Printer Friendly

Long-term health risks for children and young adults after infective gastroenteritis.

Gastroenteritis is a common illness worldwide and has a considerable effect on the public health of communities and health systems that provide care. In developing countries, gastrointestinal infection is a major cause of death, claiming [approximately equal to]2 million lives each year among children <5 years of age (1). By contrast, most episodes of gastroenteritis in industrialized nations do not cause serious, immediate, adverse sequelae but remain common, especially in the young (2,3). In addition to the immediate health concerns associated with gastroenteritis, subsequent medium- to long-term adverse sequelae have been described. A range of gastrointestinal, rheumatologic, neurologic, and skin and lung conditions have been associated with previous exposure to enteric infections (4-13).

Most of these data are from case reports and small-sample cross-sectional studies; however, several recent short-term longitudinal studies have provided estimates of the incidence of adverse health events after enteric infections (8,14,15). These studies suggest that the increase in risk for sequelae is considerable. For example, in a followup cohort study of a community exposed to a waterborne disease outbreak, the relative risks for chronic gastrointestinal symptoms, arthralgia, and psychiatric conditions were 2.4, 1.4, and 2.0, respectively (16). However, the long-term population-based extent of sequelae from prior enteric infection has remained unclear because previous studies have not adjusted for confounding variables, follow-up was short-term (8), evaluations were taken when populations were exposed to an outbreak of water-borne disease (8,14), and adverse events were either identified by self-reporting (8,14) or compared with expected, but not measured, rates of events in the general population (15).

The Western Australia Data Linkage System (WADLS) provided a unique opportunity to undertake a robust, long-term, longitudinal study of the sequelae associated with notifiable enteric infections in the general population. This system enables capture of health events in persons previously exposed and not exposed to an enteric infection. Our goal was to quantify the rate, risk, and type of sequelae attributable to previous childhood and adolescent exposure to enteric infections that lead to hospitalization, controlling for other health and sociodemographic factors.


This retrospective, population-based, longitudinal cohort study linked routinely collected administrative records from the Western Australian notifiable infectious diseases database (NIDD) with data contained in the Western Australian hospital morbidity data system (HMDS). Western Australian death notifications routinely collected under the Western Australian State government statute were also linked.

Study Participants and Sources of Data

The cohort comprised all persons having a Western Australia birth notification during January 1, 1985-December 31, 2000. For each person, the following records were extracted by the WADLS: 1) NIDD records of any enteric infection from birth through December 31, 2007, and including encrypted patient identification, sex, age at notification, date of notification or onset, species causing enteric infection, and residence recorded as postal code at notification; 2) HMDS records of all separations (discharge from hospital) from any Western Australia hospital (public and private) from December 31, 2007, and comprising encrypted patient identification, age at hospitalization, sex, Aboriginality, date of admission, and International Classification of Diseases, 9th Revision, code for principal and additional diagnoses; and 3) any death notification for the person, comprising encrypted patient identification, sex, age at death, and date of death.

Definition of Prior Infection

Each person was assigned to 1 of 2 mutually exclusive groups. The exposed group was defined as persons with any past enteric infection. More specifically, these were past infections notified on the NIDD or a past hospitalization for an enteric infection recorded on the HMDS where no NIDD notification was present. The unexposed group (those with no prior infection) comprised persons for whom the NIDD and HMDS had no notifications pertaining to any form of gastroenteritis.

For the exposed group, the date of past infection was the date of onset recorded on the NIDD notification or the date of admission recorded on the HMDS for a first-time enteric infection. Using a birth cohort methodology, the unexposed group (no prior infection) would be expected to be followed up for longer (birth to outcome) than the exposed group (prior infection to outcome). To reduce this bias, each person in the unexposed group was given a proxy date of prior infection achieved by randomly assigning the exposure dates observed in the exposed group to nonexposed persons.

Definition of Outcome

We were interested in outcomes (sequelae) that resulted in hospitalization. Therefore, the outcome was defined as a first-time hospitalization and a diagnosis of any sequelae of interest recorded as either the principal or co-diagnosis at any time from birth to death or end of follow-up. The sequelae of interest were further divided into 2 broad groups (intraintestinal and extraintestinal conditions) (online Appendix Table 1,

To differentiate persons with a first-time hospitalization for the sequelae of interest after a NIDD notification (incident cases) from those with a previous hospitalization for a sequelae before exposure (prevalent cases), we examined HMDS records dating back to birth. Prevalent cases were excluded from the study. For each person, the follow-up time, or time at risk for sequelae (years, or part thereof) was enumerated from the date of prior infection, or proxy date of prior infection for unexposed persons, to admission date for the sequelae of interest, date of death, or December 31, 2007 (end of follow-up), as appropriate.

Determination of Socioeconomic Status and Residence

Socioeconomic status and residence were also determined from existing records. Published Socio-Economic Indexes for Areas (Index of Relative Social Disadvantage) (17) and Accessibility/Remoteness Index of Australia scores (18) were mapped to the postal codes of persons at birth.

