorrhoeaceae  Whole plant                   516
Zingiberaceae     Seed                           15
Zingiberaceae     Rhizome

Family            Quantity         Method         Ref.

Actinidiaceae       24             RIA             (61)
Amaranthaceae       39             RIA             (61)
Amaryllidaceae      32             RIA             (61)
Amaryllidaceae      86             RIA             (61)
Anacardiaceae      581             ELISA           (96)
Anacardiaceae      536[+ or -]129  ELISA           (96)
Anacardiaceae      498             ELISA           (96)
Apiaceae           624             RIA             (61)
Apiaceae                           HPLC-ECD        (97)
Apiaceae                           HPLC-ECD        (97)
Apiaceae            55             RIA             (61)
Apiaceae                           HPLC-ECD        (97)
Apiaceae                           HPLC-ECD        (97)
Arecaceae          469             ELISA           (96)
Asparagaceae        10             RIA             (61)
Asparagaceae                       HPLC-FD-MS      (90)
Asteraceae         417             RIA             (61)
Asteraceae                         HPLC-FD-MS      (90)
Asteraceae                         HPLC-ECD        (97)
Asteraceae          50             RIA             (61)
Asteraceae                         HPLC-ECD        (97)
Araceae             55             RIA             (61)
Araceae                            HPLC-FD-MS      (90)
Brassicaceae                       SPE, CD-ME-KC   (98)
Brassicaceae       657             RIA             (61)
Brassicaceae                       HPLC-ECD        (97)
Brassicaceae                       HPLC-ECD        (97)
Brassicaceae       107             RIA             (61)
Brassicaceae                       HPLC-FD-MS      (90)
Brassicaceae       113             RIA             (61)
Bromeliaceae        36             RIA             (61)
Caprifoliaceae     521             ELISA           (96)
Caprifoliaceae     403             ELISA           (96)
Caprifoliaceae                     HPLC-FD-MS      (90)
Caprifoliaceae     613             ELISA           (96)
Cucurbitaceae       25             RIA             (61)
Ephedraceae        178             ELISA           (96)
Ephedraceae        379             ELISA           (96)
Fabaceae                           HPLC-FD-MS      (90)
Fabaceae                           HPLC-FD         (99, 100)
Fabaceae                           HPLC-ECD        (97)
Fabaceae                           HPLC-ECD        (97)
Juglandaceae                       HPLC-ECD       (101)
Lamiaceae                          HPLC-FD-MS      (90)
Lauraceae         8331             ELISA           (96)
Lauraceae         3710             ELISA           (96)
Lauraceae         6060             ELISA           (96)
Lauraceae         1820             ELISA           (96)
Liliaceae          142             ELISA           (96)
Liliaceae          954             ELISA           (96)
Liliaceae          443             ELISA           (96)
Linaceae                           HPLC-ECD        (97)
Meliaceae         1579             ELISA           (96)
Meliaceae          585             ELISA           (96)
Moraceae                           HPLC-FD-MS      (90)
Moraceae           990             ELISA           (96)
Moraceae            12.915         ELISA           (96)
Moraceae          3963             ELISA           (96)
Myrtaceae         1529             ELISA           (96)
Myrtaceae          291             ELISA           (96)
Myrtaceae          490             ELISA           (96)
Oleaceae          4306             ELISA           (96)
Oleaceae           532             ELISA           (96)
Oleaceae          6337             ELISA           (96)
Oleaceae           439             ELISA           (96)
Oleaceae           589             ELISA           (96)
Papaveraceae                       HPLC-ECD        (97)
Poaceae           1796             RIA             (61)
Poaceae                            HPLC-ECD       (102
Poaceae            378             RIA             (61)
Poaceae                            HPLC-ECD       (102
Poaceae                            HPLC-FD         (99)
