Printer Friendly

Magnetic bit boost: quantum rewiring for computer memories.

A quantum-mechanical memory component that might replace the electronic memories used for decades in computers and other gadgets has come closer to practicality, thanks to improvements achieved by research teams in the United States and Japan.

Current electronic devices rely mainly on two types of on-chip memory--static random access memory and dynamic random access memory, which is more compact. These memories can be accessed quickly, but they're volatile--shutting off power erases the data. Nonvolatile memory, such as hard disks, takes longer to access.

Although other types of nonvolatile memory are increasingly available--for instance, the flash memory in a digital camera--such storage options typically cost more per bit and hold less data than disks do or have slow access times.

Now, scientists led by Smart S.P. Parkin of the IBM Research Division in San Jose, Calif., and an independent team headed by Shinji Yuasa of the National Institute of Advanced Industrial Science and Technology Tsukuba, Japan, have tripled the key measure of performance of a memory component called a magnetic tunneling junction (SN: 4/3/99, p. 223).

Such quantum-mechanical junctions are the foundation of a fledgling memory technology called magnetic random access memory, or MRAM. It's nonvolatile yet has access speeds that rival those of conventional memories.

Two companies are already about to ship chips of MRAM. In those chips, the key performance measure, called tunneling magnetoresistance, stands at about 70 percent. By contrast, the improvements described in back-to-back reports in the December Nature Materials boost the components' magnetoresistance to more than 200 percent.

"These are definitely important results" comments Robert A. Buhrman of Cornell University. "They could make a big difference in making MRAM a success."

Potential uses for the souped-up junctions go beyond electronic memory. They include extraordinarily sensitive read heads for hard disk drives and components of so-called spintronics circuits, which aim to exploit electrons' magnetic properties (SN: 7/17/04, p. 37).

Another application could be switches that open or close to reroute information in a computer circuit. "One might even imagine a computer that instantly reconfigures itself to solve a given problem in the most efficient way," say William H. Butler and Arunava Gupta of the University of Alabama at Tuscaloosa, in a commentary in the journal issue carrying the new reports.

A magnetic tunneling junction resembles a sandwich in which the bread consists of thin layers of magnetic materials, such as iron or cobalt, and the filling is an insulating layer of, say, aluminum oxide. While the insulator blocks electron flow, a quirk of quantum mechanics called tunneling enables some electrons to pass through the barrier. If the magnetic fields of the outer layers point in opposite directions, the barrier becomes less penetrable than if those fields point the same way. Changing the field direction on a magnetic layer therefore alters the rate of electron flow. A high flow might represent a 1 and a low flow a 0.

In both junctions reported in Nature Materials, the improved magnetoresistance resulted from swapping a crystalline inner layer of magnesium oxide for the usual amorphous material. However, the IBM version appears closer to commercial reality. Parkin and his coworkers used less-orderly magnetic outer layers to produce a sandwich compatible with existing chip-making methods.

By contrast, Yuasa and his colleagues grew all layers of their junction as perfect crystals. That also achieved high magnetoresistance, but the fabrication method "is not good for mass-production," Yuasa admits.

The Japanese institute has announced that it too is developing a mass-producible magnetic tunneling junction.
COPYRIGHT 2004 Science Service, Inc.
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2004, Gale Group. All rights reserved. Gale Group is a Thomson Corporation Company.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:This Week
Author:Weiss, P.
Publication:Science News
Geographic Code:9JAPA
Date:Dec 18, 2004
Previous Article:The birds are falling: avian losses could hit ecosystems hard.
Next Article:Ancient heights: leaf fossils track elevation changes.

Related Articles
Storing vast amounts of data in tiny spots.
Atoms as the smallest quantum bits.
Sight unseen: quantum errors found, fixed.
New memories tap spin, gird for battle.
Computation Takes a Quantum Leap.
Liquid computer takes key quantum step. (Physics).
Coherence between nodes of a dual multiplexed trap. (News Briefs).
MRAM runs six times faster than DRAM; can it supercharge your systems?

Terms of use | Privacy policy | Copyright © 2021 Farlex, Inc. | Feedback | For webmasters |