Presence of Preexisting Concurrent Conditions

The presence of preexisting concurrent conditions was identified by using the International Classification of Diseases, 9th Revision, codes for hospital separations. The Multipurpose Australian Comorbidity Scoring System (19) was used to determine any hospitalization for a concurrent illness for each person at the outcome, death, or end of follow-up.


Data were analyzed by using SPSS software, version 14 (SPSS Inc., Chicago, IL, USA). Incidence rates for individual enteric infections and types of sequelae were calculated by using the number of events as the numerator and the follow-up time as the denominator.

After determining that the structure of the data was appropriate by testing the proportional hazards assumption (20), we used the Cox proportional hazards regression model to conduct survival analyses. We examined the risk for first-time hospitalization for any sequelae, intragastrointestinal sequelae, and extragastrointestinal sequelae over time by using Cox proportional hazards regression models, in which we compared the risk for first-time hospitalization among persons with prior enteric infection with that of those who had no prior infection. These models were adjusted for factors that may have influenced the probability of first-time hospitalization occurring, i.e., sex, indigenous status, year of birth, age at exposure or proxy, singleton versus multiple birth status, weight at birth, hospital birth versus nonhospital birth, mother's region of birth, father's region of birth, socioeconomic status, accessibility to services, and previous hospitalization for comorbidity.

When possible, Cox proportional hazards models were also constructed separately by type of enteric infection. To determine which sociodemographic or disease factors were influential in sequelae development, separate survival models were also constructed for exposed and unexposed groups.

Attributable risk percent was used to estimate the proportion of sequelae for which prior exposure to an enteric infection was a component cause. This attributable risk was calculated as the adjusted rate ratio (obtained from the Cox proportional hazards regression model) minus 1, divided by the adjusted rate ratio, multiplied by 100. Thus, we estimated the percentage of first-time hospitalizations for sequelae in the exposed cohort that were attributable to being previously exposed to an enteric infection after controlling for known potential confounders.

Ethical Approval

The study was approved by The University of Western Australia's Human Research Ethics Committee. All data were deidentified before being provided to the researchers.


Study Participants

Of the 336,401 persons who met the inclusion criteria, 23,477 (7%) had at least 1 notification for an enteric infection during the 22-year study period. Similar proportions (<3% difference) of male patients, nonindigenous persons, singleton births, and hospital births were found in both groups (Table 1). For those with prior enteric infection, small birth-weight babies [less than or equal to]3,000 grams were over-represented (p[less than or equal to]0.0001); normal birth-weight babies 3,0014,000 grams were underrepresented; and disadvantaged persons (socioeconomic status and accessibility to services; p<0.0001), persons having prior comorbidity (p[less than or equal to]0.0001), and persons having prior hospitalization (p[less than or equal to]0.0001) were overrepresented. The median year of birth for those with prior enteric infection was 1994, compared with 1992 for those with no prior enteric infection; however, the mean age at exposure or proxy was similar for both groups (2.9 years and 2.4 years, respectively). Mean survival to a first-time hospitalization for any sequelae, death, or end of follow-up for persons with and without prior enteric infection was 8.6 and 11 years, respectively (p[less than or equal to]0.0001).

Distribution of Sequelae

The highest rates of sequelae were observed for extragastrointestinal conditions: 2,407 and 977 per 100,000 person-years for those with and without prior enteric infection, respectively (Table 2). Intragastrointestinal sequelae, in comparison, occurred less frequently (400 and 226 per 100,000 person-years for those with and without prior enteric infection, respectively).

Risk for Hospitalization for First-time Sequelae According to Exposure Status

The rate of first-time hospitalization increased significantly for all outcomes analyzed; a slightly larger increase was found in risk for extragastrointestinal sequelae compared with intragastrointestinal sequelae (Table 3). Some of the elevation in the crude rate ratios was reduced after adjustment for sociodemographic and preexisting health status, which indicates confounding by these variables (online Appendix Table 2,, which indicates significant confounding for most of the variables assessed with respect to any and extragastrointestinal sequelae. However, for intragastrointestinal sequelae, only age, accessibility to services, born in hospital, mother's region of birth, and hospitalization for a prior comorbidity significantly affected the risk for hospitalization for sequelae (online Appendix Table 2). The adjusted rate ratios showed an increased rate of hospitalization for any sequela of 64%, intragastrointestinal sequelae of 52%, and extragastrointestinal sequelae of 63% for persons with prior enteric infection. The attributable risk fractions indicated that 39% of first-time hospitalizations for all sequelae (34% of intragastrointestinal and 39% of extragastrointestinal sequelae) were directly attributable to prior enteric infections.

Survivor Profile

The survivor profiles for extragastrointestinal and intragastrointestinal sequelae differed (Figure). Extragastrointestinal sequelae occurred predominantly in the first 5 years after a first-time enteric infection; thereafter, the survivor function curves did not change significantly for the 2 groups. In contrast, the survivor function curves for intragastrointestinal sequelae indicate little difference between those with and without prior enteric infection over the first 10 years. After this time the survivor function curves deviate significantly, suggesting that these sequelae mostly occur later.