Poaceae                            HPLC-FD         (99)
Poaceae                            RIA             (61)
Poaceae                            HPLC-ECD       (102)
Poaceae                            HPLC-ECD       (102)
Poaceae                            HPLC-UV        (102)
Poaceae                            HPLC-UV        (102)
Poaceae           1366             RIA             (61)
Poaceae                            HPLC           (103)
Resedaceae         474             ELISA           (96)
Resedaceae         488             ELISA           (96)
Rhamnaceae         306[+ or -]75   ELISA           (96)
Rhamnaceae         907             ELISA           (96)
Rhamnaceae         547             ELISA           (96)
Rhamnaceae         409             ELISA           (96)
Rhamnaceae                         HPLC-FD-MS      (90)
Rhamnaceae                         HPLC-FD-MS      (90)
Rhamnaceae        1324             ELISA           (96)
Rosaceae           341             ELISA           (96)
Rosaceae           435             ELISA           (96)
Rosaceae            12             RIA             (61)
Rosaceae            48             RIA             (61)
Rosaceae                           HPLC-ECD        (97)
Rosaceae                           HPLC-MS        (104)
Rosaceae                           HPLC-MS        (104)
Rosaceae                           HPLC-MS        (104)
Rosaceae                           HPLC-MS        (104)
Rosaceae                           HPLC-MS        (104)
Rosaceae                           HPLC-MS        (104)
Rosaceae                           HPLC-ECD       (105)
Rosaceae                           HPLC-ECD       (105)
Rosaceae                           HPLC-MS        (106)
Rosaceae                           HPLC-MS        (106)
Rosaceae                           HPLC-MS        (106)
Rosaceae                           HPLC-MS        (106)
Rosaceae                           HPLC-FD-MS      (90)
Rosaceae           805             ELISA           (96)
Rubiaceae          905             ELISA           (96)
Rubiaceae          339             ELISA           (96)
Rubiaceae          539             ELISA           (96)
Santalaceae        844             ELISA           (96)
Schisandraceae                     HPLC-FD-MS      (90)
Scrophulariaceae                   HPLC-FD-MS      (90)
Solanaceae                         HPLC-ECD        (97)
Solanaceae                         HPLC-FD-MS      (90)
Solanaceae          32             RIA             (61)
Solanaceae        7895             ELISA           (96)
Solanaceae        5604             ELISA           (96)
Solanaceae        7392             ELISA           (96)
Solanaceae         323[+ or -]46   ELISA           (96)
Styracaceae       4069             ELISA           (96)
Theaceae                           CD-MEKC         (98)
Tiliaceae                          CD-MEKC         (98)
Verbenaceae        389             ELISA           (96)
Xanthorrhoeaceae                   HPLC-FD-MS      (90)
Zingiberaceae                      HPLC-ECD        (97)
Zingiberaceae      584             RIA             (61)

RIA: Radioimmunoassay, ELISA: Enzyme linked immunosorbent assay,
HPLC: High performance liquid chromatography, ECD: Electrochemical
detection, FD: Fluorescence detector, MS: Mass spectrometry,
SPE: Solid phase extraction, CD: Cyclodextrin, MEKC: Micellar
electrokinetic chromatography, UV: Ultraviolet

[Please note: Some non-Latin characters were omitted from this article]
COPYRIGHT 2017 Galenos Yayinevi Tic. Ltd.
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2017 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Caliskan, Ufuk Koca; Ceylan, A.K.A.; Bor, Emrah
Publication:Turkish Journal of Pharmaceutical Sciences
Article Type:Report
Date:Apr 1, 2017
Previous Article:Cutaneous Wound Healing after Topical Application of Pistacia atlantica Gel Formulation in Rats/Pistacia atlantica Jel Formulasyonunun Haricen...
Next Article:A Review on: Phase '0' Clinical Trials or Exploratory Investigational New Drug/Klinik Faz '0' Testleri ya da Yeni Ilac Kesif Arastirmalari Uzerine...

Terms of use | Privacy policy | Copyright © 2022 Farlex, Inc. | Feedback | For webmasters |