Type of Enteric Notifications and Risk for Sequelae by Type of Infection

Of the 23,477 first-time notifications of enteric infection, the most frequently reported single defined causes were Campylobacter spp. (17%), viruses (17%), and Salmonella spp. (12%). Forty-two percent of notifications were identified solely by using hospitalization records as "Enteritis and gastroenteritis, not otherwise specified." An additional 12% of notifications were of various other specific organisms. The risk profile for intragastrointestinal and extragastrointestinal sequelae were similar for the most common infective pathogens (Table 4). The exception was for Salmonella infection, which did not confer an increased risk for intragastrointestinal sequelae.



Our study showed that prior exposure to an enteric infection during childhood or adolescence increases the risk for a first-time hospitalization for a wide range of intragastrointestinal and extragastrointestinal illnesses by 64% over 22 years of follow-up. Furthermore, 39% of first-time hospitalizations for these illnesses were directly attributable to a previous enteric infection. The risk for extragastrointestinal sequelae was higher than that of intragastrointestinal sequelae, and the time of onset for the 2 categories of sequelae differed. Intragastrointestinal sequelae occurred much later after exposure than extragastrointestinal sequelae, a finding that has not been reported previously.

We found that respiratory and middle ear infections were the largest contributors to the excess rate of extragastrointestinal conditions. Appendicitis, the most common intragastrointestinal sequelae in this age-group, had a 23% increased risk in persons previously exposed to enteric infection. This association has previously been suggested for Campylobacter infection (9). We also found a 57% increase in risk for enteritis, colitis, and noninfective gastroenteritis, a diagnostic grouping that includes ulcerative colitis and Crohn disease; again, this association has previously been made (7,8). However, contrary to previous studies that reported an association between enteric infection and subsequent disease (14,21-26), the findings in our study suggest that risk increases over time, especially with regards to intragastrointestinal sequelae where the risk becomes greatest >10 years after onset of gastroenteritis infections in children and adolescents.

Our findings indicate that being male, indigenous, of low birthweight, and socioeconomically disadvantaged and being born outside the metropolitan area increases risk for developing the measured sequelae in exposed and unexposed persons (data not shown). However, we confirmed that previous exposure to an enteric infection is an important risk factor because after these factors are adjusted for, a 64% increase in risk for sequelae remains. We found that salmonellosis afforded no additional risk for intragastrointestinal sequelae but increased the risk for extragastrointestinal sequelae by 43%. With this exception, all common causes of infective gastroenteritis were equally represented as increasing the risk for sequelae.

This study has several strengths and limitations that warrant consideration when interpreting our results. A major strength of the research was the use of linked birth, hospital, death, and communicable disease notifications data obtained over a long time, which made available a comprehensive patient-based longitudinal dataset, as opposed to an events-based dataset. Data were of a routine administrative nature, and there was no likelihood of a Hawthorne effect (changes caused by participants being observed) or recall bias. The study covered the entire population of those born in Western Australia and therefore avoided challenges to external validity that arise when patient series are reported from selected institutions.

Our study incorporated an extensive amount of sociodemographic and other health-related data, thus enabling adjustment of the models for a range of measurable confounding variables. We recognize that a variety of unmeasurable, potentially confounding, sociodemographic factors may not have been completely captured by this study. However, given the magnitude of the increase in risk for sequelae observed for those exposed, all of this increase in risk would be unlikely to be removed if these potential confounders could be adjusted for. One way to have adjusted for unmeasurable factors would have been to restrict the study population to those hospitalized for a condition unrelated to the exposure (prior enteric infection) and the outcome, such as injury. However, this adjustment would have dramatically reduced the sample size, and hence the power of the study, and would have substantially limited generalizability.

Substantial errors in our dataset are unlikely because classification regimens were applied consistently throughout; validation research on the WADLS (27) has shown that missing data items are uncommon (<1%) and that the technical performance of the linkage between records is high (>99% specificity and sensitivity). Accordingly, our data are a highly robust representation of the population studied, based on usual hospital admission practices and outcomes of persons after notification of an enteric infection within the Australian healthcare system.

Our study relied on the use of notifications or hospitalization for enteric infections; not all enteric infections are notified. Enteric infections that cause only mild symptoms may go unreported either because the person may not seek medical advice or because a medical practitioner may not undertake confirmatory testing (28). Our conclusions are based on an assumption that a similar proportion of underreporting of enteric infection occurred for those classified with and without prior infection. Because notification of enteric infection is more likely for moderate to severe illness, our results pertain to this group rather than all enteric infections. This restriction limits generalizability (the range of persons not studied directly to whom the results can be applied), although it does not affect the validity of our results.

Sequelae in this study were captured as a first-time hospitalization for the condition of interest. Thus, some sequelae that produced only mild symptoms not requiring hospitalization were not captured, producing an underestimation of first-time sequelae. We evaluated the risk for first-time hospitalization for sequelae rather than incidence of sequelae per se. Although this type of evaluation is a limitation, the sequelae that have been measured are of clinical importance by virtue of the need for hospitalization.

We used the Western Australian birth register as the method of identification. These data enabled comprehensive inclusion of all persons born in the state, enabling complete capture of first-time enteric infections and outcome, within the definitions discussed above. The birth register also provided information about parents' place of birth, enabling these potential confounding variables to be evaluated when constructing the models. However, the use of a birth cohort did not permit the inclusion of international or interstate migrants. Again, this exclusion potentially limits the generalizability of our findings because migrants may have different risks of developing sequelae than non-migrants. Inclusion of migrants in this study would have created difficulty capturing exposure and outcome data because their health records were not available before individuals became residents of Western Australia.

Although our study estimated the magnitude of the increased risk for illness attributable to prior enteric infections, we cannot explain why enteric infection during childhood or adolescence subsequently increases the risk for illness. Genetic susceptibility for disease, combined with an environmental trigger, has previously formed the basis for explaining this risk for conditions with an autoimmune basis, such as inflammatory bowel disease (15,21). Our finding of an increased risk for nongastrointestinal infections is more difficult to account for by autoimmune mechanisms. We speculate that increased risk for nongastrointestinal infections may result from dysregulated immunity, particularly in the short to medium term, after gastroenteritis, brought about by the influence of enteric infection on the gastrointestinal immune system.

Medium- to long-term adverse health implications of gastroenteritis must be accurately assessed so that appropriate risk-management strategies can be developed for those exposed to enteric infections. Recent reports have described the effect of acute gastrointestinal infections in industrialized countries, such as Australia (2,28) and Canada (29). These investigations have focused on identifying rates of, and risk factors for, infectious gastrointestinal illness with the goal of informing public health policy and planning. The need to investigate the impact of long-term sequelae of infectious gastrointestinal illness has also been highlighted (29). According to our data, sequelae are clearly substantial and provide another reason for trying to reduce the incidence of acute gastrointestinal infection worldwide.

Our study shows that enteric infection during childhood or adolescence increases the risk for first-time hospitalization for a range of intragastrointestinal and extragastrointestinal disease for 2 decades after onset of infection. This risk is greater, and occurs earlier, for extragastrointestinal sequelae than for intragastrointestinal sequelae. Our results highlight the importance of identifying ways of reducing such infections.

This study was supported by a research grant from The University of Western Australia.

Dr Moorin is Director of the University of Western Australia node of the Australian Centre for Economic Research on Health and a senior lecturer in the School of Population Health at the University of Western Australia. Her interests include health services research using linked administrative data.


(1.) Harlem G. WHO report on infectious diseases: removing the obstacle to healthy development. Brunotland (Switzerland): World Health Organization; 1999.

(2.) Hall GV, Kirk MD, Ashbolt R, Stafford R, Lalor K. Frequency of infectious gastrointestinal illness in Australia, 2002: regional, seasonal and demographic variation. Epidemiol Infect. 2006;134:111-8. DOI: 10.1017/S0950268805004656

(3.) Heyworth JS, Glonek G, Maynard EJ, Baghurst PA, Finlay-Jones J. Consumption of untreated tank rainwater and gastroenteritis among young children in South Australia. Int J Epidemiol. 2006;35:1051-8. DOI: 10.1093/ije/dyl105

(4.) Lindsay JA. Chronic sequelae of foodborne disease. Emerg Infect Dis. 1997;3:443-52. DOI: 10.3201/eid0304.970405

(5.) Crushell E, Harty S, Sharif F, Bourke B. Enteric Campylobacter: purging its secrets? Pediatr Res. 2004;55:3-12. DOI: 10.1203/01. PDR.0000099794.06260.71

(6.) Allos BM, Blaser MJ. Campylobacter jejuni and the expanding spectrum of related infections. Clin Infect Dis. 1995;20:1092-101.

(7.) Doman DB. Campylobacter jejuni relapsing colitis. Dig Dis Sci. 1982;27:956. DOI: 10.1007/BF01316585

(8.) Ternhag A, Torner A, Svensson A, Ekdahl K, Giesecke J. Short- and long-term effects of bacterial gastrointestinal infections. Emerg Infect Dis. 2008;14:143-8. DOI: 10.3201/eid1401.070524

(9.) Baert D, De Man M, Oosterbosch L, Duyck MC, Van Der Spek P, Lepoutre L. Infectious gastroenteritis: are they all the same? Acta Clin Belg. 1995;50:269-73.

(10.) Bunning VK, Lindsay JA, Archer DL. Chronic health effects of foodborne microbial disease. World Health Stat Q. 1997;50:51-6.

(11.) Goudswaaed J, Sabbe L, Te Winkel W. Reactive arthritis as a complication of Campylobacter lari enteritis. J Infect. 1995;31:171-6. DOI: 10.1016/S0163-4453(95)92385-3

(12.) Hahn AF. Guillain-Barre syndrome. Lancet. 1998;352:635-41. DOI: 10.1016/S0140-6736(97)12308-X

(13.) Rees JH, Soudain SE, Gregson NE. Campylobacter jejuni infection and Guillain-Barre syndrome. N Engl J Med. 1995;333:1374-9. DOI: 10.1056/NEJM199511233332102

(14.) Marshall JK, Thabane M, Garg AX, Clark WF, Salvadori M, Collins SN. Incidence and epidemiology of irritable bowel syndrome after a large waterborne outbreak of bacterial dysentery. Gastroenterology. 2006;131:445-50. DOI: 10.1053/j.gastro.2006.05.053

(15.) Garg AX, Pope JE, Thiessen-Philbrook H, Clarke WF, Ouimet J. Arthritis risk after acute bacterial gastroenteritis. Rheumatology (Oxford). 2008;47:200-4. DOI: 10.1093/rheumatology/kem339

(16.) Garg AX, Marshall J, Salvadori M, Thiessen-Philbrook HR, Macnab J, Suri RS, et al. A gradient of acute gastroenteritis was characterized, to assess risk for long-term health sequelae after drinking bacterial-contaminated water. J Clin Epidemiol. 2006;59:421-8. DOI: 10.1016/j.jclinepi.2005.08.014

(17.) Australian Bureau of Statistics. Information paper, census of population and housing, socio-economic indexes for areas 2001. Canberra (Australia): The Bureau; 2003.

(18.) Commonwealth Department of Health and Aged Care. Measuring remoteness: accessibility/remoteness index of Australia (ARIA) occasional papers: mew series number 14. Canberra (Australia): The Department; 2001.

(19.) Holman CDJ, Preen DB, Baynham NJ, Finn JC, Semmens JB. A multipurpose Australian comorbidity scoring system performed better than the Charlson index. J Clin Epidemiol. 2005;58:1006-14. DOI: 10.1016/j.jclinepi.2005.01.020

(20.) Hosmer D, Lemeshow S. Survival analysis: regression modelling of time to event data. New York: John Wiley and Sons; 1999.

(21.) Porter C, Tribble D, Aliaga P, Halvorson H, Riddle M. Infectious gastroenteritis and risk of developing inflammatory bowel disease. Gastroenterology. 2008;135:781-6. DOI: 10.1053/j.gastro.2008.05.081

(22.) Kvien TK, Glennas A, Melby K, Gransfors K, Andrup O. Reactive arthritis: incidence, triggering agents and clinical presentation. J Rheumatol. 1994;21:115-22.

(23.) Kaldor J, Speed JR. Guillain-Barre syndrome and Campylobacter jejuni: a serological study. Br Med J (Clin Res Ed). 1984;288:186770. DOI: 10.1136/bmj.288.6434.1867

(24.) Mishu Allos B. Association between Campylobacter infection and Guillain-Barre syndrome. J Infect Dis. 1997;176(Suppl 2):S125-8. DOI: 10.1086/513783

(25.) Nachamkin I. Chronic effects of Campylobacter infection. Microbes Infect. 2002;4:399-403. DOI: 10.1016/S1286-4579(02)01553-8

(26.) Neuwirth C, Francois C, Laurent N, Pechinot A. Myocarditis due to Salmonella virchow and sudden infant death. Lancet North Am Ed. 1999;354:1004.

(27.) Holman C. Western Australia: development of a health services research linked database. Aust N Z J Public Health. 1999;23:453-9. DOI: 10.1111/j.1467-842X.1999.tb01297.x

(28.) Hall G, Yohannes K, Raupach J, Becker N, Kirk M. Estimating community incidence of Salmonella, Campylobacter, and Shiga toxin-producing Escherica coli infections, Australia. Emerg Infect Dis. 2008;14:1601-9. DOI: 10.3201/eid1412.071371

(29.) Thomas MK, Majowicz SE, Pollari F, Sockett PN. Burden of acute gastrointestinal illness in Canada, 1999-2007: interim summary of NSAGI activities. Can Commun Dis Rep. 2008;34:8-15.

Address for correspondence: Rachael E. Moorin, School of Population Health, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia; email:

All material published in Emerging Infectious Diseases is in the public domain and may be used and reprinted without special permission; proper citation, however, is required.

Author affiliations: The University of Western Australia, Crawley, Western Australia, Australia (R.E. Moorin, J.S. Heyworth, T.V. Riley); and Royal Perth Hospital, Perth, Western Australia, Australia (G.M. Forbes)

DOI: 10.3201/eid1609.081665
Table 1. Sociodemographic characteristics and measures of preexisting
health status for those with and without history of enteric infection,
Western Australia, Australia, January 1, 1985-December 31, 2000

                                  History, no.      No history, no.
Characteristic                    (%), n = 23,477   (%), n = 312,924

Male sex                           12,297 (52.4)     156,873 (50.1)
Not of indigenous status           19,872 (84.6)     272,226 (87.0)
Singleton birth                    22,867 (97.4)     305,028 (97.5)
Hospital birth                     22,382 (95.3)     298,919 (95.5)
Weight at birth, g
  [less than or equal to] 2,000       544 (2.3)        4,862 (1.6)
  2,001-3,000                       5,114 (21.8)      58,256 (18.6)
  3,001-4,000                      14,550 (62.0)     205,289 (65.6)
  4,001-5,000                       2,005 (8.5)       31,705 (10.1)
  >5,001                               43 (0.2)          469 (0.1)
Socioeconomic status
  Extremely advantaged              4,315 (18.4)      64,322 (20.6)
  Advantaged                        3,365 (14.3)      43,709 (14.0)
  Average                           3,070 (13.1)      36,159 (11.6)
  Disadvantaged                     5,653 (24.1)      61,379 (19.6)
  Extremely disadvantaged           6,322 (26.9)      58,610 (18.7)
Accessibility to services
  Highly accessible                14,926 (63.6)     199,090 (63.6)
  Accessible                        1,748 (7.4)       19,056 (6.1)
  Moderately accessible             2,042 (8.7)       19,836 (6.3)
  Remote                              804 (3.4)        6,770 (2.2)
  Very remote                       2,812 (12.0)      13,808 (4.4)
Ever hospitalized for a            22,561 (96.1)     254,745 (81.4)
  comorbidity ([double dagger])
Prior hospitalization              22,786 (97.0)     264,702 (84.6)
  ([double dagger])
Hospitalization in first year      18,361 (78.2)     189,959 (60.7)
  of life ([double dagger])
Hospitalization in first month     15,785 (67.2)     177,679 (56.8)
  of life ([double dagger])

Characteristic                    % Difference *

Male sex                           2.3
Not of indigenous status          -2.4
Singleton birth                   -0.1
Hospital birth                    -0.2
Weight at birth, g
  [less than or equal to] 2,000    0.7
  2,001-3,000                      3.2 ([dagger])
  3,001-4,000                     -3.6 ([dagger])
  4,001-5,000                     -1.6
  >5,001                           0.1
Socioeconomic status
  Extremely advantaged            -2.2
  Advantaged                       0.3
  Average                          1.5
  Disadvantaged                    4.5 ([dagger])
  Extremely disadvantaged          8.2 ([dagger])
Accessibility to services
  Highly accessible                  0
  Accessible                       1.3
  Moderately accessible            2.4
  Remote                           1.2
  Very remote                      7.6 ([dagger])
Ever hospitalized for a           14.7 ([dagger])
  comorbidity ([double dagger])
Prior hospitalization             12.4 ([dagger])
  ([double dagger])
Hospitalization in first year     17.5 ([dagger])
  of life ([double dagger])
Hospitalization in first month    10.4 ([dagger])
  of life ([double dagger])

* Percentage with history--percentage without history.

([dagger]) p<0.0001.

([double dagger]) Excludes hospitalization for sequelae.

Table 2. Number and rates of first-time intragastrointestinal and
extragastrointestinal sequelae for those with and without history
of enteric infection, Western Australia, January 1, 1985-December
31, 2005 *


Category of first-time sequelae         No. (%)      Rate ([dagger])

Extragastroiintestinal sequelae      5,045 (100.0)        2,407.1
  Respiratory infections             2,535 (50.2)         1,209.5
  Infections of the middle ear       1,544 (30.6)           736.7
    and mastoid
  Cellulitis, osteomyelitis,           364 (7.2)            173.7
    and myositis
  Fever, unknown origin                303 (6.0)            144.6
  Upper and lower urinary tract         78 (1.5)             37.2
  Infections of lymphatic vessels       69 (1.4)             32.9
  Inflammatory diseases of the CNS      35 (0.7)             16.7
  Arthropathies                         39 (0.8)             18.6
  Endometriosis                         18 (0.4)              8.6
  Orchitis and epididymitis             13 (0.3)              6.2
  Bacteremia                             8 (0.2)              3.8
  Pilonidal cyst                        38 (0.8)             18.1
  Thyroiditis                            1 (0.0)              0.5
  Guillain-Barre syndrome                0                    0.0
  Cardiac infections                     0                    0.0
Intragastrointestinal sequelae       1,267 (100.0)          400.3
  Intestinal obstruction,              278 (21.9)            87.8
    diverticular disease,
    irritable bowel
  Appendicitis                         565 (44.6)           178.5
  Infections of the oral cavity        103 (8.1)             32.5
    and esophagus
  Enteritis, colitis and               125 (9.9)             39.5
    noninfective gastroenteritis
  Infections of the stomach and        122 (9.6)             38.5
  Peritonitis and ascites               16 (1.3)              5.1
  Cholecystitis                         40 (3.2)             12.6
  Pancreatitis                          18 (1.4)              5.7

                                               No history

Category of first-time sequelae         No. (%)       Rate ([dagger])

Extragastroiintestinal sequelae      34,425 (100.0)        976.6
  Respiratory infections             14,750 (42.8)         418.5
  Infections of the middle ear       13,164 (38.2)         373.5
    and mastoid
  Cellulitis, osteomyelitis,          2,327 (6.8)           66.0
    and myositis
  Fever, unknown origin               1,409 (4.1)           40.0
  Upper and lower urinary tract         715 (2.1)           20.3
  Infections of lymphatic vessels       607 1.8)            17.2
  Inflammatory diseases of the CNS      194 (0.6)            5.5
  Arthropathies                         275 (0.8)            7.8
  Endometriosis                         146 (0.4)            4.1
  Orchitis and epididymitis             122 (0.4)            3.5
  Bacteremia                             55 (0.2)            1.6
  Pilonidal cyst                        600 (1.7)           17.0
  Thyroiditis                             2 (0.0)            0.1
  Guillain-Barre syndrome                37 (0.1)            1.0
  Cardiac infections                     22 (0.1)            0.6
Intragastrointestinal sequelae        9,385 (100.0)        226.2
  Intestinal obstruction,             1,536 (16.4)          37.0
    diverticular disease,
    irritable bowel
  Appendicitis                        5,690 (60.6)         137.1
  Infections of the oral cavity         333 (3.5)            8.0
    and esophagus
  Enteritis, colitis and                697 (7.4)           16.8
    noninfective gastroenteritis
  Infections of the stomach and         684 (7.3)           16.5
  Peritonitis and ascites                25 (0.3)            0.6
  Cholecystitis                         346 (3.7)            8.3
  Pancreatitis                           74 (0.8)            1.8

Category of first-time sequelae      Difference ([double dagger])

Extragastroiintestinal sequelae                1,430.5
  Respiratory infections                         791.1
  Infections of the middle ear                   363.2
    and mastoid
  Cellulitis, osteomyelitis,                     107.7
    and myositis
  Fever, unknown origin                          104.6
  Upper and lower urinary tract                   16.9
  Infections of lymphatic vessels                 15.7
  Inflammatory diseases of the CNS                11.2
  Arthropathies                                   10.8
  Endometriosis                                    4.4
  Orchitis and epididymitis                        2.7
  Bacteremia                                       2.3
  Pilonidal cyst                                   1.1
  Thyroiditis                                      0.4
  Guillain-Barre syndrome                         -1.0
  Cardiac infections                              -0.6
Intragastrointestinal sequelae                   174.2
  Intestinal obstruction,                         50.8
    diverticular disease,
    irritable bowel
  Appendicitis                                    41.4
  Infections of the oral cavity                   24.5
    and esophagus
  Enteritis, colitis and                          22.7
    noninfective gastroenteritis
  Infections of the stomach and                   22.1
  Peritonitis and ascites                          4.5
  Cholecystitis                                    4.3
  Pancreatitis                                     3.9

* CNS, central nervous system.

([dagger]) Per 100,000 person-years.

([double dagger]) Rate for patients with history--rate
for patients without history.

Table 3. Number and rate of first-time hospitalizations, rate ratios,
and attributable risk for sequelae for those with and without history
of enteric infection, Western Australia, Australia, January 1,
1985-December 31, 2000 *

                        First-time hospitalizations

                        With history   No history

Type of sequelae        No.     Rate   No.      Rate

Any                     5,634   27.8   41,054   11.8
Intragastrointestinal   1,267    4.0    9,385    2.3
Extragastrointestinal   5,045   24.1   34,425    9.8

                                            Adjusted ([dagger])
                        Crude rate ratio,      rate ratio,
Type of sequelae           RR (95% CI)          RR (95% CI)

Any                     2.36 (2.28-2.41)     1.64 (1.59-1.67)
Intragastrointestinal   1.77 (1.67-1.88)     1.52 (1.42-1.62)
Extragastrointestinal   2.46 (2.39-2.54)     1.63 (1.57-1.68)

                         Adjusted AR, %     Goodness of fit
Type of sequelae        ([double dagger])     ([section])

Any                            39                0.05
Intragastrointestinal          34                0.04
Extragastrointestinal          39                0.08

* Rates are per 100,000 person-years. RR, relative risk; CI, confidence
interval; AR, attributable risk.

([dagger]) Multivariate Cox regression estimating the adjusted rate
ratio of first-time hospitalization for any, intragastrointestinal,
and extragastrointestinal sequelae.

Adjusted for gender, indigenous status, year of birth, age at exposure
or proxy, singleton, weight at birth, hospital birth, mother's region
of birth, father's region of birth, socioeconomic status, accessibility
to services and previous hospitalization for comorbidity.

([double dagger]) Proportion of first-time hospitalizations for
sequelae where previous exposure to an enteric infection was a
component cause.

([section]) Pseudo [R.sup.2]. As explained by Hosmer and Lemeshow
(20), a measure analogous to [R.sup.2] would be useful as a measure
of Cox regression model performance; however, although a pseudo
[R.sup.2] can be calculated the values obtained are often low because
of the censored nature of the data even though the model is adequate.
In our models the [R.sup.2] values were 0.05, 0.04, and 0.08 for the
3 models (any, intragastrointestinal, and extragastrointestinal),
respectively. The models generated were population-based descriptive
models, which aimed to evaluate the average effect on survival to
first-time hospitalization with the outcome of interest adjusted for
known and measurable confounders, rather than predict the probability
of survival for a specified individual. Thus, the most important
assessment criteria for evaluating the appropriateness of a descriptive
Cox regression model is that the proportional hazards assumption is not
violated and the overall model is significant. In all of our models the
proportional hazards assumption was tested and found not to be violated
and the overall model significance was Prob > [chi square] <0.00005.

Table 4. Crude and adjusted rate ratio and attributable risk for
first-time hospitalization for sequelae, by type of prior infection
and classification of sequelae, Western Australia, Australia,
January 1,1985-December 31, 2000 *

                                 Crude rate      Adjusted ([dagger])
Type of sequelae and type        ratio, RR        rate ratio, RR
of prior infection                (95% CI)            (95% CI)

  Campylobacteriosis          1.56 (1.43-1.69)    1.52 (1.39-1.66)
  Giardiasis                  2.10 (1.91-2.31)    1.51 (1.36-1.68)
  Salmonellosis               1.86 (1.71-2.03)    1.39 (1.26-1.53)
  Viral enteritis             2.10 (1.96-2.24)    1.68 (1.56-1.81)
  Enteritis/gastroenteritis   2.60 (2.51-2.70)    1.76 (1.70-1.84)
  Campylobacteriosis          1.50 (1.37-1.64)    1.45 (1.32-1.60)
  Giardiasis                  2.26 (2.04-2.49)    1.54 (1.38-1.73)
  Salmonellosis               2.01 (1.85-2.21)    1.43 (1.29-1.58)
  Viral enteritis             2.12 (1.98-2.27)    1.63 (1.51-1.76)
  Enteritis/gastroenteritis   2.69 (2.58-2.80)    1.74 (1.66-1.82)
  Campylobacteriosis          1.76 (1.51-2.05)    1.64 (1.40-1.93)
  Giardiasis                  1.37 (1.10-1.68)    1.29 (1.03-1.61)
  Salmonellosis               1.09 (0.87-1.34)    1.00 (0.79-1.25)
  Viral enteritis             1.99 (1.72-2.29)    1.56 (1.34-1.85)
  Enteritis/gastroenteritis   2.03 (1.88-2.20)    1.66 (1.52-1.81)

Type of sequelae and type        Adjusted AR,        Goodness of
of prior infection            % ([double dagger])   fit ([section])

Any                                                      0.05
  Campylobacteriosis                  34
  Giardiasis                          34
  Salmonellosis                       28
  Viral enteritis                     40
  Enteritis/gastroenteritis           43
Extragastrointestinal                                    0.07
  Campylobacteriosis                  31
  Giardiasis                          35
  Salmonellosis                       31
  Viral enteritis                     39
  Enteritis/gastroenteritis           43
Intragastrointestinal                                    0.02
  Campylobacteriosis                  39
  Giardiasis                          23
  Salmonellosis                        0
  Viral enteritis                     36
  Enteritis/gastroenteritis           40

* RR, relative risk; CI, confidence interval; AR, attributable
risk; NOS, not otherwise specified.

([dagger]) Multivariate Cox regression estimating the adjusted
rate ratio of first-time hospitalization for any,
intragastrointestinal, and extragastrointestinal sequelae.

Adjusted for gender, indigenous status, year of birth, age at
exposure or proxy, singleton, weight at birth, hospital birth,
mother's region of birth, father's region of birth, socioeconomic
status, accessibility to services, and previous hospitalization
for comorbid conditions.

([double dagger]) Proportion of first-time hospitalizations for
sequelae where previous exposure to the specified enteric infection
was a component cause.

([section]) Pseudo [R.sup.2]. In our models, the [R.sup.2] values
were 0.05, 0.07, and 0.02 for the 3 sets of models (any,
extragastrointestinal, and intragastrointestinal) respectively.
In all models the proportional hazards assumption was tested and
found not to be violated, and the overall model significance was
Prob > [chi square] <0.00005.
COPYRIGHT 2010 U.S. National Center for Infectious Diseases
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2010 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Moorin, Rachael E.; Heyworth, Jane S.; Forbes, Geoffrey M.; Riley, Thomas V.
Publication:Emerging Infectious Diseases
Article Type:Report
Geographic Code:8AUST
Date:Sep 1, 2010
Previous Article:Pneumococcal serotypes in children in 4 European countries.
Next Article:Typhoid fever and invasive nontyphoid salmonellosis, Malawi and South Africa.

Terms of use | Privacy policy | Copyright © 2018 Farlex, Inc. | Feedback | For webmasters